Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

Based on the KEMA Residential Refrigerator Recycling Ninth Year Retention Study,⁴⁹³ the Estimated Useful Life of Refrigerator Recycling is 8 years, representing the assumed remaining useful life of the retired unit.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of refrigerators/freezers removed
- Year removed unit manufactured
- Total capacity (in cubic feet)
- Freezer configuration (top, bottom, side-by-side, upright, or chest)

⁴⁹³ KEMA, Inc. "Residential Refrigerator Recycling Ninth Year Retention Study." Prepared for Southern California Edison Company. July 22, 2004.

References and Efficiency Standards

Petitions and Rulings

• Docket No. 42212. Petition of El Paso Electric Company to Approve Revisions to the Deemed Savings for the Appliance Recycling Market Transformation program. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v2.1	1/30/2015	TRM v2.1 origin.
V3.0	4/10/2015	TRM v3.0 update. CF updated to align with new peak demand methodology.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter CFs.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated baseline energy consumption.
v9.0	10/2021	TRM v9.0 update. Correct deemed ranges for refrigerator volume.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.
v12.0	10/2024	TRM v12.0 update. No revision.

Table 375. Refrigerator/Freezer Recycling—Revision History

2.5.8 ENERGY STAR[®] Air Purifiers Measure Overview

TRM Measure ID: R-AP-AP Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Replace-on-burnout, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR air purifier. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

This measure applies to floor, tabletop, and wall-mounted air purifiers/room air cleaners.

Baseline Condition

The baseline condition is the current federal standard Tier 1 requirements, effective August 9, 2023, with compliance enforced as of December 31, 2023. The standard will increase to Tier 2 requirements on December 31, 2025.⁴⁹⁴

Smoke CADR	Tier 1 CADR/W	Tier 2 CADR/W
10–99	1.7	1.9
100–149	1.9	2.4
150+	2.0	2.9

⁴⁹⁴ DOE minimum efficiency standard for residential air cleaners. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=77</u>. <u>https://www.energy.gov/sites/default/files/2023-03/air-cleaners-ecs-dfr.pdf</u>.

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 2.0 Requirements for eligible room air cleaners effective October 17, 2020, and revised May 2022.⁴⁹⁵ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Smoke CADR	Minimum CADR/W
10–99	1.9
100–149	2.4
150+	2.9

Table 377. Air Purifiers—ENERGY STAR Requirements

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator and the revised ENERGY STAR specification in Table 347.⁴⁹⁶ Default baseline standby power and clean air delivery rate (CADR) efficiency (CADR/W) values were taken from the ENERGY STAR calculator. ENERGY STAR standby power, CADR, and CADR/W are averages from the ENERGY STAR qualified product listing. Baseline CADR is assumed to be equivalent to ENERGY STAR CADR.

This measure will be updated to comply with the latest available ENERGY STAR specification and appliance calculator. It will also periodically be updated to comply with the latest updates to the ENERGY STAR qualified product listing.

Energy Savings
$$[\Delta kWh] = (kWh_{baseline,OP} + kWh_{baseline,SB}) - (kWh_{ES,OP} + kWh_{ES,SB})$$

Equation 146

$$kWh_{baseline,OP} = \left(\frac{CADR_{baseline}}{\eta_{baseline}}\right) / 1,000 \times hours \times days$$

Equation 147

$$kWh_{baseline,SB} = (8,760 - hours \times days) \times \frac{W_{baseline,SB}}{1,000}$$

Equation 148

⁴⁹⁵ ENERGY STAR Room Air Cleaners Final Version 2.0 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%202.0%20Room%20Ai</u> <u>r%20Cleaners%20Specification%20%28Rev.%20May%202022%29_0.pdf</u>.

⁴⁹⁶ ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

$$kWh_{ES,OP} = \left(\frac{CADR_{ES}}{\eta_{ES}}\right)/1,000 \times hours \times days$$

Equation 149

$$kWh_{ES,SB} = (8,760 - hours \times days) \times \frac{W_{ES,SB}}{1,000}$$

Equation 150

Where:

kWh _{baseline,OP} =	=	Baseline/conventional operating energy usage
kWh _{baseline} ,sB	=	Baseline/conventional standby energy usage
kWh _{ES,OP}	=	ENERGY STAR average operating energy usage
kWh _{ES,SB}	=	ENERGY STAR average standby energy usage
CADR _{baseline}	=	Baseline unit clean air delivery rate (cu ft/min), assume equivalent to CADR _{ES}
CADR _{ES}	=	ENERGY STAR unit clean air delivery rate (cu ft/min) (see Table 379)
Ŋbaseline	=	Baseline clean air delivery efficiency = 1.0 cfm/W
η _{ES}	=	ENERGY STAR air delivery efficiency (cfm/W) (see Table 379)
hours	=	Average hours of operation per day = 16
days	=	Average days of operation per year = 365
W _{baseline,SB}	=	Conventional model standby power = 1.0 W
W _{ES,SB}	=	ENERGY STAR model standby power = 0.6 W
1,000	=	Constant to convert from W to kW
8,760	=	Total hours per year

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{hours \times days} \times CF_{S/W}$$

Equation 151

Where:

CF_{S/W} = Seasonal peak coincidence factor (see Table 378)

Table 378. Air Purifiers—Coincidence Factors⁴⁹⁷

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.636	0.617	0.631	0.620	0.564
Winter	0.882	0.907	0.829	0.876	0.926

Deemed Energy Savings Tables

Table 379. Air Purifiers—Energy Savings (kWh) ENERGY STAR QPL ENERGY STAR QPL Smoke CADR range (cu Average Smoke Average Smoke CADR CADR/W ft/min) kWh savings 10-99 75 3.0 115 100-149 129 4.3 222 150-199 171 4.6 284 200-249 225 363 4.4 250-299 275 5.7 522 300+ 375 5.5 699

Deemed Summer Demand Savings Tables

Table 380. Air Purifiers—Summer Peak Demand Savings (kW)

Smoke CADR range (cu ft/min)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
10–99	0.012	0.012	0.012	0.012	0.011
100–149	0.024	0.023	0.024	0.024	0.021
150–199	0.031	0.030	0.031	0.030	0.027
200–249	0.040	0.038	0.039	0.039	0.035
250-299	0.057	0.055	0.056	0.055	0.051
300+	0.076	0.074	0.076	0.074	0.068

⁴⁹⁷ See Volume 1, Section 4.

Deemed Winter Demand Savings Tables

Smoke CADR range (cu ft/min)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
10–99	0.017	0.018	0.016	0.017	0.018
100–149	0.034	0.034	0.032	0.033	0.035
150–199	0.043	0.044	0.040	0.043	0.045
200–249	0.055	0.056	0.052	0.054	0.058
250–299	0.079	0.081	0.074	0.078	0.083
300+	0.106	0.109	0.099	0.105	0.111

Table 381. Air Purifiers-Winter Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 9 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID RES-AirCleaner.⁴⁹⁸

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- ENERGY STAR certificate matching model number
- Smoke clean air delivery rate (CADR) in cu ft/min (cfm)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

⁴⁹⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Final Version 2.0 Requirements. Updated dust CADR references to refer to smoke CADR. Updated deemed savings ranges and values.
v11.0	10/2023	TRM v11.0 update. Updated baseline to Tier 1 federal standard.
v12.0	10/2024	TRM v12.0 update. No revision.

Table 382. Air Purifiers—Revision History

2.5.9 ENERGY STAR® Dehumidifiers

TRM Measure ID: R-AP-DH Market Sector: Residential Measure Category: Appliance Applicable Business Types: Single-family, manufactured Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of an ENERGY STAR-compliant dehumidifier.

Eligibility Criteria

Eligible equipment includes both portable and whole-home dehumidifiers that are compliant with the current ENERGY STAR specification.⁴⁹⁹

Baseline Condition

The baseline condition for this measure is a new dehumidifier that meets the current federal standard, effective June 13, 2019.⁵⁰⁰ These standards are provided in Table 383 for portable dehumidifiers and Table 384 for whole-home dehumidifiers.

High-Efficiency Condition

The high-efficiency condition is a dehumidifier that meets the ENERGY STAR Version 5.0 Program Requirements for Dehumidifiers, effective October 31, 2019.⁵⁰¹ Units meeting ENERGY STAR Most Efficient 2020 Criteria are eligible for additional savings. These standards are provided in Table 383 and Table 384.

⁴⁹⁹ ENERGY STAR Dehumidifier Qualified Product Listing. <u>https://www.energystar.gov/productfinder/product/certified-dehumidifiers/results</u>.

⁵⁰⁰ Energy Conservation Program: Energy Conservation Standards for Dehumidifiers. <u>https://www.federalregister.gov/documents/2022/06/22/2022-13322/energy-conservation-program-energy-conservation-standards-for-dehumidifiers</u>.

⁵⁰¹ ENERGY STAR Version 5.0 Program Requirements for Dehumidifiers. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Dehumidifiers%20Version%205.</u> <u>0%20Program%20Requirements_0.pdf</u>.

A new ENERGY STAR Final Version 6.0 specification will be effective October 1, 2025.⁵⁰² Texas TRM v13 will be updated for compliance with that updated specification.

Table 383. Dehumidifiers—Federal and ENERGY STAR Standards for Portable Dehumidifiers

Product Capacity (pints/day)	Federal Standard Criteria (L/kWh)	ENERGY STAR IEF (L/kWh)	ENERGY STAR Most Efficient (L/kWh)
≤ 25	≥ 1.30	≥ 1.57	≥ 1.70
> 25 to ≤ 50	≥ 1.60	≥ 1.80	≥ 1.90
> 50	≥ 2.80	≥ 3.30	≥ 3.40

Table 384. Dehumidifiers—Federal and ENERGY STAR Standards for Whole-Home Dehumidifiers

Case Volume (ft ³)	Federal Standard IEF (L/kWh) ⁵⁰³	ENERGY STAR IEF (L/kWh)	ENERGY STAR Most Efficient (L/kWh)
≤ 8.0	≥ 1.77	≥ 2.09	≥ 2.22
> 8.0	≥ 2.41	≥ 3.30	≥ 3.40

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

The annual energy savings are calculated using the following equation:

Annual Energy Savings
$$[\Delta kWh] = \frac{Cap \times 0.473}{24} \times HOU \times \left(\frac{1}{L/kWh_{Base}} - \frac{1}{L/kWh_{ES}}\right)$$

Equation 152

Where:

Cap	=	Average product capacity (pints/day), from ENERGY STAR (see Table 385)
0.473	=	Constant to convert from pints to liters
24	=	Constant to convert from from hours to days

⁵⁰² ENERGY STAR Version 6.0 Program Requirements for Dehumidifiers. <u>https://www.energystar.gov/sites/default/files/2024-</u> 08/ENERGY%20STAR%20Dehumidifiers%20V6.0%20Final%20Specification%20with%20Partner%2 <u>0Commitments.pdf</u>.

⁵⁰³ ENERGY STAR Dehumidifiers Key Efficiency Criteria. https://www.energystar.gov/products/appliances/dehumidifiers/key_efficiency_criteria.

HOU	=	Hours of use per year [hours] ⁵⁰⁴ = 1,632
L/kWh _{base}	=	Baseline liters of water per kWh consumed (see Table 383 and Table 384)
L/kWh _{ES}	=	ENERGY STAR liters of water per kWh consumed (see Table 385)

Dehumidifier type	Most efficient	Capacity range (pints/day)	ENERGY STAR Avg. capacity (pints/day)	ENERGY STAR Avg. efficiency (liters/kWh)
Portable	No	≤ 25	22.0	1.63
	No	> 25 to ≤ 50	43.0	1.85
	Yes	≤ 25	20.8	1.78
	Yes	> 25 to ≤ 50	44.5	2.01
Whole-home	No	Any	79.1	2.13
	Yes	Any	82.8	2.35

Table 385. Dehumidifiers—Savings Calculation Input Assumptions⁵⁰⁵

Demand Savings Algorithms

No winter peak demand electric savings are calculated for this measure.

The summer peak electric demand savings are calculated using the following equation.

Peak Demand Savings
$$[\Delta kW] = \frac{kWh_{Savings}}{HOU} \times CF_S$$

Equation 153

Where:

CF_s = Summer peak coincidence factor (See Table 355)

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.355	0.345	0.353	0.346	0.315
Winter ⁵⁰⁷	0.000	0.000	0.000	0.000	0.000

Table 386. Dehumidifiers—Coincidence Factors⁵⁰⁶

⁵⁰⁴ ENERGY STAR calculator, assuming 24 hour operation over 68 days of the year. Updated October 1, 2016.

⁵⁰⁵ Values were averaged from August 2024 ENERGY STAR Dehumidifier QPL. No items on QPL had capacities above 50 pints/day for portable dehumidifiers, or case volumes larger than 8 ft³ for wholehome dehumidifiers, so these size ranges are excluded.

⁵⁰⁶ See Volume 1, Section 4.

⁵⁰⁷ The ENERGY STAR appliance calculator only assumes operation April through September.

Deemed Energy Savings Tables

Dehumidifier type	Most efficient	Capacity (pints/day)	Energy savings
Portable	No	≤ 25	110
	No	> 25 to ≤ 50	117
	Yes	≤ 25	139
	Yes	> 25 to ≤ 50	182
Whole-home	No	Any	243
	Yes	Any	371

Table 387. Dehumidifiers—Annual Energy Savings (kWh)

Deemed Summer Demand Savings Tables

Dehumidifier type	Most efficient	Capacity (pints/day)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Portable	No	≤ 25	0.024	0.023	0.024	0.023	0.021
	No	> 25 to ≤ 50	0.025	0.025	0.025	0.025	0.023
	Yes	≤ 25	0.030	0.029	0.030	0.030	0.027
	Yes	> 25 to ≤ 50	0.040	0.038	0.039	0.039	0.035
Whole-home	No	Any	0.053	0.051	0.053	0.052	0.047
	Yes	Any	0.081	0.078	0.080	0.079	0.072

Table 388. Dehumidifiers—Summer Peak Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for dehumidifiers is 12 years. 508

⁵⁰⁸ ENERGY STAR Dehumidifier Calculator based on 2012 EPA research.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- ENERGY STAR Most Efficient status (yes, no)
- Type of dehumidifier (portable, whole-home)
- Capacity/size of the new and old unit (pints/day)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 389. Dehumidifiers—Revision History

TRM version	Date	Description of change
v12.0	10/2024	TRM v12.0 origin.

2.5.10 ENERGY STAR® Ventilation Fans

TRM Measure ID: R-AP-VF Market Sector: Residential Measure Category: Appliance Applicable Business Types: Single-family, manufactured Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of ENERGY STAR-compliant bathroom and utility room ventilation fans.

Eligibility Criteria

Eligible equipment includes ventilation fans that are compliant with the current ENERGY STAR specification.⁵⁰⁹ The new ventilation fans must also have a capacity that is between 10 cubic feet per minute (CFM) and 500 CFM.

Baseline Condition

ENERGY STAR does not specify a baseline efficacy for existing residential ventilation fans. Therefore, a conservative improvement of 15 percent for the efficient case is used to determine the baseline. The resulting baseline efficacy values are provided in Table 390.

Table 390	Ventilation Eans-	-Baseline Bathroom	and Utility Room	Ventilating Far	n Efficady
		Baconino Baan com			

Airflow (CFM)	Baseline efficacy (CFM/Watt)
10-89	2.4
90-200	3.0
201-500	3.4

⁵⁰⁹ ENERGY STAR Ventilation Fan Qualified Product Listing. <u>https://www.energystar.gov/products/ventilation_fans</u>.

High-Efficiency Condition

The high-efficiency condition is a ventilation fan that meets the ENERGY STAR Version 4.1 Program Requirements for Residential Ventilating Fans, effective October 1, 2015.⁵¹⁰ These standards are provided in Table 391 and Table 392.

Airflow	ENERGY STAR	ENERGY STAR most efficient
(CFM)	Minimum Efficacy	/ Level (CFM/W)
10-89	≥ 2.8	
90-200	≥ 3.5	≥ 10.0
201-500	≥ 4.0	

Table 391. Ventilation Fans—ENERGY STAR Minimum Efficacy Levels

Table 3	92	Ventilation	Fans-	-ENERGY	STAR	Maximum	Sound	l evels
Table J	52.	ventilation	ans-	LINENOI	UIAN	Maximum	Jound	Levels

Airflow	ENERGY STAR	ENERGY STAR most efficient		
(CFM)	Maximum Sound Level (Sones)			
10-200	<u>≤</u> 2.0	- 10		
201-500	<u>≤</u> 3.0	<u>≤</u> 4.0		

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

The annual energy savings are calculated using the following equation:

Annual Energy Savings
$$[\Delta kWh] = Cap \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ES}}\right) \times \frac{1}{1,000} \times AOH$$

Equation 154

Where:

Cap	=	Nominal ENERGY STAR capacity of the exhaust fan (use maximum value for multi-speed fans) [CFM]
η_{base}	=	Baseline fan efficacy (CFM/Watt), (see Table 390)
η _{ES}	=	ENERGY STAR fan efficacy (CFM/Watt) (see Table 393)

⁵¹⁰ ENERGY STAR Version 4.1 Program Requirements for Residential Ventilating Fans. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Ventilating%20Fans%20Specification%20Version%204.2.pdf</u>.

AOH = Annual operating hours⁵¹¹ = 438

1,000 = Constant to convert from W to kW

Table 393. Ventilation Fans—ENERGY STAR Average Airflow and Efficacy⁵¹²

Airflow (CFM)	Most efficient	ENERGY STAR avg. airflow (CFM)	ENERGY STAR avg. efficacy (CFM/Watt)
10-89	No	72	5.6
90-200		117	6.3
201-500		295	4.4
10-89	Yes	68	12.0
90-200		128	11.7
201-500		260	6.7

Demand Savings Algorithms

No winter peak electric demand savings are calculated for this measure.

The summer peak electric demand savings are calculated using the following equation:

Peak Demand Savings
$$[\Delta kW] = CFM \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ES}}\right) \times \frac{1}{1,000} \times CF$$

Equation 155

Where:

CF

Seasonal peak coincidence factor (see Table 394)

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.060	0.053	0.063	0.059	0.032
Winter	0.275	0.232	0.199	0.263	0.358

Table 394. Ventilation Fans—Coincidence Factors⁵¹³

⁵¹¹ "Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates." US Department of Energy. December 2012. Page 50. Bathroom lights estimated to run 1.2 hours day, or 438 hours per year (1.2 x 365 = 438), assuming ventilation fan operation when the bathroom light was on. <u>https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/2012_residential-lighting-study.pdf</u>.

⁵¹² Values were averaged from August 2024 ENERGY STAR Ventilation Fans QPL.

⁵¹³ See Volume 1, Section 4. Using values from the *Residential Lighting* measure.

