Table 278 has consolidated both sources in one location for ease of reference.

For water heater replacement and fuel substitution, the new unit must meet the following federal minimum energy factor shown in_Table 278

Table 278. Water heaters must be installed in accordance with local code requirements.

FHR does not apply to tankless water heaters, which are rated in terms of max gallons per minute (GPM). For gas storage water heaters, reported draw pattern should be consistent with the ENERGY STAR certificate.³⁰⁸

DHW type	Rated storage volume	jDraw pattern	FHR	UEF ³¹⁰
Electric	< 2 gal	Very small usage	N/A	0.91
tankless ³¹¹		Low usage		0.91
		Medium usage		0.91
		High usage		0.92
Gas	< 2 gal and	Very small usage	N/A	0.95
tankless	> 50,000 Btuh	Low usage		
		Medium usage		
		High usage		
Gas	≥ 20 gal and	Very small usage	0 ≤ FHR < 18	$0.3456 - (0.0020 \ x \ V_{\rm f})$
storage	≤ 55 gal	Low usage	18 ≤ FHR < 51	0.5982 – (0.0019 x V _r)
		Medium usage	51 ≤ FHR < 75	0.81
		High usage	75 ≤ FHR	0.86
	> 55 gal and	Very small usage	0 ≤ FHR < 18	0.86
	≤ 100 gal	Low usage	18 ≤ FHR < 51	
		Medium usage	51 ≤ FHR < 75	
		High usage	75 ≤ FHR	

Table 278. DHW Replacements—Efficiency Standards³⁰⁹

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=32. ³¹⁰ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17.

260

Residential: Water Heating

Water Heater Installations

 ³⁰⁸ As of August 2023, all gas tankless products on the ENERGY STAR qualified product listing were rated as high usage. <u>https://www.energystar.gov/productfinder/product/certified-water-heaters/results</u>.
 ³⁰⁹ 10 CFR Part 430.32 Energy and water conservation standards. Available online:

³¹¹ There is no ENERGY STAR tankless water heater category because all products perform at or near the federal standard. These units are still eligible to claim savings against the *electric storage water heater* baseline if draw pattern and UEF can be verified using manufacturer specification sheets or other documentation.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

All deemed savings values are calculated using the following standard algorithms for water heating. These algorithms assume a replace-on-burnout or new construction scenario but may be used to award savings for early retirement projects.

Electric Tankless Water Heater

Energy Savings Algorithm

$$Energy Savings \left[\Delta kWh\right] = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,avg}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{3,412}$$

Equation 67

Where:

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water [Btu/b·°F] = 1
GPY	=	Estimated annual hot water use in gallons/year, specified by number of bedrooms in the home (see Table 279). For midstream/upstream applications, the number of bedrooms is assumed to be 3. ³¹²

Table 279. DHW Replacements—Water Heater Consumption (Gal/Year) ³
--

	Number of bedrooms			
Climate zone	1	2	3	4
Zone 1: Amarillo	15,476	20,171	24,866	29,561
Zone 2: Dallas	14,778	19,244	23,710	28,177
Zone 3: Houston	14,492	18,864	23,236	27,608
Zone 4: Corpus Christi	14,213	18,494	22,775	27,056
Zone 5: El Paso	14,905	19,412	23,920	28,427

Residential: Water Heating Water Heater Installations

³¹² Weighted average of number of bedrooms in West South-Central Region. 2020 RECS Survey Data – Table HC2.8 Structural and geographic characteristics of homes in the South and West regions, 2020. <u>https://www.eia.gov/consumption/residential/data/2020/</u>.

³¹³ Building America Research Benchmark Definition. December 2009, p 13. Available online: <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>.

Tsetpoint	=	Water heater setpoint temperature ["F] ³¹⁴ = 120
$\mathcal{T}_{supply,avg}$	=	Average annual supply water temperature [°F] (see Table 280)
UEF _{ρre}	=	Baseline uniform energy factor (see Table 277) ³¹⁵
UEF _{post}	=	Uniform energy factor of new water heater (see Table 278)
3,412	=	Constant to convert from Btu to kWh

Table 280. DHW Replacements—Water Mains Temperature (°F)³¹⁶

		T.supply;seasonal		
Climate zone	T _{supply,avg}	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Demand Savings Algorithm

Equation 68

Where:

CF_{SW} = Summer/winter peak coincidence factor (see Table 281) T_{supply,seasonal} = Seasonal supply water temperature [°F] (see Table 280)

Residential: Water Heating Water Heater Installations

³¹⁴ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.

³¹⁵ Note that for efficient water heater installations in newly-constructed homes, the baseline energy factor is the efficiency of the electric storage water heater that would otherwise have been installed, according to appropriate design documentation.

³¹⁶ Based on typical meteorological year (TMY) 3 dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Table 281. DHW Replacements—Coincidence Factors³¹⁷

Climate zone	Summer	Winter
Zone 1: Amarillo	0.042	0.067
Zone 2: Dallas	0.039	0.068
Zone 3: Houston	0.041	0.070
Zone 4: Corpus Christi	0.041	0.065
Zone 5: El Paso	0.036	0.067

Gas Storage or Tankless Water Heater (Fuel Substitution)

Energy and demand savings awarded for replacing an electric water heater with a gas storage or gas tankless water heater are equal to the consumption of the unit replaced.