Deemed Energy Savings Tables

Airflow (CFM)	Most efficient	Energy savings (kWh)
10-89	No	8
90-200		9
201-500		9
10-89	Yes	10
90-200		14
201-500		16

Table 395. Ventilation Fans—Annual Energy Savings (kWh)

Deemed Summer Demand Savings Tables

Table 396. Ventilation Fans—Summer Peak Demand Savings (kW)

		Climate Zone 1:	Climate Zone 2:	Climate Zone 3:	Climate Zone 4:	Climate Zone 5:
Airflow (CFM)	Most efficient	Amarillo	Dallas	Houston	Corpus Christi	El Paso
10-89	No	0.0010	0.0009	0.0011	0.0010	0.0005
90-200	No	0.0012	0.0011	0.0013	0.0012	0.0007
201-500	No	0.0012	0.0010	0.0012	0.0012	0.0006
10-89	Yes	0.0014	0.0012	0.0014	0.0013	0.0007
90-200	Yes	0.0019	0.0017	0.0020	0.0019	0.0010
201-500	Yes	0.0023	0.0020	0.0024	0.0022	0.0012

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for a ventilation fan is 19 years.514

⁵¹⁴ "Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures." Prepared by GDS Associates for the New England State Program Working Group (SPWG), June 2007, Table 1, Page 1-3. Conservative estimate are based on a 25-year EUL for for whole-house fans and a 19-year EUL for thermostatically-controlled attic fans.

https://energizect.com/sites/default/files/documents/Measure%20Life%20Report%202007.pdf.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- ENERGY STAR Most Efficient status (yes, no)
- Nominal capacity of the ventilation fan
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 397. Ventilation Fans—Revision History

TRM version	Date	Description of change
v12.0	10/2024	TRM v12.0 origin.

2.5.11 ENERGY STAR® Water Coolers

TRM Measure ID: R-AP-WC Market Sector: Residential Measure Category: Appliances Applicable Business Types: Single-family, manufactured Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of ENERGY STAR-compliant water coolers. Water coolers are a home appliance that offer consumers the ability to enjoy hot and/or cold water on demand.

Eligibility Criteria

Eligible equipment includes water coolers that are compliant with the current ENERGY STAR specification.⁵¹⁵

This measure applies to bottled water and point-of-use units, conditioned storage water coolers, on-demand water coolers, and products that provide sparkling, alkaline, or flavored water in addition to chilled water. Units that provide pressurized water and are not freestanding, are air-source, or use a water source other than bottled or tap water, and units that are primarily ice makers with a water dispensing function are ineligible under this measure.

Water coolers must be installed in a residential application.

Baseline Condition

The baseline condition is a non-ENERGY STAR-certified water cooler.

⁵¹⁵ ENERGY STAR Water Coolers Qualified Product Listing (QPL). <u>https://www.energystar.gov/products/water_coolers</u>.

High-Efficiency Condition

The high-efficiency condition is a water cooler that meets the ENERGY STAR Version 3.0 Program Requirements for Water Coolers, effective March 23, 2022.⁵¹⁶

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy Savings $[\Delta kWh] = (kWh_{base} - kWh_{ES}) \times AOD$

Equation 156

Where:

kWh _{base}	=	Daily energy use for baseline water cooler [kWh/day] (see Table 398)
kWh _{Es}	=	Daily energy use for ENERGY STAR water cooler [kWh/day] (see Table 398)
AOD	=	Annual operating days ⁵¹⁷ = 365

Table 398. Water Coolers—Baseline and Efficient Water Cooler Daily Energy Use (kWh/day)

Type of water cooler	kWh _{base} ⁵¹⁸	kWh _{Es} ⁵¹⁹
Hot and cold water (storage)	0.891	0.695
Hot and cold water (on demand)	0.183	0.143
Cold water only	0.184	0.144

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{8,760} \times CF_{S/W}$$

Equation 157

⁵¹⁶ ENERGY STAR Version 3.0 Program Requirements for Water Coolers. <u>https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Verison%203.0</u> <u>%20Water%20Coolers%20Final%20Specification_0.pdf</u>.

⁵¹⁷ Assumed 365 days per year and 24 hours per day as utilized in daily energy consumption from ENERGY STAR Program Requirements Product Specification 3.0 for Water Coolers Test Method.

⁵¹⁸ <u>Assuming</u> a baseline energy consumption of 22 percent greater than the ENERGY STAR specification. <u>https://www.energystar.gov/products/water_coolers</u>.

⁵¹⁹ Average ratings from certified products on ENERGY STAR Water Coolers Qualified Product Listing. <u>https://www.energystar.gov/products/water_coolers</u>.

Where:

CFsrw	=	Seasonal coincidence factor (See Table 400)
8,760	=	Total hours per year

Table 399. Water Coolers—Coincidence Factors⁵²⁰

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	1.112	1.099	1.108	1.100	1.081
Winter	0.929	0.966	0.924	0.941	0.966

Deemed Energy Savings Tables

Table 400. Water Coolers—Energy Savings (kWh)

Type of Water Cooler	kWh
Hot and cold water (storage)	72
Hot and cold water (on demand)	15
Cold water only	

Deemed Summer Demand Savings Tables

Table 401. Water Coolers—Summer Peak Demand Savings (kW)

Type of water cooler	kW
Hot and cold water (storage)	0.009
Hot and cold water (on demand)	0.002
Cold water only	

Deemed Winter Demand Savings Tables

Table 402. Water Coolers-Winter Peak Demand Savings (kW)

Type of water cooler	kW
Hot and cold water (storage)	0.008
Hot and cold water (on demand)	0.002
Cold water only	

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

⁵²⁰ See Volume 1, Section 4. Using values from the Residential Refrigerators measure.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for an ENERGY STAR water cooler is five years based on the maximum observed manufacturer warranty period for products on the ENERGY STAR QPL.⁵²¹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- Type of water cooler (storage, on demand)
- Water temperature (hot and cold, cold water only)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 403. Water Coolers—Revision History

TRM version	Date	Description of change	
v12.0	10/2024	TRM v12.0 origin.	

⁵²¹ Oasis Coolers had the most products rated on the ENERGY STAR QPL when accessed on 9/11/2024. <u>https://www.oasiscoolers.com/service-support/warranty-information.html</u>.

2.5.12 ENERGY STAR[®] Pool Pumps Measure Overview

TRM Measure ID: R-AP-PP Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the replacement of a single-speed pool pump with an ENERGY STARcertified variable-speed or multi-speed pool pump.

Eligibility Criteria

This measure applies to all residential applications of in-ground pools or above-ground pools. Pools that serve multiple tenants in a common area are not eligible for this measure. Ineligible pump products include waterfall, integral cartridge filter, integral sand filter, storable electric spa, and rigid electric spa.⁵²²

Multi-speed pool pumps are an alternative to variable speed pumps. The multi-speed pump uses an induction motor that functions as two motors in one, with full-speed and half-speed options. Multi-speed pumps may enable significant energy savings. However, if the half-speed motor is unable to complete the required water circulation task, the larger motor will operate exclusively. Having only two speed-choices limits the ability of the pump motor to fine-tune the flow rates required for maximum energy savings.⁵²³ Therefore, multi-speed pumps must have a high-speed override capability to revert to low speed after a period not to exceed 24 hours.

⁵²² These product types are excluded by the ENERGY STAR specification. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.1%20Pool%20Pumps%20Final%20Specification_0.pdf</u>.

⁵²³ Hunt, A. and Easley, S., 2012, "Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings." Building America Retrofit Alliance (BARA), US DOE. May 2012. <u>http://www.nrel.gov/docs/fy12osti/54242.pdf</u>.

Baseline Condition

The baseline is assumed to be a new pool pump that is compliant with the current federal standard, effective July 19, 2021.⁵²⁴ Weighted energy factor (WEF) requirements are based on rated hydraulic horsepower (hhp).

Pump subtype	Size class	WEF
Self-priming	Extra small (hhp ≤ 0.13)	WEF = 5.55
(inground) pool pumps	Small (hhp > 0.13 to < 0.711)	WEF = -1.30 x ln(hhp) + 2.90
	Standard (hhp ≥ 0.711)	WEF = -2.30 x ln(hhp) + 6.59
Non-self priming	Extra small (hhp ≤ 0.13)	WEF = 4.60
(above ground) pool pumps	Standard size (hhp > 0.13)	WEF = -0.85 x ln(hhp) + 2.87

Table 404.	Pool Pumps-	-Baseline	Condition
------------	-------------	-----------	-----------

High-Efficiency Condition

The high-efficiency condition is a 1 to 5 hp variable speed pump (VSP) or multi-speed pool pump that is compliant with the ENERGY STAR Final Version 3.1 Requirements for pool pumps effective July 19, 2021.⁵²⁵ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Additional optional efficiency standards are available, aligning with recommendations from the Consortium for Energy Efficiency (CEE) residential swimming pool pump specification, effective October 21, 2020.⁵²⁶ For all in-ground pumps, CEE Tier 1 matches the current federal standard, and CEE Tier 2 matches the current ENERGY STAR specification for in-ground standard size pumps. Additional savings are only specified for CEE tiers where there is an incremental efficiency improvement above the ENERGY STAR specification.

Compliance only needs to be verified against the CEE specification when claiming CEE savings that exceed the corresponding ENERGY STAR savings values. ENERGY STAR savings should be claimed for all pumps where CEE compliance is not verified and where there are no CEE savings specified.

404

⁵²⁴ Federal standard for dedicated-purpose pool pumps. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=67</u>.

⁵²⁵ ENERGY STAR Pool Pumps Final Version 3.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.1%20Pool%20Pumps%20Final%20Specification_0.pdf</u>.

⁵²⁶ CEE Residential Swimming Pool Pump Specification. <u>https://library.cee1.org/system/files/library/14404/CEE ResSwimmingPoolPump Specification 21Oct2</u> 020.pdf.

Pump subtype	Size class	ENERGY STAR	CEE Tier 1	CEE Tier 2
Self-priming	Extra small (hhp ≤ 0.13)	WEF ≥ 13.40	-	-
(inground) pool pumps	Small (hhp > 0.13 to < 0.711)	WEF \ge -2.45 x ln(hhp) + 8.40	WEF ≥ -1.30 x ln(hhp) + 4.95	WEF ≥ -2.83 x ln(hhp) + 8.84
	Standard (hhp ≥ 0.711)		WEF ≥ -2.30 x ln(hhp) + 6.59	WEF ≥ -2.45 x ln(hhp) + 8.40
Non-self-priming	Extra small (hhp ≤ 0.13)	WEF ≥ 4.92	-	-
(above ground) – pool pumps	Standard size (hhp > 0.13)	WEF ≥ -1.00 x ln(hhp) + 3.85	WEF ≥ -1.60 x ln(hhp) + 9.10	-

Table 405. Pool Pumps—High Efficiency Condition

pumps/results.

406

⁵²⁷ The ENERGY STAR Pool Pump Savings Calculator, updated February 2013, can be found on the ENERGY STAR website at: https://www.energystar.gov/productfinder/product/certified-pool-

Texas Technical Reference Manual, Vol. 2 November 2024

wEF_{base} = Baseline pump energy factor [gal/W x hr] (Table 406) WEF_{ES} ENERGY STAR pump energy factor [gal/W x hr] (Table 407) = hours Pump daily operating hours (Table 406) = Operating days per year = 365 days (default) days =

Baseline pump flow rate [gal/min] (Table 406)

 $kWh_{ES} = \frac{V \times TO \times days}{WEF_{ES} \times 1,000}$

Equation 160

Equation 158

Algorithms to calculate the above parameters are defined as:

 $kWh_{base} = \frac{PFR_{base} \times 60 \times hours \times days}{WEF_{base} \times 1,000}$

Equation 159

Savings for this measure are based on methods and input assumptions from the ENERGY STAR Pool Pump Savings Calculator.

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Pool Pump Savings Calculator with Texas selected as the applicable location, so Texas-specific assumptions were used.527

Energy Savings $[\Delta kWh] = kWh_{base} - kWh_{ES}$

Where:

Where:

PFR_{base}

=

V	=	Pool volume [gal] (Table 406)
ТО	=	Turnovers per day, number of times the volume of the pool is run through the pump per day (Table 407)
60	=	Constant to convert between minutes and hours
1.000	=	Constant to convert from W to kW

Table 406. Pool Pumps—Baseline Assumptions⁵²⁸

New pump HP	Reference HP	Reference HHP ⁵²⁹	Hours ⁵³⁰	PFR _{base} (gal/min)
≤ 1.25	1.0	0.533	4.9	75.5000
1.25 < hp ≤ 1.75	1.5	0.800	4.7	78.1429
1.75 < hp ≤ 2.25	2.0	1.066	4.1	88.6667
$2.25 < hp \le 2.75$	2.5	1.333	4.0	93.0910
2.75 < hp ≤ 5	3.0	1.599	4.0	101.6667

Table 407. Pool Pumps—ENERGY STAR Assumptions⁵³¹

New pump HP	V (gal)	Turnovers/day
≤ 1.25	22,000	1.0
1.25 < hp ≤ 1.75		
1.75 < hp ≤ 2.25		
2.25 < hp ≤ 2.75		
2.75 < hp ≤ 5		

Demand Savings Algorithms

$$Peak Demand Savings [\Delta kW] = \frac{kWh_{base} - kWh_{ES}}{hours} \times \frac{CF_{S/W}}{days}$$

Equation 161

⁵²⁸ Conventional pump PFR and EF values are taken from pump curves found in the ENERGY STAR Pool Pump Savings Calculator. Note: input assumptions will be updated once calculator has been updated for compliance with the current specification.

⁵²⁹ Hhp not available in ENERGY STAR calculator. Assumed hhp calculated as follows: Ref. horsepower x AF. AF = 0.533 based on ratio of hhp to hp from ENERGY STAR qualified product listing. Accessed 8/11/2023.

⁵³⁰ The daily average operating hours for conventional single-speed pumps, based on 2014 residential pool pump program survey results from CenterPoint Energy.

⁵³¹ ENERGY STAR values are taken from default inputs and pump curves found in the ENERGY STAR Pool Pump Savings Calculator. Note: input assumptions will be updated once calculator has been updated for compliance with the current specification.

Where:

CF_{S/W} = Seasonal peak coincidence factor (Table 408)

		0 1 40(0)0
Climate zone	Summer CF	Winter CF
Zone 1: Amarillo	0.258	-0.002
Zone 2: Dallas	0.329	0.025
Zone 3: Houston	0.276	0.108
Zone 4: Corpus Christi	0.266	0.036
Zone 5: El Paso	0.497	-0.143

Table 408. Pool Pumps—Coincidence Factors⁵³²

Deemed Energy Savings Tables

New pump hp	Inground	Above ground				
ENERGY STAR						
≤ 1.25	1,371	587				
1.25 < hp ≤ 1.75	235	657				
1.75 < hp ≤ 2.25	262	707				
2.25 < hp ≤ 2.75	332	852				
2.75 < hp ≤ 5	509	1,229				
	CEE Tier 1					
≤ 1.25	_	1,585				
1.25 < hp ≤ 1.75	-	1,779				
1.75 < hp ≤ 2.25	-	1,935				
2.25 < hp ≤ 2.75	_	2,176				
2.75 < hp ≤ 5	_	2,642				
	CEE Tier 2					
≤ 1.25	1,423	_				
1.25 < hp ≤ 5	-	_				

Table 409. Pool Pumps—Energy Savings (kWh)533

⁵³² Coincidence factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from the US Department of Energy's Building America B10 Benchmark load profiles for pool pumps. The profile used to determine coincidence factors is calculated as the difference of single speed and variable speed profiles. Summer profiles include April through September and winter profiles include October through March.

⁵³³ The results in this table may vary slightly from results produced by the ENERGY STAR calculator because of rounding of default savings coefficients throughout the measure and pool volume.

Deemed Summer Demand Savings Tables⁵³⁴

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
	1	ENERGY STAI	R		
≤ 1.25	0.198	0.252	0.212	0.204	0.381
1.25 < hp ≤ 1.75	0.035	0.045	0.038	0.036	0.068
1.75 < hp ≤ 2.25	0.045	0.057	0.048	0.046	0.087
2.25 < hp ≤ 2.75	0.059	0.075	0.063	0.060	0.113
2.75 < hp ≤ 5	0.090	0.115	0.096	0.093	0.173
		CEE Tier 1			
All sizes	-		-		-
		CEE Tier 2			
≤ 1.25	0.206	0.262	0.220	0.212	0.396
1.25 < hp ≤ 5	-	100	-	223 257	÷.

Table 410. Pool Pumps—Summer Peak Demand Savings (kW) for Inground Pools

Table 411. Pool Pumps—Summer Peak Demand Savings (kW) for Above Ground Pools

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
		ENERGY S	TAR		
≤ 1.25	0.085	0.108	0.091	0.087	0.163
1.25 < hp ≤ 1.75	0.099	0.126	0.106	0.102	0.190
1.75 < hp ≤ 2.25	0.122	0.155	0.130	0.126	0.235
2.25 < hp ≤ 2.75	0.151	0.192	0.161	0.155	0.290
2.75 < hp ≤ 5	0.218	0.277	0.233	0.224	0.418
		CEE Tie	r 1		
≤ 1.25	0.229	0.291	0.245	0.236	0.441
1.25 < hp ≤ 1.75	0.268	0.341	0.287	0.276	0.516
1.75 < hp ≤ 2.25	0.334	0.425	0.357	0.344	0.643
2.25 < hp ≤ 2.75	0.385	0.490	0.412	0.396	0.741
$2.75 \le hp \le 5$	0.468	0.595	0.500	0.481	0.900

534 Ibid.

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
		CEE Tie	r 2		
All sizes			-		-

Deemed Winter Demand Savings Tables

Table 412, Pool	Pumps-Winter Peak	Demand Savings	(kW) for Inground	Pools
Table That Tool	i anno i innoi i oan	bonnana oarnigo	(mr) for mground	

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
		ENERGY ST	AR		
≤ 1.25	-0.001	0.019	0.083	0.027	-0.110
1.25 < hp ≤ 1.75	0.000	0.003	0.015	0.005	-0.020
1.75 < hp ≤ 2.25	0.000	0.004	0.019	0.006	-0.025
2.25 < hp ≤ 2.75	0.000	0.006	0.025	0.008	-0.032
2.75 < hp ≤ 5	-0.001	0.009	0.038	0.012	-0.050
		CEE Tier 1			
All sizes		-	-	-) _ :
		CEE Tier 2	2		
≤ 1.25	-0.001	0.020	0.086	0.029	-0.114
1.25 < hp ≤ 5	-	-	2 — 1	-	

Table 413. Pool Pumps—Peak Demand Savings (kW) for Above Ground Pools

New pump HP	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso					
	ENERGY STAR									
≤ 1.25	-0.001	0.008	0.036	0.012	-0.047					
1.25 < hp ≤ 1.75	-0.001	0.010	0.042	0.014	-0.055					
1.75 < hp ≤ 2.25	-0.001	0.012	0.051	0.017	-0.067					
2.25 < hp ≤ 2.75	-0.001	0.014	0.063	0.021	-0.083					
2.75 < hp ≤ 5	-0.001	0.021	0.091	0.030	-0.120					

New pump HP	Climate Zone 1: v pump HP Amarillo		Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso					
	CEE Tier 1									
≤ 1.25	-0.001	0.022	0.096	0.032	-0.127					
1.25 < hp ≤ 1.75	-0.002	0.026	0.112	0.037	-0.148					
1.75 < hp ≤ 2.25	-0.002	0.032	0.140	0.046	-0.185					
2.25 < hp ≤ 2.75	-0.002	0.037	0.162	0.053	-0.213					
2.75 < hp ≤ 5	-0.003	0.045	0.196	0.065	-0.259					
CEE Tier 2										
All sizes	Ξ.	-	-	800 670	-					

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

ENERGY STAR Pool Pump Savings Calculator, updated May 2020, can be found on the ENERGY STAR website at <u>https://www.energystar.gov/productfinder/product/certified-pool-pumps/results</u>.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID OutD-PoolPump.⁵³⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly include the below.