Energy Savings Algorithm for Units Less than 55 Gallons

$$Energy Savings |\Delta kWh| = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,annual}) \times \left(\frac{1}{UEF_{pre}}\right)}{3,412}$$

Equation 69

Demand Savings Algorithm for Units Less than 55 Gallons

Summer Peak Demand Savings $|\Delta kW|$

$$= CF_{s} \times \frac{\rho \times C_{p} \times GPY \times (T_{setpoint} - T_{supply,summer}) \times \left(\frac{1}{UEF_{pre}}\right)}{365 \times 3,412}$$

Equation 70

Winter Peak Demand Savings $[\Delta kW]$

$$= CF_{W} \times \frac{\rho \times C_{p} \times GPY \times (T_{supply,winter} - T_{supply,winter}) \times \left(\frac{1}{UEF_{pre}}\right)}{365 \times 3,412}$$

Equation 71

³¹⁷ Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from Building America Performance Analysis Procedures for Existing Homes, page 18, Figure 4: Combined Domestic Hot Water Use Profile. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u>.

Residential: Water Heating Water Heater Installations

Example Deemed Savings Calculation

Example 1. An existing 40-gallon electric water heater in a two-bedroom home in Dallas is replaced with a new, electric tankless water heater with a high usage draw pattern and a uniform energy factor of 0.92. Important: note that energy savings can be negative if the UEF rating does not exceed the equivalent electric storage water heater baseline.

$$\Delta kWh = \frac{\left[8.33 \times 1 \times 19,244 \times (120 - 71.8) \times \left(\frac{1}{0.9309} - \frac{1}{0.92}\right)\right]}{3,412} = -29 \ kWh$$
$$\Delta kW_S = 0.042 \times \frac{\left[8.33 \times 1 \times 19,244 \times (120 - 84) \times \left(\frac{1}{0.930} - \frac{1}{0.92}\right)\right]}{365 \times 3,412} = -0.002 \ kW$$
$$\Delta kW_W = 0.068 \times \frac{\left[8.33 \times 1 \times 19,244 \times (120 - 60.6) \times \left(\frac{1}{0.9227} - \frac{1}{0.99}\right)\right]}{365 \times 3,412} = -0.007 \ kW$$

Example 2. An old 30-gallon electric water heater in a one-bedroom house in El Paso is replaced with a new gas storage water heater with a first-hour rating of 51 gal/hr and a uniform energy factor of 0.81.

$$\Delta kWh = \frac{\left[8.33 \times 1 \times 14,905 \times (120 - 70.4) \times \left(\frac{1}{0.0247}\right)\right]}{3,412} = 1,952 \, kWh$$
$$\Delta kW_s = 0.036 \times \frac{\left[8.33 \times 1 \times 14,905 \times (120 - 81.5) \times \left(\frac{1}{0.0247}\right)\right]}{365 \times 3,412} = 0.15 \, kW$$
$$\Delta kW_w = 0.067 \times \frac{\left[8.33 \times 1 \times 14,905 \times (120 - 60.4) \times \left(\frac{1}{0.0247}\right)\right]}{365 \times 3,412} = 0.43 \, kW$$

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

264

Texas Technical Reference Manual, Vol. 2 October 2024

Residential: Water Heating Water Heater Installations

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 20 years for a tankless water heater (gas or electric), as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-Instant-Res.³¹⁸

The EUL is 11 years for a high-efficiency gas water heater, as specified for EUL ID WtrHt-Res-Gas.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of bedrooms (not required for upstream/midstream program delivery)
- Water heater quantity
- Manufacturer and model number of new water heater
- ENERGY STAR certificate matching model number (if applicable)
- Baseline volume (gallons), FHR, and UEF
- New water heater volume (gallons, zero if tankless), FHR, and UEF
- Proof of purchase with date of purchase and quantity
 - \odot $\,$ Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Residential: Water Heating Water Heater Installations

³¹⁸ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Document Revision History

Table 282. DHW Replacements—Revision History

TRMIversion	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. Updated measure to require electric tankless rather than electric storage water heater installation for non-fuel-switching option. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	01/30/2015	TRM v2.1 update. Updated to reflect that new construction permitted to claim savings subject to documentation requirements and that gas-fueled tankless water heaters are eligible for installation.
v3.0	04/10/2015	TRM v3.0 update. Amended fuel substitution savings to reflect the full consumption of the electric unit being replaced. Revised demand savings for installing an electric tankless unit to reflect daily usage patterns.
v3.1	11/05/2015	TRM v3.1 update. Clarified the baseline for water heaters greater than 55 gallons.
v4.0	10/10/2016	TRM v4.0 update. Updated HPWH baseline usage for gas storage water heaters larger than 55 gallons.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. Implemented new baseline and high-efficiency standards.
v8.0	10/2020	TRM v8.0 update. Clarified HPWH baseline for tanks sizes over 55 gal. Updated algorithms to refer to UEF.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR specification v4.0. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Removed requirement to install HPWH for DHW > 55 gallons. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.
<u>v12.0</u>	10/2024	TRM v12.0 update. No revision.

Residential: Water Heating Water Heater Installations

2.4.2 ENERGY STAR® Heat Pump Water Heaters Measure Overview

TRM Measure ID: R-WH-HW

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity and gas

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the installation of an ENERGY STAR-compliant heat pump water heater (HPWH). Note that this measure does not account for the interactive air conditioning energy savings and heating penalty associated with the HPWH when installed inside conditioned space.

Eligibility Criteria

This measure applies to residential, electric, and storage-type heat pump water heaters. Heat pump add-ons to existing storage water heaters are ineligible. The measure does not apply to the replacement of gas water heaters.

First hour rating (FHR) is a proxy for draw pattern. There are no certified ENERGY STAR water heaters in the very small usage category, and that draw pattern is not covered in the current ENERGY STAR specification. Approximately 94 percent of certified units are in the medium and high usage categories. However, HPWHs with low usage draw patterns are eligible as long as they comply with minimum ENERGY STAR FHR requirements.

Baseline Condition

The baseline condition is an electric storage water heater (EWH) with baseline efficiency uniform energy factor (UEF) determined by tank size and FHR. This baseline is specified according to the current federal energy efficiency standards for residential water heaters with tank sizes 20 to 120 gallons, effective April 16, 2015, as published in 10 CFR Part 430.32 of the Federal Register.³¹⁹

267

Residential: Water Heating Heat Pump Water Heaters

³¹⁹ 10 CFR Part 430.32 Energy and water conservation standards and their effective dates. <u>www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=80dfa785ea350ebeee184bb0ae03e7f0&mc=true&node=se10.3.430_132&rgn=div8.</u>

This baseline applies to replace-on-burnout and new construction applications. No additional savings are awarded for early retirement at this time. Early retirement projects should calculate savings using an assumed replace-on-burnout baseline. However, the Department of Energy (DOE) issued an updated final rulea notice of proposed rulemaking for consumer water heaters, effective-on July 527, 20242023.320 Compliance with the new federal standard will be enforced as of May 6, 2029. The TRM will add an early retirement baseline after the effective date for the new standard.

Rated storage volume	Draw pattern	FHR 321 322	UEF 323
≥ 20 gal and	Very small usage	0 ≤ FHR < 18	0.8808 - (0.0008 × Vr)
≤ 55 gai	Low usage	18 ≤ FHR < 51	0.9254 - (0.0003 × Vr)
	Medium usage	51 ≤ FHR < 75	$0.9307 - (0.0002 \times V_t)$
	High usage	75 ≤ FHR	0.9349 - (0.0001 × Vr)
> 55 gal and	Very small usage	0 ≤ FHR < 18	1.9236 - (0.0011 × V _t)
≤ 120 gal	Low usage	18 ≤ FHR < 51	2.0440 - (0.0011 × Vr)
	Medium usage	51 ≤ FHR < 75	2.1171 - (0.0011 × Vr)
	High usage	75 ≤ FHR	2.2418 - (0.0011 × Vr)

Table 283. HPWHs -- Federal Standard for Residential Water Heaters (Compliance May 6, 2029)

	ومعتواها ال		
≥ 20 gal and	Vory small usage	0 ≤ FHR < 18	2.30
<u>≤ 55 gal</u>	Low usage	18 ≤ FHR < 51	
electric storage	Medium-usage	51 ≤ FHR < 75	
water-heaters)	High usage	75 ≤ FHR	
> 55 gal and ≤ 120 gal	Very small usage	0 ≤ FHR < 18	2.50
	Low usage	18 ≤ FHR < 51	
	Medium usage	51 ≤ FHR < 75	

³²⁹ Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters. https://www.energy.gov/eere/buildings/consumer-water-heaters.

268

Residential: Water Heating Heat Pump Water Heaters

https://www.regulations.gov/document/EERE-2017-BT-STD-0019-0063. 321 "The Revised Method of Test for Residential Water Heating and Its Impact on Incentive Programs" presentation, Glanville, Paul. ACEEE Hot Water Forum. February 24, 2015.

https://aceee.org/sites/default/files/pdf/conferences/hwf/2015/6B-Glanville.pdf. 322 Assume FHR equal to that of installed water heater.

³²³ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17. ²²⁴ "The Revised Method of Test for Residential Water Heating and Its Impact on Incentive Programs". presentation, Glanville, Paul. ACEEE Hot Water Forum. February 24, 2015.

https://accec.org/sites/default/files/pdf/conferences/hwf/2015/6B-Glanville.pdf.

³²⁵ Assume FHR equal to that of installed water heater.

³²⁶ Vr is the rated storage volume (in gallens), as determined pursuant to 10 CFR 429.17.

and the second s			- بين
	High usage	75 ≤ FHR	
> 120 gal	Vory small usage	0 ≤ FHR < 18	0.3574
	Low-usage	18 ≤ FHR < 51	0.7897 - (0.0019 × V.)
	Medium usage	51 ≤ FHR < 75	0.8884
	High usage	75 ≤ FHR	0.9575 (0.0013 x V.)