For all projects collect:

- Climate zone or county
- Unit quantity
- Manufacturer and model number of new pool pump
- ENERGY STAR certificate matching model number
- Weighted energy factor of new pool pump
- Rated hydraulic horsepower of new pool pump

⁵³⁵ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

- Rated horsepower of new pool pump
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification

For a significant sample of projects where attainable (e.g., those projects that are selected for inspection, not midstream or retail programs):

- Items listed for all projects above
- Decision/action type: early retirement, replace-on-burnout, or new construction
- Rated horsepower of existing pool pump
- Existing and new pool pump operating hours

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated eligibility to include above ground pool pumps now eligible for ENERGY STAR certification. Acknowledged the forthcoming ENERGY STAR v2.0.
v8.0	10/2020	TRM v8.0 update. Incorporated ENERGY STAR v2.0 updated deemed savings.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference and documentation requirements.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Final Version 3.1 Requirements. Updated savings coefficient definitions.
v11.0	10/2023	TRM v11.0 update. Updated baseline to current federal standard. Added new savings tiers. Updated documentation requirements.
v12.0	10/2024	TRM v12.0 update. No revision.

Table 414. Pool Pumps—Revision History

2.5.13 Advanced Power Strips Measure Overview

TRM Measure ID: R-AP-PS Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings values Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the installation of a multi-plug advanced power strip (APS) with the ability to automatically disconnect specific loads depending on the power draw of a specified, or "master," load.

For a Tier 1 APS, a load sensor in the strip disconnects power from the control outlets when the master power draw is below a certain threshold. This feature allows for a reduction of power draw from peripheral consumer electronics, which usually maintain some load even when in the off or standby position. Therefore, when the master device (e.g., television) is turned off, the power supply is cut to other related equipment (e.g., set-top boxes, speakers, video game consoles).

A Tier 2 APS uses an external sensor paired with a configurable countdown timer to manage both active and standby power loads for controlled devices in a complete system. A Tier 2 APS may operate either with or without a master control socket. Those without a master control socket sense power of all devices connected to the controlled sockets, while those with a master control socket sense power for the device connected to the master control socket. The external sensor of a Tier 2 APS may use an infrared-only sensor, or it may use a "multi-sensor," which detects both infrared (IR) remote control signals and motion to determine device inactivity and deliver additional savings as compared to a Tier 1 APS. Both versions of external sensors use IR filtering to prevent inappropriate switching events that may have otherwise resulted from natural interference, such as sunlight or CFL light bulbs.

Eligibility Criteria

This measure applies to all residential applications. For Tier 2 applications, the APS must control at least two audiovisual devices.

Baseline Condition

The baseline condition is assumed to be uncontrolled peripheral loads, each plugged into a traditional surge protector or wall outlet.

High-Efficiency Condition

The high-efficiency condition is peripheral loads controlled by a Tier 1 or Tier 2 APS.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings were developed based on reported plug load electricity consumption and hourly use data. A set of home entertainment and home office peripheral equipment and related performance data are presented in the following table. "Daily Standby Hours" and "Daily Off Hours" represent the average number of hours the device is left in standby or off mode. For each device, a weighted watt per hour value is calculated based on projected watts consumed in either mode.

There are two savings paths available for Tier 1. Savings can be estimated by:

- 1. Per system type (home entertainment or home office)
- 2. Per APS for an average complete system if the type is unknown

Tier 2 savings are determined using the average component uses for a complete system and an energy reduction percentage.

System type	Peripheral device	Daily standby hours	Daily off hours	Standby power (W)	Off power (W)	Weighted W/hr	Annual APS hours
Home	Audio equipment: AV receiver	0.0	18.0	19.2	3.1	3.1	6,570
entertainment	Audio equipment: Speakers	0.0	18.0	3.0	0.0	0.0	6,570
	Audio equipment: Subwoofer	0.0	18.0	7.8	0.6	0.6	6,570
	Media player: Blu-ray	2.5	20.8	7.0	0.1	0.8	8,505
	Media player: DVD	2.5	20.8	5.0	2.0	2.3	8,505
	Media player: DVD-R	2.5	20.8	7.0	3.0	3.4	8,505
	Media player: DVD/VCR	2.5	20.4	8.0	4.0	4.4	8,359
	Media player: VCR	2.2	21.4	6.0	3.0	3.3	8,614
	Set-top box: Cable	0.0	16.5	25.0	16.0	16.0	6,023
	Set-top box: Cable with DVR	0.0	16.5	45.0	43.0	43.0	6,023
	Set-top box: Satellite	0.0	15.1	10.0	15.0	15.0	5,512
	Set-top box: Satellite with DVR	0.0	15.1	27.0	28.0	28.0	5,512
	Set-top box: Stand-alone DVR	0.0	18.3	27.0	27.0	27.0	6,680
	Television: CRT	0.0	18.7	5.3	1.6	1.6	6,826
	Television: LCD	0.0	18.7	2.2	0.5	0.5	6,826
	Television: Plasma	0.0	18.7	0.9	0.6	0.6	6,826
	Television: Projection	0.0	18.7	4.4	7.0	7.0	6,826
	Video game console: Nintendo Wii	1.5	21.4	10.5	1.9	2.5	8,359
	Video game console: Wii U	1.5	21.4	34.0	0.4	2.6	8,359
	Video game console: PlayStation 2	1.5	21.4	17.0	0.2	1.3	8,359

Table 415. APS—Peripheral Watt Consumption Breakdown⁵³⁶

⁵³⁶ Derived from New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report." August 2011.

System type	Peripheral device	Daily standby hours	Daily off hours	Standby power (W)	Off power (W)	Weighted W/hr	Annual APS hours
Home	Video game console: PlayStation 3	1.5	21.4	152.9	1.1	11.0	8,359
entertainment	Video game console: PlayStation 4	1.5	21.4	137.0	6.4	14.9	8,359
	Video game console: XBOX	1.5	21.4	68.0	2.0	6.3	8,359
	Video game console: XBOX 360	1.5	21.4	117.5	3.1	10.6	8,359
	Video game console: XBOX One	1.5	21.4	112.0	11.9	18.4	8,359
Home office	Computer: Desktop	4.1	16.7	11.6	3.3	4.9	7,592
	Computer: Laptop	4.1	16.7	7.6	4.4	5.0	7,592
	Computer monitor: CRT	2.4	16.5	7.6	1.5	2.3	6,899
	Computer monitor: LCD	2.4	16.5	1.9	1.1	1.2	6,899
	Computer speakers	0.0	18.7	3.7	2.3	2.3	6,826
	Copier	0.0	23.5	2.8	1.5	1.5	8,578
	Fax machine: Inkjet	0.5	23.3	6.0	5.3	5.3	8,687
	Fax machine: Laser	0.5	23.3	5.3	2.2	2.3	8,687
	Printer: Inkjet	4.4	19.5	2.5	1.3	1.5	8,724
	Printer: Laser	4.4	19.5	9.0	3.3	4.3	8,724
	Scanner	0.0	23.5	3.6	2.1	2.1	8,578
Energy Savings Algorithms

Tier 1 APS

Energy savings for a Tier 1 APS in use for home entertainment or home office are calculated using the following algorithm, where kWh saved is calculated and summed for all peripheral devices.

Energy Savings
$$[\Delta kWh] = \sum \frac{W_i \times H_i}{1,000} \times ISR$$

Equation 162

Where:

W	=	Weighted watts per hour consumed in standby/off mode for each peripheral device (see Table 415)
Н	=	Annual hours per year controlled by APS (see Table 415)
1,000	=	Constant to convert from W to kW
ISR	=	In-service rate or the percentage of units rebated that are installed, see Table 416

Tier 2 APS

Energy savings for a Tier 2 APS are calculated using the average household home entertainment and home office usages, multiplied by an assumed energy reduction percentage.

 $\Delta kWh_{Home\ Entertainment} = kWh_{TV} \times ERP \times ISR$

Equation 163

 $\Delta kWh_{Home \; Office} = kWh_{Comp} \times ERP \times ISR$

Equation 164

$$\Delta kWh_{Unspecified} = \frac{kWh_{TV} + kWh_{Comp}}{2} \times ERP \times ISR$$

Equation 165

Where:

kWh _{TV}	=	Average annual energy consumption of Tier 2 qualifying TV systems; default = 602.8 kWh ⁵³⁷
kWh _{Comp}	=	Average annual energy consumption of Tier 2 qualifying computer systems; default = 197.9 kWh ⁵³⁸
ERP	=	Energy reduction percentage (default = 47.5% ⁵³⁹)

Table 416. APS—In-Service Rates by Program Type

Program type	ISR
All ⁵⁴⁰	0.83

Demand Savings Algorithms

Tier 1 and Tier 2 APS

Demand savings for a Tier 1 APS in use for a home entertainment system or home office are calculated using the following algorithm, where kWh saved is calculated and summed for all peripheral devices. Demand savings for a Tier 2 APS are calculated using the average household home office and home entertainment center usages, multiplied by an assumed energy reduction percentage.

Peak Demand Savings
$$[\Delta kW] = \sum \frac{\Delta kWh}{hours} \times CF_{S/W}$$

Equation 166

Where:

hours = Annual hours per year controlled by APS (see Table 415 for Tier 1 APS; assume 4,380 for Tier 2 APS⁵⁴¹)

 CF_{SW} = Seasonal peak coincidence factor (see Table 417)⁵⁴²

⁵³⁷ New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011. Page 30.

⁵³⁸ New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011. Page 30.

⁵³⁹ Average of ERP from Northeast Energy Efficiency Partnerships (NEEP), "Case Study: Tier 2 Advanced Power Strips and Efficiency Programs". April 2015.

⁵⁴⁰ MidAmerican Energy Company & Tetra Tech "Residential Assessment Impact and Process Evaluation FINAL". December 22, 2020, APPENDIX B: IN-SERVICE RATES ANALYSIS, p. 47.

⁵⁴¹ Estimated based on assumption that approximately half of savings are during active hours (assumed to be 5.3 hours/day, or 1,936 hours/year) and half during standby hours (8,760-1,936 = 6,824 hours/year). The resulting weighted average is 4,380 hours/year.

⁵⁴² Derived using Electric Power Research Institute (EPRI) End Use Load Shapes for Residential TV and PC. <u>http://loadshape.epri.com/enduse</u>.

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.33	0.43	0.36	0.30	0.66
Winter	0.89	0.88	0.86	0.85	0.87

Table 417. APS—Coincidence Factors⁵⁴³

Deemed Energy Savings Tables

Refer to Table 418 and Table 419. The savings presented in these tables must be adjusted by applying the program-specific ISR values specified in Table 416.

Deemed Summer Demand Savings Tables

Refer to Table 418 and Table 419. The savings presented in these tables must be adjusted by applying the program-specific ISR values specified in Table 416.

Deemed Winter Demand Savings Tables

Refer to Table 418 and Table 419. The savings presented in these tables must be adjusted by applying the program-specific ISR values specified in Table 416.

⁵⁴³ See Volume 1, Section 4.

	LW/b	Summer kW savings			Winter kW savings						
System type	savings	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Home entertainment ⁵⁴⁵	269.9	0.0132	0.0174	0.0143	0.0119	0.0265	0.0358	0.0354	0.0345	0.0342	0.0348
Home office546	87.1	0.0037	0.0049	0.0041	0.0034	0.0075	0.0101	0.0100	0.0098	0.0097	0.0098
Upstream/midstream	178.5	0.0084	0.0112	0.0092	0.0077	0.0170	0.0230	0.0227	0.0221	0.0219	0.0223

Table 418. APS—Tier 1 Unadjusted Savings Before Applying ISR⁵⁴⁴

Table 419. APS—Tier 2 Unadjusted Savings Before Applying ISR⁵⁴⁸

LAMP		Summer kW savings				Winter kW savings					
System type	savings	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Home entertainment	286.3	0.021	0.028	0.023	0.019	0.043	0.058	0.058	0.056	0.056	0.057
Home office	94.0	0.007	0.009	0.008	0.006	0.014	0.019	0.019	0.018	0.018	0.019
Upstream/midstream	190.2	0.014	0.019	0.015	0.013	0.029	0.039	0.038	0.037	0.037	0.038

⁵⁴⁴ Apply in-service rate to adjust savings for specific program delivery type.

⁵⁴⁵ Assuming audio equipment: AV receiver, media player: average, set-top box: average, and video game console: average.

⁵⁴⁶ Assuming computer: desktop, computer monitor: LCD, computer speakers, and printer: average.

⁵⁴⁷ Average of home entertainment and home office system averages.

⁵⁴⁸ Apply in-service rate to adjust savings for specific program delivery type.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years for a Tier 1 APS, according to the 2011 NYSERDA Advanced Power Strip Research Report.⁵⁴⁹ While Tier 2 APS is not covered by the NYSERDA report, assume the same 10-year EUL for Tier 2 APS.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- APS type (Tier 1 or Tier 2)
- System type (home entertainment, home office, unspecified)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

⁵⁴⁹ New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011. Page 30.

Document Revision History

TRM version	Date	Description of change	
v7.0	10/2019	TRM v7.0 origin.	
v8.0	10/2020	TRM v8.0 update. No revision.	
v9.0	10/2021	TRM v9.0 update. Updated savings with current coincidence factors.	
v10.0	10/2022	TRM v10.0 update. Corrected typos in deemed savings tables from TRM v9.0 update.	
v11.0	10/2023	TRM v11.0 update. Added in-service rates.	
v12.0	10/2024	TRM v12.0 update. No revision.	

Table 420. APS—Revision History

2.5.14 ENERGY STAR® Electric Vehicle Supply Equipment

TRM Measure ID: R-AP-EV Market Sector: Residential Measure Category: Appliance Applicable Business Types: Single-family, manufactured Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of ENERGY STAR-qualified Level 2 electric vehicle (EV) supply equipment (EVSE) at a residential site. EVSE is the infrastructure that enables plug-in electric vehicles (PEV) to charge onboard batteries. Level 2 EVSE requires 240 V electrical service. This measure provides deemed savings for the energy efficiency improvement of an ENERGY STAR EVSE compared to a standard Level 1 EVSE.

Eligibility Criteria

Eligible equipment includes an ENERGY STAR qualified Level 2 EVSE installed at a residence. The EVSE may be installed for use on either an all-battery electric vehicle (BEV) or a plug-in hybrid electric vehicle (PHEV). Multifamily buildings should use the commercial EVSE measure.

Baseline Condition

The baseline condition is assumed to be a blend of 49 percent⁵⁵⁰ Level 1 EVSEs (ENERGY STAR or non-ENERGY STAR) and 51 percent Level 2 EVSEs. Energy savings are available for the 49 percent market share of Level 1 EVSEs.

⁵⁵⁰ Calculated as the number of normal power outlets divided by the total number of sampled EV owners for the home category. "Exploring Consumer Sentiment on Electric-Vehicle Charging", McKinsey & Company. January 9, 2024. Exhibit 2. <u>https://www.mckinsey.com/features/mckinsey-center-for-futuremobility/our-insights/exploring-consumer-sentiment-on-electric-vehicle-charging</u>.

High-Efficiency Condition

The high-efficiency EVSE is a Level 2 EVSE compliant with ENERGY STAR Final Version 1.1 specification for eligible EVSE, effective March 31, 2021.⁵⁵¹ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Savings for EVSE come from efficiency gains of the ENERGY STAR equipment during operating modes when the vehicle is plugged in and charging. Following a study conducted by Frontier Energy, energy savings are established by estimating annual miles driven, average EV fuel economy, and approximate percentage of energy savings attributed to charging with ENERGY STAR Level 2 EVSE as opposed to Level 1 EVSE.

Energy Savings Algorithms

Table 421 presents the most common registered EVs in Texas and their corresponding fuel economy to establish an average annual energy per individual affected by this measure.

Make	Model	% of Market ⁵⁵³	EPA fuel economy [kWh/100mi] ⁵⁵⁴	Weighted avg. [kWh/100mi]
Tesla	Model 3	24.6%	25	6.2
Tesla	Model Y	22.5%	27	6.1
Tesla	Model S	6.5%	28	1.8
Tesla	Model X	4.1%	32	1.3
Chevrolet	Bolt EV/EUV	3.3%	29	0.8
Ford	Mustang Mach-E	2.4%	34	1.0
Nissan	Leaf	2.0%	31	0.6
Volkswagen	ID.4	1.3%	31	0.4
Ford	F150 Lightning	1.1%	50	0.5
Multiple	Multiple	32.2%	32555	10.3
	Total	100.0%		29.0

Table 421. EV Registration by Model—Fuel Economy for EVs in Texas⁵⁵²

⁵⁵¹ ENERGY STAR EVSE Final Version 1.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20V1.1%20DC%20EVSE%20Final%20Specification_0.pdf</u>.

⁵⁵² EVs in Texas, DFW Clean Cities. https://www.dfwcleancities.org/evsintexas.

⁵⁵³ All models with less than 1 percent of market share were combined.

⁵⁵⁴ US Department of Energy. https://www.fueleconomy.gov/.

⁵⁵⁵ Average of EPA fuel economy for models with a higher market share.

Annual Energy Consumption $[kWh_c] = miles \times WAFE$

Equation 167

Annual Energy Savings $[\Delta kWh] = kWh_c \times L2\% \times BAF$

Equation 168

Where:

miles	=	Average distance driven per year in the US ⁵⁵⁶ [miles] = 13,476
WAFE	=	Weighted average fuel economy [kWh/mi] = 0.290 (see Table 421)
L2%	=	Percentage savings achieved by Level 2 EVSE compared to Level 1 EVSE ⁵⁵⁷ = 10%
BAF	=	Baseline adjustment factor [%] = 49% (representation of market charging with Level 1 EVSE)

Demand Savings Algorithms

Demand (kW) savings are not estimated for this measure.

Deemed Energy Savings Tables

Table 422 presents the deemed energy savings per EVSE.

Table 422. EVSE—Energy Savings (kWh)

KWh savings 191

Deemed Summer and Winter Demand Savings Tables

Not applicable.

Claimed Peak Demand Savings

Not applicable.

Additional Calculators and Tools

Not applicable.

⁵⁵⁶ Average Annual Miles per Driver by Age Group, US Department of Transportation Federal Highway Administration. <u>https://www.fhwa.dot.gov/ohim/onh00/bar8.htm</u>.

⁵⁵⁷ "Texas Residential R&D Electrical Vehicle Study", Frontier Energy for AEP Texas. March 2024.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for an EVSE is assumed to be 10 years.558

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly:

- Climate zone or county
- Manufacturer and model number
- ESVE quantity
- ENERGY STAR certificate matching EVSE model number
- Vehicle year, make, and model (if available)
- Estimated number of miles driven per day (if available)

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. Updated deemed savings tables
v9.0	10/2021	TRM v9.0 update. Updated documentation requirements.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Final Version 1.1 Requirements. Updated savings calculation assumptions, deemed savings, and documentation requirements.