High-Efficiency Condition

Eligible equipment must be compliant with the current ENERGY STAR v5.0 specification, effective April 18, 2023. Qualified products must meet the minimum requirements from Table 284.³²⁷

	Criteria	ENERGY STAR Requirements
UEF	Integrated HPWH	UEF ≥ 3.30
	Integrated HPWH, 120 volt/15 amp circuit	UEF ≥ 2.20
	Split-system HPWH	UEF ≥ 2.20
First-hour rati	ng	FHR ≥ 45 gallons per hour
Warranty		Warranty ≥ 6 years on sealed system
Safety		UL 174 and UL 1995 or UL 60335-2-40
Lower compression (reporting req	essor cut-off temperature uirement only)	Report ambient temperature below which the compressor cuts off and electric- resistance-only operation begins

Table 284. HPWHs—ENERGY STAR Specification

A complete list of certified ENERGY STAR HPWHs can be accessed via the ENERGY STAR program website. 328

HPWHs depend on adequate ventilation to properly function, including adequate space for both inlet and outlet airflow, and should be installed in spaces in where temperature does not drop below a certain level. The Department of Energy recommends installation in locations that remain above 40°F year-round and provide a minimum of 1,000 cubic feet of air space around

³²⁷ ENERGY STAR HPWH Key Product CriteriaProgram Requirements for Residential Water Heaters. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Water%20Heate rs%20Version%205.0%20Specification%20and%20Partner%20Commitments_0.pdf.

328 ENERGY STAR-certified water heaters qualified product listing. https://www.energystar.gov/productfinder/product/certified-heat-pump-waterheaters/resultshttps://www.energystar.gov/preductfinder/preduct/certified-waterheaters/?formId=96913462-da32-4dc2-ad53f31203352209&corollTo=546&cearch_text=&type_filter=Hybrid%2FElectric+Heat+Pump&fuel_filter=Electric&brand_name_isopen=0&input_rate_theusand_btu_per_hour_isopen=0&markets_filter=United+-States&zip_code_filter=&product_types=Select+a+Product+Category&sort_by=brand_name&sort_direetion=asc&page_number=0&lastpage=0.

Residential: Water Heating Heat Pump Water Heaters

the water heater.³²⁹ Modern HPWHs operate with little to no change in performance with considerably less air volume. Updated recommendations reduce the air volume requirement to 700 cubic feet.³³⁰ These conditions are not enforced as an eligibility requirement but should be considered when installing an HPWH.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

HPWH savings are calculated on a per-unit basis. Deemed savings are calculated utilizing the standard algorithms outlined below for water heating. Consumption in gallons per year us estimated using data from Building America Performance Analysis Procedures for Existing Homes.³³¹ Temperature data are based on TMY3 dataset.³³²

For upstream/midstream program delivery, a default of three bedrooms may be used to calculate the annual hot water use in gallons per year (GPY). The default number of bedrooms was estimated by taking the weighted average calculated from 2020 RECS Survey Data.

Energy Savings Algorithm

 $Energy Savings |\Delta kWh| = \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,annual}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{3.412}$

Equation 72

Where

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water [Btu/lb+°F] = 1
GPY	=	Estimated annual hot water use in gallons/year, specified by number of bedrooms in the home (see Table 285). For midstream/upstream applications, the number of bedrooms is assumed to be 3. ³³³

Residential: Water Heating Heat Pump Water Heaters

³²⁹ Heat Pump Water Heaters. Department of Energy, May 2012. http://energy.gov/energysaver/articles/heat-pump-water-heaters

³³⁰ Heat Pump Water Heaters - Code Compliance Brief, U.S. Department of Energy Building Technologies Office. https://basc.pnnl.gov/code-compliance/heat-pump-water-heaters-code-compliance-brief.

³³¹ Building America Performance Analysis Procedures for Existing Homes, page 18, figure 4: combined domestic hot water use profile. https://www.nrel.gov/docs/fy06osti/38238.pdf..

³³² TMY data is available through the National Solar Radiation Database (NSRDB) Data Viewer, https://maps.nrel.gov/nsrdb-viewer/. Data for Texas climate zones can also be accessed directly here: https://texasefficiency.com/index.php/regulatory-filings/deemed-savings.

³³³ Weighted average of number of bedrooms in West South-Central Region. 2020 RECS Survey Data -Table HC2.8 Structural and geographic characteristics of homes in the South and West regions, 2020. https://www.eia.gov/consumption/residential/data/2020/.

Table 2	285 H	DWHe	Water	Heater	Concumption	Gal/Vear	1 334
lable 4	200. H	PVVHS-	vvaler	nealer	Consumption	I (Gal/ Tear	

	Number of bedrooms				
Climate zone	1	2	3	- 4	
Zone 1: Amarillo	15,476	20,171	24,866	29,561	
Zone 2: Dallas	14,778	19,244	23,710	28,177	
Zone 3: Houston	14,492	18,864	23,236	27,608	
Zone 4: Corpus Christi	14,213	18,494	22,775	27,056	
Zone 5: El Paso	14,905	19,412	23,920	28,427	

 $T_{setpoint}$ = Water heater setpoint temperature [°F]³³⁵ = 120

T_{supply,annual} = Average annual supply water temperature [°F] (see Table 286)

UEFpre = Baseline uniform energy factor (calculate per Table 283)³³⁶

UEF_{post} = Uniform energy factor of new water heater

Constant to convert from Btu to kWh

Table 286. HPWHs-Water Mains Temperature (°F)337

		T _{supply,seasonal}		
Climate zone	Tsupply,annual	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84,5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Residential: Water Heating Heat Pump Water Heaters

3,412

³³⁴ Building America Research Benchmark Definition. December 2009, p 13. Available online: http://www.nrel.gov/docs/fy10osti/47246.pdf.

³³⁵ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.

³³⁶ Note that for efficient water heater installations in new construction homes, the baseline uniform energy factor is the efficiency of the electric storage water heater that would otherwise have been installed, according to appropriate design documentation.

³³⁷ Based on TMY3 dataset. TMY data is available through the National Solar Radiation Database (NSRDB) Data Viewer, <u>https://maps.nrel.gov/nsrdb-viewer/</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatory-filings/deemed-savings</u>.

Demand Savings Algorithm

$$Peak Demand Savings |\Delta kW|$$

$$= \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply,seasonal}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{UEF_{post}}\right)}{365 \times 3,412} \times CF_{S/W}$$
Equation 73

Where:

Tsupply, seasonal

=

=

CFSAW

Seasonal supply water temperature [°F] (see Table 286) Summer/winter peak coincidence factor (see Table 287)

Table 287. HPWHs—Coincidence Factors ³³					
Climate zone	Summer	Winter			
Zone 1: Amarillo	0.042	0.067			
Zone 2: Dallas	0.039	0.068			
Zone 3: Houston	0.041	0.070			
Zone 4: Corpus Christi	0.041	0.065			
Zone 5: El Paso	0.036	0.067			

338

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Residential: Water Heating

Heat Pump Water Heaters

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

272

³³⁸ Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from Building America Performance Analysis Procedures for Existing Homes, page 18, Figure 4: Combined Domestic Hot Water Use Profile. https://www.nrel.gov/docs/fy06osti/38238.pdf.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for this measure is 13 years.³³⁹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of bedrooms (not required for upstream/midstream program delivery)
- Manufacturer and model number of new HPWH
- ENERGY STAR certificate matching model number (if applicable)
- HPWH quantity
- HPWH type (integrated HPWH, integrated HPWH 120v/15A circuit, split-system HPWH)
- Baseline volume (gallons), FHR, and UEF
- New HPWH volume (gallons), FHR, and UEF
- Proof of purchase with date of purchase and quantity
 - \odot $\,$ Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

273

Residential: Water Heating Heat Pump Water Heaters

³³⁹ 2010 ACEEE Summer Study on Energy Efficiency in Buildings, LBNL, "Heat Pump Water Heaters and American Homes: A Good Fit?" p 9-74. <u>https://www.aceee.org/files/proceedings/2010/data/papers/2205.pdf.</u>

Document Revision History

Table 288. HPWHs—Revision History				
TRMiversion	Date	Description of change		
v1.0	11/25/2013	TRM v1.0 origin.		
v2.0	04/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards.		
v2.1	01/30/2015	TRM v2.1 update. No revision.		
v3.0	04/10/2015	TRM v3.0 update. No revision.		
v3 .1	11/05/2015	TRM v3.1 update. No revision.		
v4.0	10/10/2016	TRM v4.0 update. Consolidated table formats.		
v5.0	10/2017	TRM v5.0 update. No revision.		
v6.0	11/2018	TRM v6.0 update. Implementation of new baseline and update to the efficiency of qualifying HPWHs.		
v7.0	10/2019	TRM v7.0 update. No revision.		
v8.0	10/2020	TRM v8.0 update. Added new construction eligibility		
v9.0	10/2021	TRM v9.0 update. Clarified baseline condition. Confirmed ENERGY STAR-qualified product listing still does not contain a significant number of products with low or very small usage patterns.		
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Version 4.0 Requirements. Updated savings methodology to algorithm approach. Updated documentation requirements.		
v11.0	10/2023	TRM v11.0 update. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.		
<u>v12.0</u>	<u>11/2024</u>	TRM v12.0 update. Clarified forthcoming federal standard effective and compliance dates.		

Table 288. HPWHs—Revision History

2.4.3 ENERGY STAR® Solar Water Heaters Measure Overview

TRM Measure ID: R-WH-SW

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves installing a new solar water heater in place of an electric storage water heater. Solar water heating deemed savings values are calculated based on the Solar Rating and Certification Corporation's (SRCC) test for solar water heaters (test OG-300).

Eligibility Criteria

These deemed savings are for solar water heaters installed as a replace-on-burnout measure or as an early retirement measure in existing homes and in new construction homes. However, savings are calculated under the assumption of replace-on-burnout.

Baseline Condition

Residential: Water Heating

Solar Water Heaters

The baseline condition is an electric storage water heater with baseline efficiency uniform energy factor (UEF) determined by tank size and first hour rating (FHR), a proxy for draw pattern. This baseline is specified according to the current federal energy efficiency standards for residential water heaters with tank sizes from 20 to 120 gallons, effective April 16, 2015, as published in 10 CFR Part 430.32 of the Federal Register (see Table 279).³⁴⁰

This baseline applies to replace-on-burnout, and new construction applications. No additional savings are awarded for early retirement. Early retirement projects should calculate savings using an assumed replace-on-burnout baseline. However, the Department of Energy (DOE) issued a notice of proposed rulemaking for consumer water heaters on July 27, 2023.³⁴¹ The TRM will add an early retirement baseline after the effective date for the new standard.

 ³⁴⁰ 10 CFR Part 430.32 Energy and water conservation standards and their effective dates. Available online: <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=32</u>.
 ³⁴¹ Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters.

https://www.regulations.gov/document/EERE-2017-BT-STD-0019-0063.