Table 423. EVSE—Revision History

⁵⁵⁸ US Department of Energy Vehicle Technologies Office, November 2015, "Costs Associated with Non-Residential Electric Vehicle Supply Equipment" p. 21. <u>https://afdc.energy.gov/files/u/publication/evse_cost_report_2015.pdf</u>.

TRM version	Date	Description of change
v11.0	10/2023	TRM v11.0 update. Updated algorithm with days coefficient. Updated documentation requirements.
v12.0	10/2024	TRM v12.0 update. Updated savings methodology to use a weighted Level 1 and Level 2 baseline.

2.5.15 Induction Cooking

TRM Measure ID: R-AP-IC Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

Residential cooking appliances include ovens, cooktops, and full ranges. A full range consists of an oven with a built-in cooktop. An induction range is an electric oven with a built-in induction cooktop.

Induction technology works on the principle of magnetic induction, where excited eddy currents in ferromagnetic cookware within the presence of an oscillating magnetic field dissipate heat through the Joule effect. This heat is directly generated by the cookware and is transmitted to the food within it, lessening thermal condition heat loss between the heating element and the cookware. Induction cooktops include a switching-power electronics circuit that delivers high-frequency current to a planar coil of wire embedded in the cooking surface. The cookware is magnetically coupled to the coil by the oscillating magnetic field. Current flows in the cooking vessel due to the low resistance of the metal. Resistance is a function of permeability and resistivity of the cookware as well as the frequency of excitation. Typical induction cooktops operate at switching frequency between 25 kHz and 50 kHz, which restricts coupling to ferromagnetic cookware such as cast iron, and some alloys of stainless steel.⁵⁵⁹

According to manufacturers, induction cooktops heat food faster, are easier to clean, are less likely to burn those using them, and have a higher cooking efficiency than electric resistance cooktops.

Eligibility Criteria

This measure requires the installation of an electric range with an induction cooktop or a standalone induction cooktop in a residential application. This measure assumes the use of small cookware typical of residential applications.

⁵⁵⁹ Sweeney, M., J. Dols, B. Fortenbery, and F. Sharp (EPRI), "Induction Cooking Technology Design and Assessment." Proceedings of the 2014 ACEEE Summer Study on Energy Efficiency in Buildings, p. 9-370. <u>https://www.aceee.org/files/proceedings/2014/data/papers/9-702.pdf</u>.

Baseline Condition

The baseline condition is defined as an electric range with electric resistance cooktop or a standalone electric resistance cooktop. This measure assumes a default of four burners.

Number of burners	Electric cooktop baseline/kWh
0	84
1	89
2	95
3	101
4	106
5	112
6	118
7+	124

Table 424. Induction Cooking—Baseline Electric Resistance Cooktop Energy Consumption⁵⁶⁰

High-Efficiency Condition

The high efficiency condition is defined as an electric range with an induction cooktop or a standalone induction cooktop.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings are calculated as the difference between the baseline and high-efficiency condition unit energy consumption (UEC). These exclude HVAC interactive effects or savings due to reduced kitchen hood consumption. Range oven cooking efficiency varies by cooktop type. Ranges with electric resistance and induction cooktops both have electric resistance oven components. Therefore, baseline and high-efficiency condition oven cooking efficiencies are equivalent and are excluded from the savings calculation.

Energy Savings $[\Delta kWh] = UEC_{base} - UEC_{IC}$

Equation 169

⁵⁶⁰ "Plug Loads and Lighting Modeling," Codes and Standards Enhancement Initiative (CASE). 2016 California Building Energy Efficiency Standards. June 2016. Table 35. <u>https://www.caetrm.com/media/reference-documents/2016_T24CASE_Report_-</u> <u>Plug_Load_and_Ltg_Modeling_-June_2016.pdf</u>.

$$UEC_{IC} = UEC_{base} \times \frac{CE_{base}}{CE_{IC}}$$

Equation 170

Where:

UEC _{base}	=	Baseline annual unit energy consumption [kWh]; see Table 424
UECIC	=	Induction cooking annual unit energy consumption [kWh]
CE _{base}	=	Baseline cooking efficiency = 75 percent ⁵⁶¹
CEIC	=	Induction cooking efficiency = 85 percent ⁵⁶²

Summer Demand Savings Algorithms

Peak Demand Savings $[\Delta kW] = \frac{kWh_{savings}}{8,760} \times CF_{S/W}$

Equation 171

8,760 = Total hours per year

CF_{S/W} = Seasonal peak coincidence factor (Table 425)

Table 425. Induction Cooking—Coincidence Factors⁵⁶³

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.003	0.003	0.003	0.003	0.002
Winter	0.009	0.008	0.007	0.008	0.010

Deemed Energy Savings Tables

For all applications, this measure assumes a default value of four burners.564

⁵⁶¹ "2021-2022 Residential Induction Cooking Tops," ENERGY STAR. <u>https://www.energystar.gov/about/2021_residential_induction_cooking_tops#:~:text=The%20per%20u_nit%20efficiency%20of,times%20more%20efficient%20than%20gas.</u>

⁵⁶² Ibid.

⁵⁶³ Calculated according to TX TRM Volume 1, Section 4 using data from the US DOE Building America B10 Benchmark load profiles for cooking equipment. Summer profiles include April through September, and winter profiles include October through March. <u>https://www.energy.gov/eere/buildings/building-america-analysis-spreadsheets</u>.

⁵⁶⁴ Savings for 0-7+ burners only vary from 10-15 kWh.

Table 426. Induction Cooking—Energy Savings (kWh)

Number of	kWh
burners	savings
4	12

Deemed Summer Demand Savings Tables

For all applications, this measure assumes a default value of four burners.

Table 427. Induction Cooking—Summer Peak Demand Savings (kW)

Number of burners	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
4	0.000004	0.000004	0.000004	0.000004	0.000003

Deemed Winter Demand Savings Tables

For all applications, this measure assumes a default value of four burners.

Table 428. Induction Cooking—Winter Peak Demand Savings (kW)

Number of burners	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
4	0.000013	0.000011	0.000010	0.000011	0.000014

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an induction cooktop is 16 years based on the average lifetime specified for electric cooktops in the 2016 DOE life-cycle cost tool for residential cooking products.⁵⁶⁵

⁵⁶⁵ US Department of Energy (DOE), Energy Efficiency and Renewable Energy Office (EERE). 2016 SNOPR Analytical Tools: Life-Cycle Cost and Payback Period Analysis Spreadsheet. "Cooking_Pds_LCC_SNOPR_DOE_2016_publication.xlsm." Dockett EERE-2014-BT-STD-0005.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Decision/action type (new construction, retrofit)
- Baseline unit type (electric range with electric resistance cooktop, standalone electric resistance cooktop)
- New unit type (electric range with induction cooktop, standalone induction cooktop)
- Manufacturer and model number
- Unit quantity
- Burner quantity
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 429. Induction Cooking—Revision History

TRM version	Date	Description of change
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. Updated documentation requirements.
v12.0	10/2024	TRM v12.0 update. No revision.

Public Utility Commission of Texas

Texas Technical Reference Manual

Version 12.0

Volume 3: Nonresidential Measures

Program Year 2025

Public Utility Commission of Texas

Texas Technical Reference Manual

Version 12.0

Volume 3: Nonresidential Measures

Program Year 2025

Last Revision Date:

November 2024

Table of Contents

1.	Intro	duction	1	2
2.	Non	resident	ial Measures	9
	2.1	Nonresic	dential: Lighting	9
		2.1.1	Lamps and Fixtures Measure Overview	9
		2.1.2	Lighting Controls Measure Overview	46
		2.1.3	Exterior Photocell and Time Clock Repair Measure Overview	53
		2.1.4	LED Traffic Signals Measure Overview	57
	2.2	Nonresic	dential: HVAC	62
		2.2.1	Air Conditioner and Heat Pump Tune-Ups Measure Overview	62
		2.2.2	Split and Packaged Air Conditioners and Heat Pumps Measure Ove	rview69
		2.2.3	HVAC Chillers Measure Overview	95
		2.2.4	Packaged Terminal Air Conditioners/Heat Pumps, Single Package Vertical Air Conditioners/Heat Pumps, and Room Air Conditioners Measure Overview	114
		225	Computer Room Air Conditioners Measure Overview	130
		2.2.6	Computer Room Air Handler Motor Efficiency Measure Overview	
		2.2.7	HVAC Variable Frequency Drives Measure Overview	147
		2.2.8	Condenser Air Evaporative Pre-Cooling Measure Overview	164
		2.2.9	High-Volume Low-Speed Fans Measure Overview	173
		2.2.10	Small Commercial Evaporative Cooling Measure Overview	179
		2.2.11	Small Commercial Smart Thermostats Measure Overview	184
	2.3	Nonresic	dential: Building Envelope	189
		2.3.1	Cool Roofs Measure Overview	189
		2.3.2	Window Treatments Measure Overview	203
		2.3.3	Entrance and Exit Door Air Infiltration Measure Overview	209
	2.4	Nonresic	dential: Food Service Equipment	219
		2.4.1	ENERGY STAR [®] Combination Ovens Measure Overview	219
		2.4.2	ENERGY STAR® Electric Convection Ovens Measure Overview	227
		2.4.3	ENERGY STAR [®] Electric Deck Ovens	233
		2.4.4	ENERGY STAR® Dishwashers Measure Overview	239
		2.4.5	ENERGY STAR® Electric Griddles Measure Overview	248
		2.4.6	ENERGY STAR® Electric Fryers Measure Overview	254
		2.4.7	ENERGY STAR® Electric Steam Cookers Measure Overview	260
		2.4.8	Contact Conveyor Toasters	267
		2.4.9	Radiant Conveyor Toasters	272
		2.4.10	DENERGY STAR [®] Hot Food Holding Cabinets Measure Overview	278
		2.4.11	1 ENERGY STAR [®] Refrigerated Chef Bases	283
		2.4.12	2 ENERGY STAR [®] Ice Makers Measure Overview	288
		2.4.13	3 ENERGY STAR® Induction Cooktops	294

	2.4.14	Induction Soup Wells	.299
	2.4.15	Demand-Controlled Kitchen Ventilation Measure Overview	. 303
	2.4.16	Pre-Rinse Spray Valves Measure Overview	.311
	2.4.17	Vacuum-Sealing and Packaging Machines Measure Overview	.317
	2.4.18	Hand Wrap Machines Measure Overview	. 320
2.5	Nonresid	lential: Refrigeration	. 324
	2.5.1	Door Heater Controls Measure Overview	. 324
	2.5.2	ECM Evaporator Fan Motors Measure Overview	. 332
	2.5.3	Electronic Defrost Controls Measure Overview	. 340
	2.5.4	Evaporator Fan Controls Measure Overview	. 346
	2.5.5	Night Covers for Open Refrigerated Display Cases Measure Overview	. 350
	2.5.6	Solid and Glass Door Reach-Ins Measure Overview	. 354
	2.5.7	Strip Curtains for Walk-In Refrigerated Storage Measure Overview	. 360
	2.5.8	Zero-Energy Doors for Refrigerated Cases Measure Overview	. 370
	2.5.9	Door Gaskets for Walk-In and Reach-In Coolers and Freezers	
		Measure Overview	.376
	2.5.10	High-Speed Doors for Cold Storage Measure Overview	. 382
2.6	Nonresid	Iential: Water Heating	.389
	2.6.1	Heat Pump Water Heaters Measure Overview	. 389
	2.6.2	Central Domestic Hot Water Controls Measure Overview	. 397
	2.6.3	Showerhead Temperature Sensitive Restrictor Valves Measure	403
	264	Tub Spout and Showerhead Temperature-Sensitive Restrictor Valves	. 400
	2.0.1	Measure Overview	.410
2.7	Nonresid	lential: Miscellaneous	.418
	2.7.1	Variable Frequency Drives for Water Pumping Measure Overview	.418
	2.7.2	Water Pumps Measure Overview	.423
	2.7.3	Premium Efficiency Motors Measure Overview	.428
	2.7.4	Pump-Off Controllers Measure Overview	. 441
	2.7.5	ENERGY STAR® Pool Pumps Measure Overview	.447
	2.7.6	Lodging Guest Room Occupancy-Sensor Controls Measure Overview.	.454
	2.7.7	Vending Machine Controls Measure Overview	. 460
	2.7.8	Computer Power Management Measure Overview	. 464
	2.7.9	ENERGY STAR [®] Electric Vehicle Supply Equipment Measure	470
	0740		.470
	2.7.10	Dindustrial High-Frequency Battery Chargers Overview	.4/5
	2.7.11	i Steam Trap Repair and Replacement Measure Overview	.4/9
	2.7.12	Hydraulic Gear Lubricants Measure Overview	.490
	2.7.13	3 Hydraulic Oils Measure Overview	.493
	2.7.14	Hand Dryers Measure Overview	.497
	2.7.15	5 Laser Projectors Measure Overview	. 503

APPEND List of Fi	IX A: Measure Life Calculations for Dual Baseline MeasuresA. gures	1
Figure 1.	Lamps & Fixtures—Non-Qualifying LED Process1	4
Figure 2.	Lamps & Fixtures—Building Type Decision-Making	7
Figure 3.	Door Gaskets—Comparison of Projected Annual Energy Savings to CDDs for All 16 CA Climate Zones for Reach-In Display Cases (Coolers)	8
Figure 4.	Door Gaskets—Comparison of Projected Annual Energy Savings to Cooling Degree CDDs for All 16 CA Climate Zones for Reach-In Display Cases (Freezers)	8
Figure 5.	Showerhead TSRVs—Shower, Bath, and Sink Hot Water Use Profile	8
Figure 6.	Tub Spout/Showerhead TSRVs—Shower, Bath, and Sink Hot Water Use Profile	6
Figure 7.	Premium Motors—Survival Function for Premium Efficiency Motors	5

List of Tables

Table 1. Nonresidential Deemed Savings by Measure Category	3
Table 2. Lamps & Fixtures—Adjusted Baseline Wattages for T12 Equipment	16
Table 3. Lamps & Fixtures—EISA 2007 Baseline Adjustment for GSLs	17
Table 4. Lamps & Fixtures—New Construction LPDs for Interior Space Types by Building Type	22
Table 5. Lamps & Fixtures—New Construction LPDs for Agricultural Greenhouses	23
Table 6. Lamps & Fixtures—New Construction LPDs for Exterior Space Types	24
Table 7. Lamps & Fixtures—New Construction Baseline Wattages for Athletic Field/Court LEDs	25
Table 8. Lamps & Fixtures—Building Type Descriptions and Examples	26
Table 9. Lamps & Fixtures—Operating Hours by Building Type	32
Table 10. Lamps & Fixtures—Summer Peak Coincidence Factors by Building Type	33
Table 11. Lamps & Fixtures—Winter Peak Coincidence Factors by Building Type	36
Table 12. Lamps & Fixtures—Deemed Energy and Demand Interactive HVAC Factors	39
Table 13. Lamps & Fixtures—Upstream/Midstream Input Assumptions by Lamp Type	40
Table 14. Lamps & Fixtures—Revision History	44
Table 15. Lighting Controls—Control Definitions	48
Table 16. Lighting Controls—Energy and Power Adjustment Factors	49
Table 17. Lighting Controls—Revision History	51
Table 18. Exterior Photocell Repair—Annual Operating Hours by Outdoor Application	54
Table 19. Exterior Photocell Repair—Winter Peak Coincidence Factors by Outdoor Application	55

Table 20.	Exterior Photocell Repair—Revision History	. 56
Table 21.	LED Traffic Signals—Federal Standard Maximum Wattages and Nominal Wattages	.58
Table 22.	LED Traffic Signals—Savings Calculation Input Assumptions	.59
Table 23.	LED Traffic Signals—Energy and Peak Demand Savings per Fixture	.59
Table 24.	LED Traffic Signals—EULs by Fixture Type	.60
Table 25.	LED Traffic Signals—Revision History	.61
Table 26.	AC/HP Tune-Ups—Default EER and HSPF per Size Category	.64
Table 27.	AC/HP Tune-Ups—Revision History	.68
Table 28.	DX HVAC—ER Baseline Full-Load Efficiency for ACs	.71
Table 29.	DX HVAC—ER Baseline Part-Load Efficiency for ACs	.72
Table 30.	DX HVAC—ER Baseline Full-Load Cooling Efficiency for HPs	.72
Table 31.	DX HVAC—ER Baseline Part-Load Cooling Efficiency for HPs	.72
Table 32.	DX HVAC—ER Baseline Heating Efficiency for HPs	.73
Table 33.	DX HVAC—NC/ROB Baseline Efficiency Levels	.74
Table 34.	DX HVAC—Building Type Descriptions and Examples	.79
Table 35.	DX HVAC—Building Type Floor Area and Number of Floors	.83
Table 36.	DX HVAC—CF and EFLH Values for Climate Zone 1: Amarillo	.84
Table 37.	DX HVAC—CF and EFLH Values for Climate Zone 2: Dallas	.85
Table 38.	DX HVAC—CF and EFLH Values for Climate Zone 3: Houston	.86
Table 39.	DX HVAC—CF and EFLH Values for Climate Zone 4: Corpus Christi	.87
Table 40.	DX HVAC—CF and EFLH Values for Climate Zone 5: El Paso	.88
Table 41.	DX HVAC—Upstream/Midstream Input Assumptions	.89
Table 42.	DX HVAC—RUL of Early Retirement Systems	.90
Table 43.	DX HVAC—Revision History	.92
Table 44.	Chillers—Air-Cooled Path A ER Baseline Full-Load Efficiency	.98
Table 45.	Chillers—Air-Cooled Path B ER Baseline Full-Load Efficiency	.98
Table 46.	Chillers—Air-Cooled Path A ER Baseline Part-Load Efficiency (IPLV)	.98
Table 47.	Chillers—Air-Cooled Path B ER Baseline Part-Load Efficiency (IPLV)	.98
Table 48.	Chillers—Water-Cooled Centrifugal Path A ER Baseline Full-Load Efficiency	.99
Table 49.	Chillers-Water-Cooled Centrifugal Path B ER Baseline Full-Load Efficiency	.99
Table 50.	Chillers—Water-Cooled Centrifugal Path A ER Baseline Part-Load	~~
T -11 F (.99
Table 51.	Efficiency (IPLV)	100