Rated storage volume	Draw pattern	FHR ^{342,343}	₩EF ^{344,}
≥ 20 gal and ≤ 55 gal	Very small usage	0 ≤ FHR < 18	0.8808 = (0.0008 × Vr)
	Low usage	18 ≤ FHR < 51	0.9254 - (0.0003 × V _r)
	Medium usage	51 ≤ FHR < 75	0.9307 - (0.0002 × Vr)
	High usage	75 ≤ FHR	0.9349 = (0.0001 × V _r)
> 55 gal and ≤ 120 gal	Very small usage	0 ≤ FHR < 18	1.9236 = (0.0011 × V _r)
	Low usage	18 ≤ FHR < 51	2.0440 = (0.0011 × Vr)
	Medium usage	51 ≤ FHR < 75	2.1171 = (0.0011 × V _r)
	High usage	75 ≤ FHR	2.2418 - (0.0011 × Vr)

Table 289. Solar DHW—Federal Standard for Residential Electric Storage Water Heaters

High-Efficiency Condition

Eligible equipment must be compliant with the current ENERGY STAR v5.0 specification, effective April 18, 2023. Qualified products must have a solar uniform energy factor (SUEF) greater than or equal to 3.0, and warranties of \geq 10 years on collectors, \geq 6 years on sealed systems, \geq 2 years on controls, and \geq 1 year on piping and parts.³⁴⁵ A complete list of certified ENERGY STAR solar water heaters can be accessed via the ENERGY STAR program website.³⁴⁶

Solar water heaters must be certified according to the current SRCC OG-300 standard based on tank size and final ${\rm SUEF.}^{347}$

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Solar water heating savings values are on a per-unit basis. Variables used to compute deemed savings include tank volume and installed unit SUEF as rated in the SRCC "Summary of SRCC Certified Solar Collector and Water Heating System Ratings." The SUEF is determined under SRCC's Operating Guideline 300. "Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems" and was developed as a means to compare solar water heating systems with conventional water heating systems rated with an UEF and listed in the Gas Appliance Manufacturers Association Directory of Certified Water Heating Products.

Residential: Water Heating Solar Water Heaters

³⁴² "The Revised Method of Test for Residential Water Heating and Its Impact on Incentive Programs" presentation, Glanville, Paul. ACEEE Hot Water Forum. February 24, 2015. https://aceee.org/sites/default/files/pdf/conferences/hwf/2015/6B-Glanville.pdf.

³⁴³ Assume FHR equal to that of installed water heater.

 ⁸⁴⁴ Vr is the rated storage volume (in gallons), as determined pursuant to 10 CFR 429.17.
 ⁸⁴⁵ ENERGY STAR Requirements (effective January 5th, 2022, released March 29, 2022).

https://www.energystar.gov/products/water_heaters/residential_water_heaters_key_product_criteria. 346 ENERGY STAR-certified water heaters qualified product listing.

https://www.energystar.gov/productfinder/product/certified-solar-water-heaters/results. 347 ENERGY STAR certification for residential water heaters. https://solar-rating.org/programs/estar/.

Both UEF and SUEF are based on the same environmental and hot water use conditions used in the DOE Test Procedures for Water Heaters. The only significant difference is that the DOE test does not specify solar radiation. So SRCC uses a 1500 Btu/sq. ft./day solar radiation profile—a value typical of Sunbelt states (note - the annual average solar radiation for Dallas is 1533 Btu/sq. ft./day. Information on the SRCC can be found at <u>http://www.solar-rating.org/</u>.

All deemed savings values are calculated using the following standard algorithms for water heating. These algorithms assume a replace-on-burnout or new construction scenario but may be used to award savings for early retirement projects.

Energy Savings Algorithm

$$Energy Savings |\Delta kWh| = \frac{\rho \times C_p \times GPY \times (T_{selpoint} - T_{supply,annual}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{SUEF_{post}}\right)}{3,412}$$

Equation 74

Where:

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water [Btu/b [.] °F] = 1
GPY	=	Estimated annual hot water use in gallons/year. specified by number of bedrooms in the home (see Table 290). For midstream/upstream applications, the number of bedrooms is assumed to be 3. ³⁴⁸
$T_{setpoint}$	=	Water heater setpoint temperature [°F] ³⁴⁹ = 120
T _{supply,annual}	=	Average annual supply water temperature [°F] (see Table 291)
UEF _{pre}	=	Baseline uniform energy factor (calculate per Table 289) ³⁵⁰
SUEF _{post}	=	Solar uniform energy factor of new water heater ³⁵¹
3,412	=	Constant to convert from Btu to kWh

³⁴⁸ Weighted average of number of bedrooms in West South-Central Region. 2020 RECS Survey Data – Table HC2.8 Structural and geographic characteristics of homes in the South and West regions, 2020. <u>https://www.eia.gov/consumption/residential/data/2020/</u>.

277

³⁴⁹ 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.

³⁵⁰ Note that for efficient water heater installations in new construction homes, the baseline uniform energy factor is the efficiency of the electric storage water heater that would otherwise have been installed, according to appropriate design documentation.

³⁵¹ ENERGY STAR uses an SUEF of 99 to account for systems that use no energy under rating conditions. This value is allowed for the purposes of calculating savings when specified on the ENERGY STAR certificate.

Table 290. 5	Solar DHW-	-Water Heater	Consumption	(Gal/Year) 35
--------------	------------	---------------	-------------	---------------

	Number of bedrooms				
Climate zone	1	2	3	4	
Zone 1: Amarillo	15,476	20,171	24,866	29,561	
Zone 2: Dallas	14,778	19,244	23,710	28,177	
Zone 3: Houston	14,492	18,864	23,236	27,608	
Zone 4: Corpus Christi	14,213	18,494	22,775	27,056	
Zone 5: El Paso	14,905	19,412	23,920	28,427	

	and the second	1000 T 100 M		
Table 291.	Solar DHW-	-Water Mains	Temperature	(°F)333

		Tsupply, seasonal			
Climate zone	Tsupply,annual	Summer	Winter		
Zone 1: Amarillo	62.9	73.8	53.7		
Zone 2: Dallas	71.8	84.0	60.6		
Zone 3: Houston	74.7	84.5	65.5		
Zone 4: Corpus Christi	77.2	86.1	68.5		
Zone 5: El Paso	70.4	81.5	60.4		

Demand Savings Algorithm

$$= \frac{\rho \times C_p \times GPY \times (T_{setpoint} - T_{supply, seasonal}) \times \left(\frac{1}{UEF_{pre}} - \frac{1}{SUEF_{post}}\right)}{365 \times 3,412} \times CF_{S/W}$$

Equation 75

Where:

 Tsupply,seasonal
 =
 Seasonal supply water temperature [°F] (see Table 291)

 CF_{SW}
 =
 Summer/winter peak coincidence factor (see Table 292)

³⁵² Building America Research Benchmark Definition. December 2009, p 13. Available online: http://www.nrel.gov/docs/fy10osti/47246.pdf.

³⁵³ Based on TMY3 dataset. TMY data is available through the National Solar Radiation Database (NSRDB) Data Viewer, <u>https://maps.nrel.gov/nsrdb-viewer/</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatory-filings/deemed-savings</u>.

Residential: Water Heating Solar Water Heaters

Table 292. Solar DHW—Coincidence Factors³⁵⁴

Climate zone:	Summer	Winter	
Zone 1: Amarillo	0.042	0.067	
Zone 2: Dallas	0.039	0.068	
Zone 3: Houston	0.041	0.070	
Zone 4: Corpus Christi	0.041	0.065	
Zone 5: El Paso	0.036	0.067	

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-SWH. 355

Residential: Water Heating Solar Water Heaters

³⁵⁴ Probability weighted peak load factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using data from Building America Performance Analysis Procedures for Existing Homes, page 18, Figure 4: Combined Domestic Hot Water Use Profile. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u>.

³⁵⁵ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Number of bedrooms (not required for upstream/midstream program delivery)
- Solar DHW quantity
- Manufacturer and model number of new solar water heater
- Baseline volume (gallons), FHR, and UEF
- New solar water heater volume (gallons), FHR, and SUEF
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Energy for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 27903. Order Adopting New §25.184 as Approved at the August 21, 2003, Open Meeting and Submitted to the Secretary of State. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 293. Solar DHW—Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. No revision
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.

280

Residential: Water Heating Solar Water Heaters

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated algorithms and coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Verified compliance with ENERGY STAR Version 4.0 Requirements. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Incorporated updated ENERGY STAR specification v5.0. Updated documentation requirements.
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. Clarified use of high efficiency ratings.

281

2.4.4 Water Heater Tank Insulation Measure Overview

TRM Measure ID: R-WH-TI

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure requires the installation of tank wrap insulation on an uninsulated water heater tank.

Eligibility Criteria

Water heater tank insulation is a residential retrofit measure. New construction and water heater replacements are not eligible for this measure because they must meet current code requirements. Tank insulation must be installed on an uninsulated electric resistance water heater.

To be eligible for this measure, water heaters must have been installed prior to April 16, 2015. Water heaters manufactured after this date are compliant with the current federal standard³⁵⁶ and are built with a thicker tank with a higher baseline R-value. Modern water heaters are expected to be rated at a minimum of R-24.^{357,358}

³⁵⁷ "Do-It-Yourself Savings Project: Insulate Water Heater Tank," U.S. Department of Energy. <u>https://www.energy.gov/energysaver/do-it-yourself-savings-project-insulate-water-heater-tank.</u> ³⁵⁸ "Meter Leating Realistic "Air Conditionic Leating and Refrigeration Leating".

³⁵⁸ "Water Heating Products," Air-Conditioning, Heating, and Refrigeration Institute (AHRI). <u>https://www.ahrinet.org/scholarships-education/education/homeowners/save-energy/water-heating-products.</u>

282

Residential: Water Heating Water Heater Tank Insulation

 ³⁵⁶ "Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters". Effective 6/15/2010 with compliance starting 5/16/2015. <u>https://www.federalregister.gov/documents/2010/04/16/2010-7611/energy-conservation-program-energy-conservation-standards-for-residential-water-heatersdirect.</u>
 ³⁵⁷ "Do-It-Yourself Savings Project: Insulate Water Heater Tank," U.S. Department of Energy.

Baseline Condition

The baseline is assumed to be a typical electric water heater with no insulation. The baseline tank is assumed to be one to two inches thick with an assumed R-value of approximately R-8 per inch. 359

High-Efficiency Condition

The high-efficiency condition is a water heater tank wrap or insulated blanket with an R-value of at least 8.