Table 52.	Chillers—Water-Cooled Screw/Scroll/Recip. Path A ER Baseline Full-Load Efficiency	100
Table 53.	Chillers—Water-Cooled Screw/Scroll/Recip. Path B ER Baseline Full-Load Efficiency	100
Table 54.	Chillers—Water-Cooled Screw/Scroll/Recip. Path A ER Baseline Part-Load Efficiency (IPLV)	101
Table 55.	Chillers—Water-Cooled Screw/Scroll/Recip. Path B ER Baseline Part-Load Efficiency (IPLV)	101
Table 56.	Chillers—NC/ROB Baseline Efficiencies	102
Table 57.	Chillers—CF and EFLH for Climate Zone 1: Amarillo	105
Table 58.	Chillers—CF and EFLH for Climate Zone 2: Dallas	106
Table 59.	Chillers—CF and EFLH for Climate Zone 3: Houston	107
Table 60.	Chillers—CF and EFLH for Climate Zone 4: Corpus Christi	107
Table 61.	Chillers—CF and EFLH for Climate Zone 5: El Paso	108
Table 62.	Chillers—Air-Cooled Upstream/Midstream Input Assumptions	109
Table 63.	Chillers—Water-Cooled Upstream/Midstream Input Assumptions	109
Table 64.	Chillers—RUL of Early Retirement Systems	110
Table 65.	Chillers—Revision History	113
Table 66.	PTAC/PTHPs—ER Baseline Efficiency Levels for Standard Size Units	116
Table 67.	PTAC/PTHPs—NC/ROB Baseline Efficiency Levels	117
Table 68.	SPVAC/SPVHPs—NC/ROB Baseline Efficiency Levels	117
Table 69.	Room ACs—NC/ROB Baseline Efficiency Levels	118
Table 70.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—CF/EFLH Values for Climate Zone 1: Amarillo	121
Table 71.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—CF/EFLH Values for Climate Zone 2: Dallas	121
Table 72.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—CF/EFLH Values for Climate Zone 3: Houston	122
Table 73.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—CF/EFLH Values for Climate Zone 4: Corpus Christi	123
Table 74.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—CF/EFLH Values for Climate Zone 5: El Paso	123
Table 75.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—Upstream/Midstream Input Assumptions	124
Table 76.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—RUL of Early Retirement Standard Size PTACs	125
Table 77.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—RUL of Early Retirement Standard Size PTHPs	126

Table 78.	PTAC/PTHPs, SPVAC/SPVHPs, & RACs—Revision History	. 128
Table 79.	CRACs—ER Baseline Efficiency Levels	. 131
Table 80.	CRACs—NC/ROB Baseline Efficiency Levels	. 132
Table 81.	CRACs—Building Type Descriptions and Examples	. 139
Table 82.	CRACs—DF and EFLH Values	. 139
Table 83.	CRACs-Remaining Useful Life Early Retirement Systems	. 140
Table 84.	CRACs—Revision History	. 142
Table 85.	CRAHs—Motor Efficiencies for Open Drip Proof Motors at 1,800 RPM	. 144
Table 86.	CRAHs—Revision History	. 146
Table 87.	HVAC VFDs—AHU Supply Fan VFD Percentage of CFM Inputs	. 149
Table 88.	HVAC VFDs—Cooling Tower VFD Percentage of CFM Inputs	. 149
Table 89.	HVAC VFDs—Chilled Water and Condenser Water Pumps VFD	
T 1 1 00	Percentage of GPM Inputs	. 151
Table 90.	HVAC VFDs—Hot Water Pump VFD %GPM Inputs	. 152
Table 91.	HVAC VFDs—Motor Efficiencies for Open Drip Proof Motors at 1,800 RPM	. 154
Table 92.	HVAC VFDs—Yearly Motor Operation Hours by Building Type	. 155
Table 93.	HVAC VFDs—AHU Supply Fan Outlet Damper Baseline Savings	157
	per Motor HP	. 157
Table 94.	HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP	. 158
Table 94. Table 95.	HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings	. 157
Table 94. Table 95.	HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP	. 158 . 158
Table 94. Table 95. Table 96.	HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP	. 158 . 158 . 158 . 159
Table 94. Table 95. Table 96. Table 97.	HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP	. 158 . 158 . 158 . 159 . 160
Table 94. Table 95. Table 96. Table 97. Table 98.	Per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP	. 158 . 158 . 158 . 159 . 160 . 160
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99.	 Per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP 	. 158 . 158 . 159 . 160 . 160 . 161
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100	 Per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP D. HVAC VFDs—Revision History 	. 158 . 158 . 159 . 160 . 160 . 161 . 162
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100 Table 101	 Per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings Per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Coiling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP HVAC VFDs—Revision History Evaporative Pre-Cooling—Average Weather During Peak Conditions. 	. 157 . 158 . 159 . 160 . 160 . 161 . 162 . 165
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100 Table 101	 Per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP D. HVAC VFDs—Revision History Evaporative Pre-Cooling—Average Weather During Peak Conditions Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo 	. 157 . 158 . 159 . 160 . 160 . 161 . 162 . 165 . 167
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100 Table 102 Table 102	 per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP Evaporative Pre-Cooling—Average Weather During Peak Conditions Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 2: Dallas 	. 157 . 158 . 159 . 160 . 160 . 161 . 162 . 165 . 167 . 168
Table 94. Table 95. Table 96. Table 97. Table 98. Table 100 Table 100 Table 102 Table 103 Table 103	 per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP I. Evaporative Pre-Cooling—Average Weather During Peak Conditions 2. Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo B. Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 3: Houston 	. 157 . 158 . 159 . 160 . 160 . 161 . 162 . 165 . 167 . 168 . 168
Table 94. Table 95. Table 96. Table 97. Table 98. Table 100 Table 100 Table 102 Table 103 Table 104 Table 104	 per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP Evaporative Pre-Cooling—Average Weather During Peak Conditions Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 2: Dallas Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 3: Houston Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 4: Corrus Christi 	. 157 . 158 . 159 . 160 . 160 . 160 . 161 . 162 . 165 . 167 . 168 . 168
Table 94. Table 95. Table 96. Table 97. Table 98. Table 100 Table 100 Table 102 Table 103 Table 104 Table 105	 per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP Evaporative Pre-Cooling—Average Weather During Peak Conditions Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 3: Houston Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 4: Corpus Christi Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 5: El Paso 	. 157 . 158 . 158 . 159 . 160 . 160 . 161 . 162 . 165 . 165 . 167 . 168 . 168 . 168 . 169
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100 Table 102 Table 102 Table 103 Table 105 Table 106	 per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP Evaporative Pre-Cooling—Average Weather During Peak Conditions Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 3: Houston Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 4: Corpus Christi Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 4: Corpus Christi Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 5: El Paso 	. 157 . 158 . 158 . 159 . 160 . 160 . 160 . 161 . 162 . 165 . 167 . 168 . 168 . 168 . 169 . 170
Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100 Table 100 Table 102 Table 103 Table 104 Table 106 Table 106	 per Motor HP HVAC VFDs—AHU Supply Fan Inlet Damper Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP HVAC VFDs—AHU Supply Fan No Control Baseline Savings per Motor HP HVAC VFDs—Cooling Tower Fans Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Chilled Water Pump Savings per Motor HP HVAC VFDs—Hot Water Pump Savings per Motor HP O. HVAC VFDs—Revision History Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 1: Amarillo Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 2: Dallas Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 3: Houston Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 4: Corpus Christi Evaporative Pre-Cooling—Savings Coefficients for Climate Zone 5: El Paso Evaporative Pre-Cooling—Revision History HVLS Fans—Circulating Fan Minimum Efficiency Requirements 	. 157 . 158 . 158 . 159 . 160 . 160 . 160 . 161 . 162 . 165 . 167 . 168 . 168 . 168 . 169 . 170 . 172

Table 109. HVLS Fans—Circulating Fan Annual Operating Hours	176
Table 110. HVLS Fans—Circulating Fan Coincident Factors,	176
Table 111. HVLS Fans—Revision History	178
Table 112. Evaporative Cooling-NC/ROB Baseline Efficiency Levels for DX AC	180
Table 113. Evaporative Cooling—CF and EFLH Values for Climate Zone 5: El Paso	181
Table 114. Evaporative Cooling—Revision History	183
Table 115. Smart Thermostats—Revision History	188
Table 116. Cool Roofs—Assumed Cooling and Heating Efficiencies (COP)	190
Table 117. Cool Roofs—ENERGY STAR Specification	191
Table 118. Cool Roofs—Estimated R-Value Based on Construction Year	192
Table 119. Cool Roofs—Savings Coefficients for Climate Zone 1: Amarillo	193
Table 120. Cool Roofs—Savings Coefficients for Climate Zone 2: Dallas	194
Table 121. Cool Roofs—Savings Coefficients for Climate Zone 3: Houston	196
Table 122. Cool Roofs—Savings Coefficients for Climate Zone 4: Corpus Christi	197
Table 123. Cool Roofs—Savings Coefficients for Climate Zone 5: El Paso	199
Table 124. Cool Roofs—Revision History	201
Table 125. Windows Treatments—Solar Heat Gain Factors	205
Table 126. Windows Treatments—Recommended Clear Glass SHGC _{pre} by Window Thickness	206
Table 126. Windows Treatments—Recommended Clear Glass SHGCpre by Window ThicknessTable 127. Windows Treatments—Recommended COP by HVAC System Type	206 206
Table 126. Windows Treatments—Recommended Clear Glass SHGC _{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History.	206 206 207
Table 126. Windows Treatments—Recommended Clear Glass SHGC _{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History. Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F).	206 206 207 212
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness Table 127. Windows Treatments—Recommended COP by HVAC System Type Table 128. Windows Treatments—Revision History Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F) Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures 	206 206 207 212 212
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness Table 127. Windows Treatments—Recommended COP by HVAC System Type Table 128. Windows Treatments—Revision History Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F) Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep 	206 206 207 212 212 215
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness Table 127. Windows Treatments—Recommended COP by HVAC System Type Table 128. Windows Treatments—Revision History Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F) Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep Table 132. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep 	206 207 212 212 215 215
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History. Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F). Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep Table 132. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 133. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep 	206 207 212 212 215 215 215
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History. Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F). Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep Table 132. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 133. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 134. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 134. Air Infiltration—Summer Demand Savings/Door of Weatherstripping/Door Sweep 	206 207 212 212 215 215 215 215
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History. Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F). Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures . Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep . Table 132. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep . Table 133. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep . Table 134. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep . Table 134. Air Infiltration—Summer Demand Savings/Door of Weatherstripping/Door Sweep . Table 135. Air Infiltration—ER Winter Demand Savings/Door of Weatherstripping/Door Sweep . 	206 207 212 212 215 215 215 216 216
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History. Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F). Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep Table 132. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 133. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 134. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 134. Air Infiltration—ER Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 135. Air Infiltration—ER Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 136. Air Infiltration—ER Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 136. Air Infiltration—HP Winter Demand Savings/Door of Weatherstripping/Door Sweep 	206 207 212 212 215 215 215 216 216 216
 Table 126. Windows Treatments—Recommended Clear Glass SHGC_{pre} by Window Thickness. Table 127. Windows Treatments—Recommended COP by HVAC System Type. Table 128. Windows Treatments—Revision History. Table 129. Air Infiltration—Average Monthly Ambient Temperatures (°F). Table 130. Air Infiltration—Daytime and Nighttime Design Temperatures Table 131. Air Infiltration—Cooling Energy Savings/Door of Weatherstripping/Door Sweep Table 132. Air Infiltration—ER Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 133. Air Infiltration—HP Heating Energy Savings/Door of Weatherstripping/Door Sweep Table 134. Air Infiltration—Summer Demand Savings/Door of Weatherstripping/Door Sweep Table 135. Air Infiltration—ER Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 136. Air Infiltration—ER Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 137. Air Infiltration—HP Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 136. Air Infiltration—HP Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 136. Air Infiltration—HP Winter Demand Savings/Door of Weatherstripping/Door Sweep Table 136. Air Infiltration—Revision History 	206 207 212 212 215 215 215 216 216 216 216 217

Table 139.	Combination Ovens—Savings Calculation Input Assumptions	222
Table 140.	Combination Ovens—Operating Schedule Assumptions	223
Table 141.	Combination Ovens—Energy and Peak Demand Savings (Education: K-12)	223
Table 142.	Combination Ovens—Energy and Peak Demand Savings (Education: College and university)	224
Table 143.	Combination Ovens—Energy and Peak Demand Savings (All Other)	224
Table 144.	Combination Ovens—Revision History	226
Table 145.	Convection Ovens—ENERGY STAR Specification	228
Table 146.	Convection Ovens—Savings Calculation Input Assumptions	230
Table 147.	Convection Ovens—Operating Schedule Assumptions	230
Table 148.	Convection Ovens—Energy and Peak Demand Savings	230
Table 149.	Convection Ovens—Revision History	232
Table 150.	Deck Ovens—Measure Case Specification	234
Table 151.	Deck Ovens—Calculation Inputs	236
Table 152.	Deck Ovens—Operating Schedule Assumptions	237
Table 153.	Deck Ovens—Annual Energy and Peak Demand Savings	237
Table 154.	Deck Ovens—Revision History	238
Table 155.	Dishwashers—ENERGY STAR Equipment Type Descriptions	240
Table 156.	Dishwashers—ENERGY STAR Specification	241
Table 157.	Dishwashers—Savings Calculation Input Assumptions	243
Table 158.	Dishwashers—Operating Schedule Assumptions	243
Table 159.	Dishwashers-Energy and Peak Demand Savings (Education: K-12)	244
Table 160.	Dishwashers—Energy and Peak Demand Savings (Education: College/University)	244
Table 161.	Dishwashers—Energy and Peak Demand Savings (All Other)	245
Table 162.	Dishwashers—Equipment Lifetime by Machine Type	245
Table 163.	Dishwashers—Revision History	246
Table 164.	Griddles—ENERGY STAR Specification	249
Table 165.	Griddles—Savings Calculation Input Assumptions	250
Table 166.	Griddles—Operating Schedule Assumptions	251
Table 167.	Griddles—Energy and Peak Demand Savings (Education: K-12)	251
Table 168.	Griddles—Energy and Peak Demand Savings (Education: College/University)	251
Table 169.	Griddles—Energy and Peak Demand Savings (All Other)	252
Table 170.	ENERGY STAR Griddles—Revision History	253
Table 171.	Fryers—ENERGY STAR Specification	255

Table 172. Fryers—Savings Calculation Input Assumptions	257
Table 173. Fryers—Operating Schedule Assumptions	257
Table 174. Fryers—Energy and Peak Demand Savings	257
Table 175. Fryers—Revision History	259
Table 176. Steam Cookers—ENERGY STAR Specification	261
Table 177.Steam Cookers—Savings Calculation Input Assumptions	263
Table 178. Steam Cookers—Operating Schedule Assumptions	263
Table 179. Steam Cookers—Energy and Peak Demand Savings (Education: K-12)	264
Table 180. Steam Cookers—Energy and Peak Demand Savings (Education: College/University)	264
Table 181. Steam Cookers—Energy and Peak Demand Savings (All Other)	264
Table 182. Steam Cookers—Revision History	265
Table 183. Contact Conveyor Toasters—Baseline Lab-Tested Specification	268
Table 184. Contact Conveyor Toasters—Lab-Tested Specifications	268
Table 185. Contact Conveyor Toasters—Savings Calculation Input Assumptions	270
Table 186. Contact Conveyor Toasters—Operating Schedule Assumptions	270
Table 187. Contact Conveyor Toasters—Energy and Peak Demand Savings	270
Table 188. Contact Conveyor Toasters—Revision History	271
Table 189. Radiant Conveyor Toasters—Baseline Specification	273
Table 190. Radiant Conveyor Toasters—Lab-Tested Specification	273
Table 191. Radiant Conveyor Toasters—Savings Calculation Input Assumptions	275
Table 192. Radiant Conveyor Toasters—Operating Schedule Assumptions	275
Table 193. Radiant Conveyor Toaster—Energy Savings	275
Table 194. Radiant Conveyor Toasters—Revision History	277
Table 195. HFHCs—ENERGY STAR Specification	279
Table 196. HFHCs—Savings Calculation Input Assumptions	280
Table 197. HFHCs—Operating Schedule Assumptions	280
Table 198. HFHCs—Energy and Peak Demand Savings	281
Table 199. HFHCs—Revision History	282
Table 200. Refrigerated Chef Bases—Refrigerated Volumes for Baseline	285
Table 201. Refrigerated Chef Bases—Daily Energy Consumption	285
Table 202. Refrigerated Chef Bases—Operating Schedule Assumptions	285
Table 203. Refrigerated Chef Bases—Annual Energy and Peak Demand Savings	286
Table 204. Refrigerated Chef Bases—Revision History	287
Table 205. Ice Makers—Federal Standard	289

Table 206. Ice Makers—ENERGY STAR Specification	290
Table 207. Ice Makers—Operating Schedule Assumptions	291
Table 208. Ice Makers—Seasonal Peak CFs	291
Table 209. Ice Makers—Revision History	293
Table 210. Induction Cooktops—ENERGY STAR Specification	295
Table 211. Induction Cooktops—Savings Calculation Inputs and Assumptions	296
Table 212. Induction Cooktops—Operating Schedule Assumptions	297
Table 213. Induction Cooktops—Annual Energy and Peak Demand Savings	297
Table 214. Induction Cooktops—Revision History	298
Table 215. Induction Soup Wells—Calculation Inputs	301
Table 216. Induction Soup Wells—Operating Schedule Assumptions	301
Table 217. Induction Soup Wells—Annual Energy and Peak Demand Savings	301
Table 218. Induction Soup Wells-Revision History	302
Table 219. DCKV—Savings Calculation Input Assumptions	305
Table 220. DCKV—Population-Adjusted Interactive HVAC Savings per hp	305
Table 221. DCKV—Seasonal Peak CFs	306
Table 222. DCKV—Energy Savings per hp	307
Table 223. DCKV—Summer and Winter Peak Demand Savings per hp	308
Table 224. DCKV—Revision History	310
Table 225. PRSVs—Flow Rate Limits	311
Table 226. PRSVs—Assumed Variables for Energy and Peak Demand Savings Calculations	313
Table 227. PRSV—Seasonal Peak CFs	314
Table 228. PRSVs—Revision History	315
Table 229. Vacuum-Sealing & Packaging Machines—Energy and Peak Demand Savings	318
Table 230. Vacuum-Sealing & Packaging Machines—Revision History	319
Table 231. Hand Wrap Machines—Savings Calculation Input Assumptions	322
Table 232 Hand Wrap Machines—Annual Energy and Peak Demand Savings	322
Table 233. Hand Wrap Machines —Revision History	323
Table 234. Door Heater Controls—Energy and Peak Demand Savings per Lin. Ft. of Door	329
Table 235. Door Heater Controls—Revision History	330
Table 236. ECM Evaporator Fan Motors-Motor Sizes, Efficiencies, and Input Watts	336
Table 237. ECM Evaporator Fan Motors-Cooler & Freezer Compressor COP	337
Table 238. ECM Evaporator Fan Motors-Revision History	338

Table 239.	Defrost Controls—Savings Calculation Input Assumptions	344
Table 240.	Defrost Controls—Revision History	345
Table 241.	Evaporator Fan Controls—Savings Calculation Input Assumptions	348
Table 242.	Evaporator Fan Controls—Revision History	349
Table 243.	Night Covers—Energy and Peak Demand Savings per Lin. Ft	352
Table 244.	Night Covers—Revision History	353
Table 245.	Door Reach-Ins—Baseline Energy Consumption	355
Table 246.	Door Reach-Ins—Efficient Energy Consumption Requirements	355
Table 247.	Door Reach-Ins—Energy and Peak Demand Savings	357
Table 248.	Door Reach-Ins—Revision History	359
Table 249.	Strip Curtains—Savings Calculation Input Assumptions	366
Table 250.	Strip Curtains—Default EER by System Configuration	367
Table 251.	Strip Curtains—Energy Consumption and Demand for Coolers and Freezers	367
Table 252.	Strip Curtains—Energy and Peak Demand Savings (per sq. ft.)	368
Table 253.	Strip Curtains—Revision History	369
Table 254.	Zero-Energy Doors—Savings Calculations Input Assumptions	373
Table 255.	Zero-Energy Doors—Energy and Peak Demand Savings	374
Table 256.	Zero-Energy Doors—Revision History	375
Table 257.	Door Gaskets—Energy Savings Achievable for New Gaskets Replacing Baseline Gaskets of Various Efficacies (per Lin. Ft. of Installed Door Gasket)	377
Table 258.	Door Gaskets—Energy Savings Achievable for New Gaskets Replacing Baseline Gaskets of Various Efficacies (per Lin. Ft. of Installed Door Gasket)	379
Table 259.	Door Gaskets—Energy and Peak Demand Savings per Lin. Ft. of Door Gasket	379
Table 260.	Door Gaskets—Revision History	381
Table 261.	High-Speed Doors—Energy Factors for Door to Unconditioned Area	384
Table 262.	High-Speed Doors—Energy Factors for Door to Conditioned Area	385
Table 263.	High-Speed Doors—Coincidence Factor for Door to Conditioned Area	385
Table 264.	High-Speed Doors—Summer Coincidence Factors for Door to Unconditioned Area	385
Table 265.	High-Speed Doors—Winter Coincidence Factors for Door to	
	Unconditioned Area	385
Table 266.	High-Speed Doors—Sensible Heat Load of Infiltration Air	386
Table 267.	High-Speed Doors—Sensible Heat Ratio of Infiltration Air	386
Table 268.	High-Speed Doors—Revision History	388

Table 269. HPWHs—Federal Standard for Consumer Electric Storage Water Heaters	390
Table 270. HPWHs—ENERGY STAR Specification	390
Table 271. HPWHs—Water Heater Consumption (Gal/Year)	392
Table 272. HPWHs—Water Mains Temperature (°F)	393
Table 273. HPWHs—Seasonal Peak CFs	394
Table 274. Commercial Heat Pump Water Heaters-Revision History	396
Table 275. Central DHW Controls—Seasonal Peak CFs	398
Table 276. Central DHW Controls-Reference kWh by Water Heater and Building Type .	399
Table 277. Central DHW Controls—HDD Adjustment Factors	399
Table 278. Central DHW Controls—Circulation Pump Energy Savings	400
Table 279. Central DHW Controls—Thermal Distribution Energy Savings per Dwelling Unit	400
Table 280. Central DHW Controls—Circulation Pump Peak Demand Savings	400
Table 281. Central DHW Controls—Thermal Distribution Peak Demand Savings per Dwelling Unit	401
Table 282. Central DHW Controls—Revision History	402
Table 283. Showerhead TSRVs—Hot Water Usage Reduction	405
Table 284. Showerhead TSRVs—Water Mains Temperatures	407
Table 285. Showerhead TSRVs—Peak Coincidence Factors	407
Table 286. Showerhead TSRVs—Revision History	409
Table 287. Tub Spout/Showerhead TSRVs—Hot Water Usage Reduction	413
Table 288. Tub Spout/Showerhead TSRVs—Water Mains Temperatures	415
Table 289. Tub Spout/Showerhead TSRVs—Peak Coincidence Factors	416
Table 290. Tub Spout/Showerhead TSRVs—Revision History	417
Table 291. Water Pumping VFDs—Water Demand Profile	419
Table 292. Water Pumping VFDs—Motor Efficiencies	420
Table 293. Water Pumping VFDs—Energy and Peak Demand Savings per Motor HP	421
Table 294. Water Pumping VFDs—Revision History	422
Table 295. Water Pumps—Baseline and High-Efficiency Conditions	424
Table 296. Water Pumps—Annual Operating Hours and Adjustment Factors	425
Table 297. Water Pumps—Revision History	427
Table 298. Premium Motors—HVAC Input Assumptions	431
Table 299. Premium Motors—Industrial Input Assumptions	432
Table 300. Premium Motors-Rewound Motor Efficiency Reduction Factors	432
Table 301. Premium Motors—NC/ROB Baseline Efficiencies by Motor Size (%)	432

Table 302.	Premium Motors—RUL of Early Retirement Motors	.434
Table 303.	Premium Motors—ER Baseline Efficiencies by Motor Size (%)	.437
Table 304.	Premium Motors—ER Baseline Efficiencies by Motor Size for 250-500 hp Motors Manufactured Prior to June 1, 2016 (%)	.438
Table 305.	Premium Motors—Revision History	.440
Table 306.	Pump-Off Controllers—Savings Calculation Input Assumptions	.444
Table 307.	Pump-Off Controllers—NEMA Premium Efficiency Motor Efficiencies	.444
Table 308.	Pump-Off Controllers—Revision History	.446
Table 309.	Baseline Condition—Federal Standard Effective July 19, 2021	.448
Table 310.	ENERGY STAR Pool Pumps—Energy Efficiency Level	.448
Table 311.	Pool Pumps—Conventional Pump Input Assumptions	.450
Table 312.	Pool Pumps—ENERGY STAR Pump Input Assumptions	.450
Table 313.	Pool Pumps—Coincidence Factors	.451
Table 314.	Pool Pumps—Energy Savings	.451
Table 315.	Pool Pumps—Summer Peak Demand Savings	.451
Table 316.	Pool Pumps—Winter Peak Demand Savings	.452
Table 317.	Pool Pumps—Revision History	.453
Table 318.	Lodging Occupancy Sensors—Motel per Room Energy and Peak Demand Savings	.455
Table 319.	Lodging Occupancy Sensors—Hotel per Room Energy and Peak Demand Savings	.456
Table 320.	Lodging Occupancy Sensors—Dormitory per Room Energy and Peak Demand Savings	.457
Table 321.	Lodging Occupancy Sensors—Revision History	.458
Table 322.	Vending Controls—Refrigerated Cold Drink Energy and Peak Savings	.461
Table 323.	Vending Controls—Refrigerated Reach-In Energy and Peak Demand Savings	. 462
Table 324.	Vending Controls—Non-Refrigerated Snack Energy and Peak Demand Savings	. 462
Table 325.	Vending Controls—Revision History	.463
Table 326.	Computer Power Management—Equipment Wattages	. 466
Table 327.	Computer Power Management—Operating Hours	. 466
Table 328.	Computer Power Management—Coincidence Factors	.467
Table 329.	Computer Power Management—Energy Savings for Offices & Schools	.467
Table 330.	Computer Power Management—Peak Demand Savings for Offices & Schools	.467
Table 331.	Computer Power Management—Revision History	.468

Table 332. EVSE—Peak Demand Probability Factors	472
Table 333. EVSE—Energy Savings	473
Table 334. EVSE—Peak Demand Savings	
Table 335. EVSE—Revision History	474
Table 336. Battery Chargers—Efficiency Requirements	476
Table 337. Battery Chargers—Charging and Idle Hours Assumptions	
Table 338. Battery Chargers-Pre/Post Charing and Idle Wattage Assumptions	
Table 339. Battery Charging System—Coincidence Factors	
Table 340. Battery Chargers—Deemed Energy and Demand Savings per Charger	478
Table 341. Industrial High-Frequency Battery Chargers-Revision History	478
Table 342. Steam Traps—Savings Calculation Input Assumptions	481
Table 343. Steam Traps—Commercial Heating Hours	
Table 344. Steam Traps—Energy Savings	
Table 345. Steam Traps—Peak Demand Savings, Without Audit	
Table 346. Steam Traps—Peak Demand Savings, With Audit	
Table 347. Steam Traps—Revision History	
Table 348. Hydraulic Gear Lubricants-Motor Efficiencies	
Table 349. Hydraulic Gear Lubricants—Revision History	
Table 350. Hydraulic Oils—Motor Efficiencies	
Table 351. Hydraulic Oils—Revision History	
Table 352. Hand Dryers—Savings Calculation Input Assumptions	500
Table 353. Hand Dryers—Deemed Energy and Peak Demand Savings	501
Table 354. Hand Dryers—Revision History	
Table 355. Laser Projectors—Revision History	505

Acknowledgments

The Technical Reference Manual is maintained by the Public Utility Commission of Texas' independent Evaluation, Monitoring, and Verification (EM&V) team led by Tetra Tech.

This version of the Texas Technical Reference Manual was primarily developed from program documentation and measure savings calculators used by the Texas Electric Utilities and their Energy Efficiency Services Providers (EESPs) to support their energy efficiency efforts, and original source material from petitions filed with the Public Utility Commission of Texas by the utilities, their consultants and EESPs such as Frontier Energy (TXu 1-904-705), ICF, CLEAResult and Resource Innovations. Portions of the Technical Reference Manual are copyrighted 2001-2017 by the Electric Utility Marketing Managers of Texas (EUMMOT), while other portions are copyrighted 2001-2018 by Frontier Energy. Certain technical content and updates were added by the EM&V team to provide further explanation and direction as well as consistent structure and level of information.

TRM Technical Support

Technical support and questions can be emailed to the EM&V project manager (Lark.Lee@tetratech.com) and the PUCT staff (Ramya.Ramaswamy@puc.texas.gov).

1. INTRODUCTION

This volume of the TRM contains the deemed savings for nonresidential measures that have been approved for use in Texas by the PUCT. This volume includes instructions regarding various savings calculators and reference sources of the information. The TRM serves as a centralized source of deemed savings values; where appropriate, measurement and verification (M&V) methods by measure category are noted for informational purposes only regarding the basis of projected and claimed savings.

Table 1 provides an overview of the nonresidential measures contained within Volume 3 and the types of deemed savings estimates available for each one. There are five types of deemed savings estimates identified:

- Point estimates that provide a single deemed savings value that corresponds to a single measure or type of technology.
- Deemed saving tables that provide energy and peak savings as a function of size, capacity, building type, efficiency level, or other inputs.
- Savings algorithms that require user-defined inputs that must be gathered on-site and the identification of default inputs where primary data could not be collected. In many cases, these algorithms are provided as references to deemed savings tables, point estimates, or calculator explanations.
- Calculators are used by different utilities and implementers to calculate energy savings for different measures. In many cases, there are several different calculators available for a single measure. Sometimes their background calculators are similar, and in other cases, estimates can vary greatly between each calculator.
- M&V methods are also used for some measures to calculate savings in the event that standard equipment is not used, or the specified building types do not apply. For some of these measures, both a simplified M&V approach and a full M&V approach may be allowed by the utility. M&V methods as a source of claimed and projected savings are noted for informational purposes only. Standardized M&V approaches that have been reviewed by the EM&V team are incorporated into Volume 4: Measurement and Verification Protocols of this TRM.

Please consult Volume I: Overview and User Guide, Section 4: Structure and Content, for details on the organization of the measure templates presented in this volume.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	12.0 update
Lighting	Lamps and fixtures	-	-	х	х	х	Clarified exterior new construction code zone selection guidance, adjusted new construction savings algorithm, updated <i>multiple</i> control type, adjusted non- operational fixture footnote, in-service rate incorporated into retrofit savings algorithm, clarified building type section guidance, and updated midstream building type weighting assumptions.
	Lighting controls	-	-	x	x	x	Consolidated energy adjustment factor (EAF) and power adjustment factor (PAF) coefficient labels to control adjustment factor (CAF).
	Exterior photocell and time clock repair	-	-	x	х	x	No revision.
	LED traffic signals			х	х	Х	No revision.
HVAC	Air conditioning and heat pump tune-ups	100	-	х	-	х	Updated tune-up checklist to match ENERGY STAR HVAC Maintenance Checklist.
	Split and packaged air conditioners and heat pumps	-	~	x	×	x	Updated midstream building type weighting assumptions, defined grade levels for primary and secondary schools, updated early retirement age eligibility and criteria related to downsizing, and noted new federal standard and compliance date
	HVAC chillers		-	х	х	Х	Updated early retirement age eligibility and criteria related to downsizing, updated midstream building type weighting assumptions, and provided guidance for building types.
	Package terminal air conditioners/heat pumps, and room air conditioners	-	-	x	x	X	Updated early retirement age eligibility and criteria related to downsizing and updated midstream building type weighting assumptions.
	Computer room air conditioners	-	-	X	x	-	Added early retirement criteria related to downsizing, updated early retirement and new construction/replace-on-burnout (ROB) baseline efficiency levels.

Table 1. Nonresidential Deemed Savings by Measure Category

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	12.0 update
	Computer room air handler motor efficiency	-	-	x	х	-	No revision.
	HVAC variable frequency drives	-	x	x	T	-	Savings calculations moved to Excel, reviewed hours of operations for fans and pumps and used same fan and pump hours referenced in the existing measure.
	Condenser air evaporative pre- cooling	-	-	х	-	х	Minor text edits.
	High-volume low- speed fans	-	-	х	-	-	Expanded measure to apply to non- agricultural end uses, incorporated new efficiency metric for large-diameter fans.
	Small commercial evaporative cooling	-	х	х	E.	-	No revision.
	Small commercial smart thermostats	-	-	х	х	х	Minor footnote correction.
Building	Cool roofs	Х	-	х	х	-	No revision.
envelope	Window treatments	х	-	х	х	-	Updated measure to indicate solar screen must be permanent, fixed and interior or exterior.
	Entrance and exit door air infiltration	Ξ	х	х	-	-	Adjusted savings normalization from per- linear-foot to per-standard-door, updated documentation requirements.
Food service	ENERGY STAR® combination ovens	-	x	x	-	-	Specified reduced operating schedule for education applications. Aligned deemed savings tables and calculations input assumptions to ENERGY STAR March 2024 update.
	ENERGY STAR® electric convection ovens	-	х	х	₹	-	Specified reduced operating schedule for education applications and updated corresponding deemed savings tables.
	ENERGY STAR® electric deck ovens	=	x	х	-	-	TRM v12.0 origin.
Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	12.0 update
---------------------	--	--------------------	--------------------------	----------------------	------------	-----	---
	ENERGY STAR® dishwashers	-	x	x	-	-	Specified reduced operating schedule for education applications and updated corresponding deemed savings tables, added guidance for dual sanitizing dishwashers and updated documentation requirements.
	ENERGY STAR® electric griddles	-	x	x	1		Specified reduced operating schedule for education applications and updated corresponding deemed savings tables, updated griddle size to specify a range of griddle sizes based on normal rounding convention, other minor text updates.
	ENERGY STAR® electric fryers		x	x	-	-	Specified reduced operating schedule for education applications and updated corresponding deemed savings tables.
	ENERGY STAR® electric steam cookers	-	х	х	-	-	Specified reduced operating schedule for education applications and updated corresponding deemed savings tables.
	Contact conveyor toasters	-	х	х	-	-	TRM v12.0 origin.
	Radiant conveyor toasters	-	х	х	-	-	TRM v12.0 origin.
	ENERGY STAR® hot food holding cabinets	-	х	x	-	-	Specified reduced operating schedule for education applications and updated corresponding deemed savings tables.
	ENERGY STAR® refrigerated chef bases		х	х	=	-	TRM v12.0 origin.
	ENERGY STAR® ice makers	-	x	х	-	-	Specified reduced operating schedule for education applications and updated corresponding deemed savings tables.
	ENERGY STAR® induction cooktops	-	x	х	-	-	TRM v12.0 origin.
	Induction soup wells	-	х	х		-	TRM v12.0 origin.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	12.0 update
	Demand controlled kitchen ventilation	-	X	x	-	-	Clarified new construction eligibility, specified reduced operating schedule for education applications, corrected heating interactive effects, updated heating type distribution, and updated corresponding deemed savings tables.
	Pre-rinse spray valves	-	х	х	-	=	Specified reduced operating schedule for education applications.
	Vacuum-sealing and packaging machines	-	х	-	-	-	No revision.
	Hand wrap machines	-	х	-	-	-	TRM v12.0 origin.
Refrigeration	Door heater controls	-	х	х	=	-	No revision.
	ECM evaporator fan motors			х	-	-	Clarified baseline condition and documentation requirements.
	Electronic defrost controls	-		х	-	-	Corrected peak factor naming convention.
	Evaporator fan controls		-	х		-	No revision.
	Night covers for open refrigerated display cases	Ξ	х	х	-	-	No revision.
	Solid and glass door reach-ins	-	-	x	-	-	Minor corrections.
	Strip curtains for walk-in refrigerated storage	-	х	-	=	-	No revision.
	Zero-energy doors for refrigerated cases	200	х	х	-	-	No revision.
	Door gaskets for walk-in and reach-in coolers and freezers	-	X	x	-	-	No revision.
	High speed doors for cold storage	-	х	х	-	=	Updated estimated useful life (EUL) from 5 to 16 years to match recommendations from 2018 Navigant report.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	12.0 update
Water heating	Heat pump water heaters	-	-	x	-	-	Cleaned up table column labels and equation parameter definitions, updated building type names to align with TRM Volume 3 naming convention.
	Central domestic hot water controls	-	х	х	Ξ	=	No revision.
	Showerhead temperature sensitive restrictor valves	-	-	х	-	-	No revision.
	Tub spout and showerhead temperature sensitive restrictor valves	-	-	x	1	-	No revision.
Miscellaneous	Variable frequency drives for water pumping	-	х	х	-	-	No revision.
	Premium efficiency motors	-	-	х	-	-	Updated early retirement age eligibility.
	Pump-off controllers	-	X	х	-	-	No revision.
	ENERGY STAR® pool pumps	-	х	х	=	-	Updated baseline condition and deemed savings to reflect current federal standard.
	Lodging guest room occupancy sensor controls	-	х	-	-	-	No revision.
	Vending machine controls	-	х	х	-	-	No revision.
	Computer power management	-	х	х	-	=	No revision.
	ENERGY STAR® electric vehicle supply equipment	-	х	х			No revision.
	Industrial high- frequency battery chargers	-	x	x	-	-	No revision.
	Steam trap repair and replacement	-	х	х	-	-	Realigned building types in tables.

Measure category	Measure description	Point estimates	Deemed savings tables	Savings algorithm	Calculator	M&V	12.0 update
	Hydraulic gear lubricants	-	-	х	-	-	No revision.
	Hydraulic oils			х	-	-	No revision.
	Hand dryers	-	x	x	-	-	Updated building type naming convention, updated peak demand calculation, savings calculation input assumptions, and deemed savings.
	Laser projectors	-	-	х	-	-	No revision.
	Water pumps			х	=		TRM v12.0 origin.

2. NONRESIDENTIAL MEASURES

2.1 NONRESIDENTIAL: LIGHTING

2.1.1 Lamps and Fixtures Measure Overview

TRM Measure ID: NR-LT-LF

Market Sector: Commercial

Measure Category: Lighting

Applicable Building Types: All commercial, multifamily common areas

Fuels Affected: Electricity (interactive HVAC effects: electric/gas space heating)

Decision/Action Types: Retrofit, and new construction

Program Delivery Type: Prescriptive, custom, direct install

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Guidance for Combination Lighting Fixture & Controls Projects

For lighting retrofits installed in combination with existing controls or controls upgrades, fixture and controls savings should be allocated as follows:

- 1) Calculate total savings, adjusting pre- and post-operating hours and coincidence factors to account for applicable controls.
- 2) Determine if project is eligible to claim controls savings:
 - a. Scenario 1: Retrofit project with no baseline controls
 - b. Scenario 2: New construction project with controls other than occupancy sensors
- 3) If controls savings are eligible, calculate controls savings using Section 2.1.2 Lighting Controls. Otherwise, set controls savings equal to zero.
- 4) Deduct controls savings from total savings.
- 5) Claim controls savings using controls estimated useful life (EUL). Claim difference of total savings and controls savings using applicable fixture EUL.

Measure Description

This section provides estimates of the energy and peak savings resulting from the installation of energy efficient lamps and/or ballasts. The installation can be the result of new construction or the replacement of existing lamps and/or ballasts. This TRM Measure ID covers the following lighting technologies:

- Linear fluorescent T5s; high performance or reduced watt T8s. Linear fluorescent measures may also involve delamping¹ with or without the use of reflectors.
- Fluorescent electrodeless induction lamps and fixtures
- Compact fluorescent lamp (CFL) screw-based lamps and hard-wired pin-based fixtures
- Pulse-start (PSMH) and ceramic metal halide (CMH) lamps; high-intensity discharge (HID) lamps
- Light emitting diode (LED) screw-based lamps; hard-wired LED fixtures.

Energy and demand savings are based on operating hours, coincident-load factors, and changes in pre-existing and post-installation lighting loads, as determined using an approved lighting Standard Fixture Wattage table², available for download from the Texas Efficiency website and in the Fixture Codes tab in the latest version of the Lighting Survey Form (LSF). The LSF is one example of a calculator that is used to determine energy and demand savings. Pre- and post-retrofit lighting inventories are entered and used with the pre-loaded stipulated values and algorithms needed to calculate energy and demand savings. Components of the calculator include:

- Instructions and project information.
- Pre- and post-retrofit lighting inventories. A tab for exempt fixtures and a description of the exemptions is also present in the calculator.
- Fixture wattages and descriptions are defined in a Standard Fixture Wattage table.
- Factor tables that contain stipulated operating hours, coincidence factors, interactive HVAC factors, control adjustment factors, and new construction lighting power density (LPD) factors.
- A summary tab displaying the final energy and demand calculations. The data from this tab is entered into the utility program tracking data as the claimed savings values.

Although the generic LSF calculator is publicly available on the Texas Energy Efficiency website, several utilities have their own versions.

¹ Delamping energy savings are eligible if done in conjunction with T-8 lamp and electronic ballast retrofits.

² Maintained by EUMMOT/Frontier Energy: <u>http://texasefficiency.com/index.php/regulatory-filings/lighting.</u>

Eligibility Criteria

This section describes the system information and certified wattage values that must be used to estimate energy and peak savings from lighting systems installed as part of the Texas utility energy efficiency programs. The fixture codes and the demand values listed in the Table of Standard Fixture Wattages are used to calculate energy and demand savings for lighting efficiency projects.

Existing lighting fixtures must be removed or demolished in place after retrofit to count towards reduced pre-install wattage. Existing lighting fixtures that remain operable after retrofit should be listed in both the pre- and post-retrofit lighting inventory.

In addition, LED and linear fluorescent T8s need to be qualified, as follows:

- High-performance (HP) and reduced-watt (RW) T8 linear fluorescent lamps need to be qualified by the Consortium for Energy Efficiency (CEE). Their respective ballasts need to be qualified by NEMA.³ See the High-efficiency Condition section for additional details.
- LED lamps and fixtures must have their input power (wattage) and an L70 rated life (hours) verified through some combination of the following references: DesignLights Consortium[®] (DLC), ENERGY STAR[®], or independent lab testing⁴ (e.g., LM-79, LM-80, TM-21, ISTMT). Rated life for LED fixtures should be greater than or equal to 50,000 hours, which can be demonstrated by compliance with DLC v3.0 or later⁵ or through independent lab testing. Similarly, rated life for integrated LED lamps should be greater than or equal to 10,000 hours, which can be demonstrated by compliance with ENERGY STAR Version 2.1 Specification or later⁶ or through independent lab testing for integrated-ballast LED lamps. These values represent the point at which the minimum L70 was raised to levels consistent with current deemed measure life assumptions.
 - DLC- and ENERGY STAR-certified model numbers should closely align with the installed model number. However, small variances are allowed for portions of the model number that may refer to aspects of the fixture that do not affect energy performance (e.g., color temperature, fixture housing). This allowance is provided at the discretion of the state evaluator and reported model numbers should always default to the closest match available.

³ While CEE stopped qualifying ballasts in January 2015, the NEMA Premium Electronic Ballast Program has continued to be maintained and is consistent with the prior CEE specifications for high performance lamps and ballasts, tested in accordance with ANSI C82 Standards.

⁴ DLC test lab requirements: <u>https://www.designlights.org/solid-state-lighting/qualification-requirements/testing-lab-requirements/</u>.

⁵ Equivalent to the L70 rated life requirement for all categories as specified in DesignLights ConsortiumTM (DLC) Technical Requirements v3.0. <u>https://www.designlights.org/wpcontent/uploads/2021/01/DLC Technical-Requirements-Table V3-0.pdf</u>.

⁶ Equivalent to the rated life requirement for all lamps as specified in the ENERGY STAR Lamps Version 2.1 Specification .

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2.1%20Final%20Spe cification.pdf.

- DLC and ENERGY STAR specifications are periodically updated. Projects may report fixture wattage from older versions of product certifications according to the following certification date guidelines if a copy of the original certification is preserved.
 - 1. New construction: permit date
 - 2. Small business: date of customer acceptance or project proposal
 - 3. All other: installation date
- DLC currently tracks delisted products. DLC-delisted products are eligible as long as they were rated for compliance with DLC v3.0 or later. ENERGY STAR does not track delisted products. However, any delisted product may be eligible if prior compliance is documented using a downloaded copy of the prior rating certificate.
- If a product is available in various length increments but is DLC-certified for a specific fixture length, the specified DLC power may be converted to a watts-persquare-foot value to be multiplied against the installed fixture length instead of reporting as a non-qualified fixture.
- Field adjustable light output (FALO): If a product is available with field-adjustable light output (or wattage setpoints) that can be adjusted by an installation contractor to utilize some or all LED nodes on the fixture, this will be noted in the Product Capabilities section of the DLC certification. DLC will typically specify the maximum input wattage. These fixtures should be reported based on the following scenarios:
 - If the fixture is installed at a reduced setpoint, it should be reported at the rated wattage for the reduced setpoint in combination with the *none* control code. Because DLC only reports the maximum wattage, report reduced wattage setpoint as documented in the manufacturer specification sheet.
 - If the fixture is installed with additional controls (e.g., occupancy sensor, daylighting), then it should be reported using the above guidance in combination with the applicable control code.
 - If the fixture is installed at the maximum setpoint without adjustment, it should be reported at the maximum DLC input wattage.
 - Project documentation for FALO should include a screenshot of the DLC certificate and photos of the field-adjustable setpoints for a sample of the installed lighting.
 - The same guidance applies to FALO fixtures installed in exterior applications, except that the fixture should always be installed in combination with photocell or timeclock controls.

Exempt lighting for new construction. Some types of new construction lighting fixtures are exempt from inclusion in the interior lighting demand savings calculation, but they are still included in the total installed lighting power calculations for a project. Exempt fixtures are those that do not provide general/ambient/area lighting, have separate control devices, and are installed in one of the following applications:⁷

- 1. The connected power associated with the following lighting equipment is not included in calculating total connected lighting power
 - 1.1. Professional sports arena playing-field lighting
 - 1.2. Sleeping-unit lighting in hotels, motels, boarding houses, or similar buildings
 - 1.3. Emergency lighting automatically off during normal building operation
 - 1.4. Lighting in spaces specifically designed for use by occupants with special lighting needs including visual impairment and other medical and agerelated issues
 - 1.5. Lighting in interior spaces that have been specifically designated as a registered interior historic landmark
 - 1.6. Casino gaming areas
 - 1.7. Mirror lighting in dressing rooms
- 2. Lighting equipment used for the following shall be exempt provided that it is in addition to general lighting and is controlled by an independent control device
 - 2.1. Task lighting for medical and dental purposes
 - 2.2. Display lighting for exhibits in galleries, museums, and monuments
- 3. Lighting for theatrical purposes, including performance, stage, film production, and video production
- 4. Lighting for photographic processes
- 5. Lighting integral to equipment or instrumentation and installed by the manufacturer
- 6. Task lighting for plant growth or maintenance
- 7. Advertising signage or directional signage
- 8. In restaurant building and areas, lighting for food warming or integral to food preparation equipment
- 9. Lighting equipment that is for sale
- 10. Lighting demonstration equipment in education facilities
- 11. Lighting approved because of safety or emergency considerations, inclusive of exit lights

⁷ IECC 2015, Section C405.4.1.

- 12. Lighting integral to both open and glass-enclosed refrigerator and freezer cases
- 13. Lighting in retail display windows, provided the display area is enclosed by ceiling-height partitions
- 14. Furniture-mounted supplemental task lighting that is controlled by automatic shut off
- 15. Exit signs

Non-Qualifying LEDs. This section provides guidance to assess and calculate nonresidential lighting project savings that include non-qualifying LEDs. Figure 1 summarizes the recommended protocol for lighting system projects with non-qualifying LEDs when square footage cannot be isolated. Additional explanations and criteria for use follow.

Figure 1. Lamps & Fixtures—Non-Qualifying LED Process

Step 1: Qualify New Construction Projects. Calculate non-qualifying LED project percentage:

 Based as a percentage of demand (percent NQ_{wattage} = wattage of non-qualifying fixtures / wattage of total fixtures) **Step 2: New Construction Projects Only.** Non-qualifying fixtures that pass Step 1 would follow all instructions for excluded fixtures.

- List non-qualifying LEDs on separate lines (e.g., separate on lighting inventory worksheet of deemed savings calculator). Non-qualifying fixtures are identified by a unique fixture code.
- Adjust code allowable baseline wattage so that non-qualifying fixture wattage is not included as part of the LPD code limit requirements. To do so, calculate the sum of the qualifying fixture wattage and the sum of the total installed fixture wattage. Take the ratio of qualifying fixture wattage to total fixture wattage and multiply the resulting ratio against the total treated square footage for space. The adjusted square footage is included as part of the overall LPD calculation and will decrease the total allowable baseline wattage for the project.
- Fixture Isolation Method. If non-qualifying fixtures are isolated to a section of the building whose square footage can be easily segmented from the total building square footage, the non-qualifying fixtures and affected square footage can be excluded from the lighting inventory. Excluded fixtures must be documented when using the fixture isolation method.

Step 3: Retrofit Projects. List non-qualifying LEDs on separate lines (e.g., separate on lighting inventory worksheet of deemed savings calculator).

- Include unique identifiers/markers for the non-qualifying LEDs within the inventory (e.g., fixture code, description, or another designator within the deemed savings tool).
- Adjust non-qualifying LED wattages, so their demand and energy savings are not included as part of the project savings. Demand and energy savings for nonqualifying LEDs shall result in zero-project savings.
- Adjust non-qualifying LED quantities so they are not included as part of the project incentive. Incentives shall not be paid on non-qualifying LEDs.
- Provide clear visibility for all changes within the savings calculation (e.g., deemed savings calculator), including changes to all input assumptions and calculation methodologies to implement the above procedure.
- All other savings procedures and requirements, as specified within the TRM for lighting measures apply to all fixtures of a lighting project.

Baseline Condition

The baseline condition or assumed baseline efficiency used in the savings calculations depends on the decision-type used for the measure. For *new construction*, the baseline will be based on an LPD in watts per square foot by building/space type, as specified by the relevant energy code/standard applied to a specific project. For *retrofit* applications, the baseline efficiency would typically reflect the in-situ, pre-existing equipment, except for linear fluorescent T12s and first-generation T8s, as explained below. Eligible baseline fixture types and wattages are specified in the Standard Fixture Wattages table. Major renovation projects should use a new construction baseline (for the building type after the improvement) if either of the following conditions are met:

- Building type changes in combination with the renovation
- Renovation scope includes removing drywall and gutting existing building to the studs

Linear Fluorescent T12 Special Conditions

The US Energy Policy Act of 1992 (EPACT) set energy efficiency standards that preclude certain lamps and ballasts from being manufactured or imported into the US. The latest standards covering general service linear fluorescents went into full effect July 2014. Under this provision, almost all 4-foot and some 8-foot T12 lamps, as well as first-generation 4-foot, 700 series T8 lamps were prohibited from manufacture. Because all lighting equipment for Texas energy efficiency programs must be EPACT compliant, including existing or baseline equipment, adjustments were made to the T12 fixtures in the Standard Fixture Wattage table. Certain T12 lamp/ballast combinations which are non-EPACT compliant are assigned EPACT demand values.

As such, 4-foot and 8-foot T12s are no longer an approved baseline technology for Texas energy efficiency programs. 4-foot and 8-foot T12s are still eligible for lighting retrofit projects, but an assumed electronic T8 baseline will be used for estimating the energy and demand savings instead of the existing T12 equipment. T12 fixtures will remain in the Standard Fixture Wattage table, but the label for these records will be changed to "T12 (T8 baseline)" and the fixture wattage for these records will be adjusted to use the adjusted fixture wattages shown in Table 2.

T12 length	Lamp count	Revised lamp wattage	Revised system wattage
48-inch—std, HO, and VHO (4 feet)	1	32	31
	2	32	58
	3	32	85
	4	32	112
	6	32	170
	8	32	224
96-inch-std (8 feet)	1	59	69
60/75 W	2	59	110
	3	59	179
	4	59	219
	6	59	330
	8	59	438*
96-inch HO and	1	86	101
VHO (8 teet)	2	86	160

Table 2. Lamps & Fixtures—Adjusted Baseline Wattages for T12 Equipment

T12 length	Lamp count	Revised lamp wattage	Revised system wattage
95/110 W	3	86	261
	4	86	319
	6	86	481
	8	86	638
2-foot u-tube	1	32	32
	2	32	60
	3	32	89

*8 lamp fixture wattage approximated by doubling 4 lamp fixture wattage.

Key: HO = high output, VHO = very high output.

General Service Lamps

On May 8, 2022, the Department of Energy (DOE) issued two final rules relating to general service lamps (GSL):

- Energy Conservation Program: Definitions for General Service Lamps, effective July 8, 2022, which expanded the definition of a GSL.⁸
- Energy Conservation Program: Energy Conservation Standards for General Service Lamps, effective July 25, 2022, which shifted the baseline to 45 lumens/watt efficacy.⁹

The baseline is assumed to be the second-tier Energy Independence and Security Act of 2007 (EISA)-mandated efficiency for a GSL (see Table 3). The EISA regulations dictate that GSLs must comply with a 45 lumen/watt efficacy standard at time of sale beginning January 1, 2023.

Minimum Iumens	Maximum Iumens	Incandescent equivalent wattage	2 nd Tier EISA 2007 baseline wattage
250	309	25	Exempt
310	749	40	12
750	1,049	60	20

Table 3. Lamps & Fixtures—EISA 2007 Baseline Adjustment for GSLs 10,11

⁸ DOE Final Rule: Definitions for General Service Lamps. <u>https://www.regulations.gov/document/EERE-</u> 2021-BT-STD-0012-0022.

⁹ DOE Final Rule: Energy Conservation Standards for General Service Lamps. https://www.regulations.gov/document/EERE-2021-BT-STD-0005-0070.

¹⁰ Federal standard for General Service Incandescent Lamps (GSILs): <u>https://www1.eere.energy.gov/buildings/appliance standards/standards.aspx?productid=20</u>.

¹¹ If exempt, refer to incandescent equivalent wattage.

Minimum Iumens	Maximum lumens	Incandescent equivalent wattage	2 nd Tier EISA 2007 baseline wattage
1,050	1,489	75	28
1,490	2,600	100	45
2,601	3,300	150	66

High-Efficiency Condition

Eligible efficient fixture types and wattages are specified in the Standard Fixture Wattages table. In addition, some technologies such as LEDs must meet the additional requirements specified under Eligibility Criteria.

High-Efficiency/Performance Linear Fluorescent T8s

All 4-foot T8 post-retrofit technologies and new construction projects must use electronic ballasts manufactured after November 2014,¹² and high-performance T8 lamps that are on the T8 Replacement Lamp products list developed by the Consortium for Energy Efficiency (CEE) as published on its website.

If CEE does not have efficiency guidelines for a T8 system (such as for 8-foot, 3-foot, 2-foot, and U-bend T8 products), the product must have higher light output or reduced wattage than its standard equivalent product (minimum efficacy of 75 mean lumens per watt), while also providing a CRI (color rendering index) greater than 80, and an average rated life of 24,000 hours at three hours per start. In addition, 2-foot and 3-foot ballasts must also use electronic ballasts manufactured after November 2014.

Solar LEDs

Solar-powered LEDs are common in several commercial applications, primarily associated with pole-mounted fixtures. Solar lighting uses photovoltaic (PV) cells, which absorb solar energy to charge a battery and power the fixture. By default, solar fixtures should use an efficient wattage of 0. Because fixture performance relies on battery performance, the measure life for solar fixtures is capped at the expected battery life.

¹² Changes to the DOE Federal standards for electronic ballasts effective November 2014 met both the CEE performance specification and the NEMA Premium requirements, so CEE discontinued their specification and qualifying product lists. A legacy ballast list from January 2015 is still available.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

This section describes the deemed savings methodology for both energy and demand savings for all lighting projects. Savings are calculated using separate methods for retrofit and new construction projects.

Retrofit^{13,14}

 $\begin{array}{l} \textit{Energy Savings [kWh]} \\ = \left(kW_{pre} \times \textit{Hours}_{pre} \times (1 - \textit{CAF}_{pre}) - kW_{post} \times \textit{Hours}_{post} \times (1 - \textit{CAF}_{post}) \right) \\ \times \textit{IEF}_{e} \times \textit{ISR} \end{array}$

Equation 1

New Construction

$$Energy \ Savings \ [kWh] = \left(\frac{LPD \times FloorArea}{1,000} - kW_{post}\right) \times Hours \times (1 - CAF_{post}) \times IEF_{e}$$
Equation 3

Peak Demand Savings
$$[kW] = \left(\frac{LPD \times FloorArea}{1,000} - kW_{post}\right) \times CF \times (1 - CAF_{post}) \times IEF_d$$

Equation 4

¹³ The number of non-operating fixtures will be limited to 10 percent of the total fixture count per facility. For projects exceeding this threshold, pre- and post-fixture count should be adjusted by multiplying fixture count against [1 - (% of non-operational fixtures – 0.1)]. No adjustment is applied to projects with less than 10 percent non-operational fixtures.

¹⁴ The energy and demand savings calculations should also account for lighting controls that are present on existing lighting systems. The CAF factors in the *Lighting Controls* measure section should be used for these calculations to adjust the deemed hours and coincidence factors on the pre-side of the equations.

Where:

kW _{pre}	=	Total kW of existing measure(s) (Approved baseline fixture code wattage from deemed savings tool divided by 1,000 and multiplied by fixture/lamp quantity)
kWinstalled	=	Total kW of retrofit measure(s) (Verified installed fixture code wattage from deemed savings tool divided by 1,000 and multiplied by fixture/lamp quantity) ¹⁵

Note: wattage for installed LED fixtures may be rounded up or down to the nearest half watt; all other wattages should be rounded to the nearest watt.

LPD	=	Acceptable lighting power density based on building type from efficiency codes from Table 4 (W/ft2)
Floor Area	=	Floor area of the treated space where the lights were installed
Hours	=	Hours by building type from Table 9
CAF	=	Controls adjustment factor from Lighting Controls measure (set equal to 0 if no controls are installed on the existing fixture)
CF	=	Summer/winter seasonal peak coincidence factor by building type (see Table 10 or Table 11)
IEFe	=	Energy HVAC interactive effects factor by building type (see Table 12)
IEF _d	=	Demand HVAC interactive effects factor by building type (see Table 12)
ISR	=	In-service rate, the percentage of incentivized units that are installed and in use (rather than removed, stored, or burnt out) to account for units incentivized but not operating = 1.0 unless otherwise specified for midstream/upstream applications (see Table 13)

¹⁵ Installed fixture wattage for fixtures defined by DLC as having "field-adjustable light output capability under the product features tab should be reported at the "default," or maximum lumen output, setting. These fixtures may also utilize the Institutional Tuning control type. Field adjustments should be tracked in project inventories and verified with lumen measurements conducted during field inspections.

Each of the parameters in these equations, and the approach or their stipulated values, are discussed in detail below.

Lamp and Fixture Wattages (kWpre, kWinstalled)

Existing construction: standard fixture wattage table.¹⁶ Another example of standard fixture wattage can be found in the Fixture Codes tab of the latest version of the LSF. This table is used to assign identification codes and demand values (watts) to common fixture types (e.g., fluorescent, incandescent, HID, LED) used in commercial applications. The table is subdivided into lamp types (e.g., linear fluorescent, compact fluorescent, mercury vapor) with each subdivision sorted by fixture code. Each record (or row) in the table contains a fixture code, serving as a unique identifier. A legend explains the rules behind the fixture codes.

Each record also includes a description of the fixture, the number of lamps, the number of ballasts if applicable, and the fixture wattage. The table wattage values for each fixture type are averages of various manufacturers' laboratory tests performed to ANSI test standards. By using standardized demand values for each fixture type, the Table simplifies the accounting procedures for lighting equipment retrofits. The table is updated periodically as new fixtures are added.

The fixture codes and the demand values listed in the watt/fixture column in the Table of Standard Fixture Wattages are used to calculate energy and demand savings for any lighting efficiency project.

For implementers interested in adding new fixtures to EUMMOT's lighting table, a request should be submitted to Frontier. The request should include all information required to uniquely identify the fixture type and to fix its demand, as well as other contextual information needed for the table. If possible, the request should also be supported by manufacturer's ANSI test data. Frontier periodically releases updated versions of the LSF with new fixture codes.

New construction: LPD table. For new construction projects, the post-retrofit lighting wattages are determined as they are for the existing construction projects from the Standard Fixture Wattage table. However, the baseline wattage is determined from the treated floor area and an LPD value, which are the allowable watts per square foot of lit floor area as specified by the relevant energy code. The applicable baseline is determined by the energy code that was in effect at the time of building permit issuance. The code selected for energy savings calculations should match the code shown in the permit drawings. The current commercial energy code for the state of Texas is IECC 2015, but local jurisdictions may have adopted more recent versions.¹⁷ These values for interior space types for IECC 2015 are presented in Table 4.

¹⁶ Maintained by EUMMOT/Frontier Energy: <u>http://texasefficiency.com/index.php/regulatory-</u><u>filings/lighting</u>.

¹⁷ Cities Adopted Code List: SPEER. <u>https://eepartnership.org/wp-content/uploads/2023/08/2023-Cities-</u> <u>Adopted-Code-updated-8.21.2023-1.xlsx</u>.

In Table 6, the lighting zones used for exterior space types are:

- Zone 1: Developed areas of national parks, state parks, forest lands, and rural areas
- Zone 2: Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited night-time use, and residential mixed-use areas
- Zone 3: All other areas
- Zone 4: High-activity commercial districts in major metropolitan areas as designated by the local land-use planning authority.

Projects should default to Zone 2. Other zones can be selected with documentation of the adjustment. Documentation includes a site aerial with a review of the neighboring properties to validate alternate selection. City zoning drawings may be used to validate a Zone 4 selection.

Facility type	LPD (W/ft ²)	Facility type	LPD (W/ft ²)
Automotive facility	0.80	Multifamily	0.51
Convention center	1.01	Museum	1.02
Courthouse	1.01	Office	0.82
Dining: bar/lounge/leisure	1.01	Parking garage	0.21
Dining: cafeteria/fast food	0.90	Penitentiary	0.81
Dining: family	0.95	Performing arts	1.39
Dormitory	0.57	Police stations	0.87
Exercise center	0.84	Post office	0.87
Fire station	0.67	Religious buildings	1.00
Gymnasium	0.94	Retail	1.26
Health care/clinic	0.90	School/university	0.87
Hospital	1.05	Sports arena	0.91
Hotel/motel	0.87	Town hall	0.89
Library	1.19	Transportation	0.70
Manufacturing facility	1.17	Warehouse	0.66
Motion picture theater	0.76	Workshop	1.19

Table 4. Lamps & Fixtures—New Construction LPDs for Interior Space Types by Building Type¹⁸

¹⁶ IECC 2015 Table C405.4.2(1) and ANSI/ASHRAE/IESNA Standard 90.1-2013 Table 9.5.1.

In addition to the interior building types specified in IECC 2015, the following LPDs have been established for agricultural greenhouses. Greenhouse types are defined as follows:

- High intensity sole-source greenhouse: All plant lighting is provided by ceiling-mounted high intensity artificial electric lighting.
- Supplemented greenhouse: Most plant lighting is provided by natural sunlight with supplemented artificial electric lighting used to extend daylight hours during winter seasons with short periods of sunlight or on inclement weather days when sunlight levels are suboptimal.
- Vertical farming: Plants are sacked along vertical shelving from floor to ceiling to increase grow area.

Table 5. Lamps & Fixtur	es—New Construction	LPDs for Agricultural	Greenhouses ¹⁹
-------------------------	---------------------	-----------------------	---------------------------

Facility type ²⁰	LPD (W/ft ²)
Agricultural: high intensity sole-source greenhouse	52.16
Agricultural: supplemented greenhouse	10.92
Agricultural: vertical farming ²¹	–

The total exterior lighting power allowance for all exterior building applications is the sum of the base site allowance plus the individual allowances for areas that are to be illuminated and are permitted in Table 6.

¹⁹ "Energy Savings Potential of SSL in Agricultural Applications," US Department of Energy. June 2020. Table E-1. <u>https://www.energy.gov/sites/prod/files/2020/07/f76/ssl-agriculture-jun2020.pdf</u>.

²⁰ Weighted average of LPDs specified for LED, HPS/MH, and Fluorescent lighting type categories based on 2019 technology mix from Table E-1.

²¹ Vertical farming was excluded due to 100% LED adoption in the 2019 technology mix from Table E-1.

The reported square footage should represent the illuminated area. Each unique outdoor area should report a unique illuminated area specific to that application and should not be combined under a single space type. For example, a new construction convenience store project should have separate areas for fuel canopy, parking and drives, building facades, and any other applicable space types. Fuel canopies should reflect the area under the canopy rather than the entire exterior lot area. Building facades should reflect the total wall area where wall-mounted fixtures are installed rather than the floor area for any space type surrounding the illuminated wall.

	LPD (W/ft ²)				
Space type	Exterior Zone 1	Exterior Zone 2	Exterior Zone 3	Exterior Zone 4	
Base site allowance	500 W	600 W	750 W	1,300 W	
Uncovered parking: Parking areas and drives	0.04	0.06	0.10	0.13	
Building grounds: Walkways \geq 10 ft. wide, plaza areas, and special feature areas	0.14	0.14	0.16	0.20	
Building grounds: Stairways	0.75	1.00	1.00	1.00	
Building grounds: Pedestrian tunnels	0.15	0.15	0.20	0.30	
Building grounds: Landscaping (ASHRAE 90.1-2013 only) ²³	0.04	0.05	0.05	0.05	
Building entrances and exits: Entry canopies	0.25	0.25	0.40	0.40	
Building entrances, exits, and loading docks: Loading docks (ASHRAE 90.1-2013 specific) ²⁴	0.50	0.50	0.50	0.50	
Sales canopies: Free-standing and attached	0.60	0.60	0.80	1.00	
Outdoor sales: Open areas	0.25	0.25	0.50	0.70	
Building facades ²⁵	-	0.075	0.113	0.150	
Entrances and gatehouse inspection stations	0.75	0.75	0.75	0.75	
Loading areas for emergency vehicles	0.50	0.50	0.50	0.50	

T-LL A 1			A				-	-	22
I ahlo 6 I amne X	Fivturoc_		Construction	I DITE	tor	Extorior	Snace	IVDAC	64
Table V. Lamps a	I IALUICS-	-14644	Construction		101	LAGUIOI	opace	1 y DC3	

²² IECC 2015 Table C405.5.1(2) and ANSI/ASHRAE/IESNA Standard 90.1-2013 Table 9.4.2-2. Differences between the two standards are noted.

²³ In June 2016, the Texas Comptroller issued a state certification letter adopting ASHRAE 90.1-2013 as the energy code for state buildings while the Commercial building code remains IECC 2015. Statefunded buildings are required to submit SECO compliance certificates as part of the NC/Renovation process. More details can be found at the Comptroller website: <u>https://comptroller.texas.gov/programs/seco/code/state-funded.php.</u> This space type is missing from the IECC 2015 LPD table, but the TRM authorizes the use of these LPDs for non-state-funded

buildings.

²⁴ Ibid.

²⁵ ASHRAE 90.1-2013 reflects a higher baseline. The TRM specifies the higher, more conservative, baseline to allow the same LPD to apply to all buildings, regardless of whether they are state-funded.

The following default metal halide baseline wattage assumptions have been approved for exterior athletic fields and courts, which are not included in the above LPD table. These baseline wattages were derived based on a review of reported lumen range for available LED products and their reported equivalent metal halide (MH) wattage.

Equivalent MH wattage	Number of lamps	LED rated lumen range
175	1	< 7,500
250	1	7,500-12,499
400	1	12,500-19,999
400	2	20,000-39,999
1,000	1	40,000-59,999
1,500	1	60,000-74,999
1,000	2	75,000-99,999
1,000	3	100,000-124,999
1,000	4	125,000-149,999
1,000	5	150,000-199,999
1,000	6 plus 1 additional lamp for every 50,000 lumens above 200,000 (rounded down)	> 200,000

Table 7. Lamps & Fixtures—New Construction Baseline Wattages for Athletic Field/Court LEDs

Operating Hours (Hours) and Coincidence Factors (CFs)

Operating hours and peak demand coincidence factors are assigned by building type, as shown in Table 9 through Table 11. The building types used in this table are based on Commercial Buildings Energy Consumption Survey (CBECS)²⁶ building types but have been modified for Texas. Refer to Volume 1, Section 4 for a description of the Texas peak demand methodology. Winter peak coincidence factors are only specified for outdoor fixtures, including for the "Parking Garage" building type.

The operating hours and coincidence factors specified in this section have been calculated at the facility level and should be applied to the entire facility. Outdoor fixtures that are not associated with the typical building lighting schedule may be claimed separately. These can include parking lot, walkway, wall pack, or another lighting, while building-mounted lighting with an operating schedule that more closely approximates the interior lighting schedule typically should not be claimed separately.

²⁶ DOE-EIA Commercial Building Energy Consumption Survey. <u>https://www.eia.gov/consumption/commercial/</u>.

Building type	Principal building activity	Definition	Detailed business type examples ²⁷
Agriculture	Dairy buildings	Buildings used to house dairy livestock and collect milk from dairy cows.	1) Dairy buildings
	Grow house	Buildings used to grow herbs, fruits, or vegetables under artificial lighting. Sole- source greenhouses rely on 100 percent artificial lighting, whereas supplemented greenhouses use both natural sunlight and artificial lighting.	 24-hour grow house Non-24-hour sole-source greenhouse Non-24-hour supplemented greenhouse
Data center	Data center	Buildings used to house computer systems and associated components.	1) Data center
Education	College/university	Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office," dormitories are "Lodging," and libraries are "Public Assembly."	 College or university Career or vocational training Adult education
	Primary school		 Elementary or middle school (grade 8 or lower) Preschool or daycare
	Secondary school ²⁸		 High school (grade 9 or greater) Religious education
Food sales	Convenience	Buildings used for retail or wholesale of food.	 Gas station with a convenience store Convenience store
	Supermarket		1) Grocery store or food market

Table 8. Lamps & Fixtures—Building Type Descriptions and Examples

 ²⁷ Principal Building Activities are based on sub-categories from 2003 CBECS questionnaire.
 ²⁸ Individual middle and junior high schools may have a campus size and building activities that better align with secondary schools. Refer to Measure 2.2.2 for guidance on aligning subcategories.

Building type	Principal building activity	Definition	Detailed business type examples ²⁷
Food service	Full-service restaurant	Buildings used for the preparation and	1) Restaurant or cafeteria
	Quick-service restaurant	sale of food and beverages for consumption.	1) Fast food
Healthcare	Hospital	Buildings used as diagnostic and treatment facilities for inpatient care.	 Hospital Inpatient rehabilitation
	Outpatient healthcare	Buildings used as diagnostic and treatment facilities for outpatient care. Medical offices are included here if they use any type of diagnostic medical equipment (if they do not, they are categorized as an office building).	 Medical office Clinic or outpatient health care Veterinarian
Multifamily	Common area	Buildings containing multifamily dwelling units, having multiple stories, and equipped with elevators.	1) Common area
Lodging	Large hotel	Buildings used to offer multiple accommodations for short-term or long- term residents.	1) Motel or inn 2) Hotel
	Nursing home		 3) Dormitory, fraternity, or sorority 4) Retirement home, pursing home
	Small hotel/motel		assisted living, or other residential care 5) Convent or monastery

Building type	Principal building activity	Definition	Detailed business type examples ²⁷
Manufacturing	1 Shift (<70 hr/week)	Buildings used for manufacturing/industrial applications.	 Apparel Beverage, food, and tobacco products
	2 Shift (70-120 hr/week)		3) Chemicals
			4) Computer and electronic products
	3 Shift (>120 hr/week)		5) Appliances and components
			6) Fabricated metal products
			7) Furniture
			8) Leather and allied products
			9) Machinery
			10) Nonmetallic mineral products
			11) Paper
			12) Petroleum and coal products
			13) Plastics and rubber products
			14) Primary metals
			15) Printing and related support
			16) Textile mills
			17) Transportation equipment
			18) Wood products
Mercantile	Stand-alone retail	Buildings used for the sale and display of	1) Retail store
		goods other than food.	2) Beer, wine, or liquor store
			3) Rental center
			 Dealership or showroom for vehicles or boats
			5) Studio or gallery
	Strip mall/enclosed mall	Shopping malls comprised of multiple	1) Strip shopping center
		connected establishments.	2) Enclosed mails

Building type	Principal building activity	Definition	Detailed business type examples ²⁷
Office	Large office	Buildings used for general office space,	1) Administrative or professional office
		professional office, or administrative	2) Government office
		offices. Medical offices are included here	3) Mixed-use office
		medical equipment (if they do, they are	4) Bank or other financial institution
	Medium office	categorized as an outpatient health care	5) Medical office
		building).	6) Sales office
			7) Contractor's office (e.g., construction, plumbing, HVAC)
			8) Non-profit or social services
	Small office		9) Research and development
			10) City hall or city center
			11) Religious office
			12) Call center
Parking	Parking garage	Buildings used for parking applications.	No sub-categories collected.

Building type	Principal building activity	Definition	Detailed business type examples ²⁷
Public assembly	Public assembly	Buildings in which people gather for social or recreational activities, whether in private or non-private meeting halls.	1) Social or meeting (e.g., community center, lodge, meeting hall, convention center, senior center)
			 Recreation (e.g., gymnasium, health club, bowling alley, ice rink, field house, indoor racquet sports)
			 Entertainment or culture (e.g., museum, theater, cinema, sports arena, casino, night club)
			4) Library
			5) Funeral home
			6) Student activities center
			7) Armory
			8) Exhibition hall
			9) Broadcasting studio
			10) Transportation terminal
Public order	Jail and prison	Government establishments engaged in	1) Correctional institutions
and safety		justice, public order, and safety.	2) Prison administration and operation
	Other		1) Police protection
			2) Legal counsel and prosecution
			3) Fire protection
			 Public order and safety, not elsewhere classified
Religious worship	Religious worship	Buildings in which people gather for religious activities (such as chapels, churches, mosques, synagogues, and temples).	No sub-categories collected.

Building type	Principal building activity	Definition	Detailed business type examples ²⁷
Service	Service	Buildings in which some type of service is provided, other than food service or retail sales of goods.	 Vehicle service or vehicle repair shop Vehicle storage/maintenance Repair shop Dry cleaner or laundromat Post office or postal center Car wash Gas station with no convenience store Photo processing shop Beauty parlor or barber shop Tanning salon Copy center or printing shop Kennel
Warehouse	Warehouse	Buildings used to store goods, manufactured products, merchandise, raw materials, or personal belongings (such as self-storage).	 Refrigerated warehouse Non-refrigerated warehouse Distribution or shipping center
Other	Other	For building types not explicitly listed.	Values used for other are the most conservative values from the explicitly listed building types.

Building type	Operating hours
Agriculture: Long-day lighting ²⁹	6,209
Agriculture: Non-24-hour sole-source greenhouse 30	5,479
Agriculture: Non-24-hour supplemented greenhouse ³¹	2,000
Data center	4,008
Education: K-12 with summer session, college, university, vocational, and day care	3,577
Education: K-12 with partial summer session ³²	3,177
Education: K-12 without summer session	2,777
Food Sales: Non-24-hour supermarket or convenience store	4,706
Food Sales: 24-hour supermarket or convenience store	6,900
Food service: Full-service restaurant	4,368
Food service: Quick-service restaurant	6,188
Food service: 24-hour restaurant	7,311
Healthcare: Inpatient	5,730
Healthcare: Outpatient	3,386
Lodging: Hotel/motel/dorm—common area	6,630
Lodging: Hotel/motel/dorm-room	3,055
Lodging: Nursing home	4,271
Manufacturing: 1 Shift (<70 hr/week)	2,786
Manufacturing: 2 Shift (70-120 hr/week)	5,188
Manufacturing: 3 Shift (>120 hr/week)	6,414
Mercantile: Non-24-hour stand-alone retail	3,668
Mercantile: Enclosed mall	4,813
Mercantile: Strip mall	3,965
Mercantile: 24-hour retail	6,900
Multifamily: Common area	4,772
Office	3,737

Table 9. Lamps & Fixtures—Operating Hours by Building Type

²⁹ Daily operating hours are 17 hours/day based on assumptions from the Minnesota and Wisconsin TRMs and market research indicating average 16–18 hours of daily operation. Annual operating hours are derived by multiplying 17 hours/day by 365.25 days/year.

³⁰ Daily operating hours are 15 hours/day based on market research indicating 14-16 hours of daily operation. Annual operating hours are derived by multiplying 15 hours/day by 365.25 days/year.

³¹ "Energy Savings Potential of SSL in Agricultural Applications," US Department of Energy. June 2020. Table E-1. <u>https://www.energy.gov/sites/prod/files/2020/07/f76/ssl-agriculture-jun2020.pdf</u>.

³² Assuming a partial summer session in June with no summer session in July.