The manufacturer's instructions on the water heater jacket and the water heater itself should be followed. Thermostat and heating element access panels must be left uncovered.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Hot water tank insulation energy savings are calculated using the following formula:

Energy Savings
$$|\Delta kWh| = \frac{(U_{pre} - U_{post}) \times A \times (T_{tank} - T_{ambient.annual}) \times hours}{RE \times 3,412}$$

Equation 76

Where:

R _{pre}	=	Uninsulated tank R-value = 12 [sq. ft. °F hr/Btu] ³⁶⁰
Rpost	=	Tank insulation R-value = 12 + 8 = 20 = [sq. ft. °F hr/Btu]
Upre	=	1 / R _{pre} = 1 / 12 = 0.083 [Btu/hr sq. ft. °F]
Upost	=	1 / R _{post} = 1 / 20 = 0.05 [Btu/hr sq. ft. °F]
A	=	Tank surface area insulated in square feet (πDL) with L (length) and D (tank diameter) in feet; if the tank area is not known, use Table 294

https://www.federalregister.gov/documents/2001/01/17/01-1081/energy-conservation-program-forconsumer-products-energy-conservation-standards-for-water-heaters.

³⁶⁰ Baseline storage tank assembly is assumed to have thermal performance of R12, assuming an average tank thickness of 1-2 inches (average 1.5) and an approximate R-value of R-8 per inch.

Residential: Water Heating Water Heater Tank Insulation

³⁵⁹ "Energy Conservation Program for Consumer Products: Energy Conservation Standards for Water Heaters", Section V. Analytical Results and Conclusion, subsection C. Lessening of Utility or Performance of Products. Effective 1/20/2004.

Table 294. DHW Tank Insulation—Estimated Tank Area³⁶¹

Volume (gal)	A.(sq.ft.)
30	17.45
40	21.8 1
50	22.63
60	26.94
80	30.36
120	38.73

${\cal T}_{tank}$	=	Average tank water temperature [°F];
Tambient.annual	=	Average annual ambient temperature [°F] (see Table 295)
RE	=	Recovery efficiency; default = 0.98 for electric resistance water heaters ³⁶³
hours	=	8,760 hours per year
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Peak Demand Savings [∆kW]	$-(U_{pre} - U_{post}) \times A \times (T_{tank} - T_{amhient, seasonal}) \times CF_{S/W}$
	<i>RE</i> × 3,412

Equation 77

Where:

Tambient, seasonal	=	Seasonal ambient temperature [°F] (see Table 295)
CF _{SW}	=	Seasonal peak coincidence factor ³⁶⁴ = 1

Residential: Water Heating Water Heater Tank Insulation

³⁶¹ Tank area was obtained from a survey of electric water heater manufacturer data from A.O. Smith and Whirlpool conducted in 2013. Dimensions for each tank size were collected and averaged to determine typical square footage of each size water heater.

³⁶² 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), supports a default value of 120°F.

³⁶³ Default based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://www.ahrinet.org</u>.

³⁶⁴ Coincidence factor of 1 assumes that a constant tank temperature is maintained across all hours of the year.

Climate zone	Wa	ter heater loca onditioned spa	tion: ace ³⁶⁵	Water heater location: conditioned space ³⁶⁶		
		Peak sea	Peak seasonal		Peak seasonal	
	Annual	Summer	Winter	Annual	Summer	Winter
Zone 1: Amarillo	65.5	106.0	32.0	71.771.8	7 <u>1.7</u> 74.8 <u>73.2</u> 73.9 §	69.769.6
Zone 2: Dallas	73.1	108.1	42.0			
Zone 3: Houston	76.3	108.2	46.0			
Zone 4: Corpus Christi	78.4	103.0	55.0			
Zone 5: El Paso	71.8	108.0	41.1			

Table 295. DHW Tank Insulation-Ambient Temperature (°F)

Deemed Energy Savings Tables

Table 296. DHW Tank Insulation—Energy Savings

Tank volume		Conditioned				
	Amarillo	Dallas	Houston	Corpus Christi	El Paso	All zones
30	83	71	67	63	73	<u>74</u> 73
40	104	89	83	79	92	92
50	108	93	86	82	95	95
60	128	110	103	98	113	<u>114</u> 113
80	144	124	116	110	128	128
120	184	159	148	141	163	163

Residential: Water Heating Water Heater Tank Insulation

³⁶⁵ Average ambient temperatures for unconditioned space were taken from TMY3 data, with a 7°F increase in winter and an 11°F increase in summer based on ASHRAE 152 Heating System and Cooling System Location Temperatures (Garage).

³⁶⁶ Average ambient temperatures for conditioned space were taken from the <u>2020</u> US Energy Information Administration Residential Energy Consumption Survey (RECS), tables hc7.<u>89</u> and hc6.8. Summer and winter indoor temperature averages are weighted by the number of homes. Annual temperature is <u>weighted by the number of days from</u> the <u>average of summer and winter peak months</u> from the Texas peak definition in Volume <u>1</u>weighted by number of days.

Deemed Summer Demand Savings Tables

Table 297. D	OHW Tank	Insulation-	Summer F	Peak D	emandEne	rgy	Savings
--------------	----------	-------------	----------	--------	----------	-----	---------

		Conditioned				
Tank volume	Amarillo	Dallas	Houston	Corpus Christi	El Paso	All zones
30	0.0024	0.0021	0.0021	0.0030	0.0021	0.00810.0080
40	0.0030	0.0026	0.0026	0.0037	0.0026	0.01020.0100
50	0.0032	0.0027	0.0027	0.0038	0.0027	0.01060.0104
60	0.0038	0.0032	0.0032	0.0046	0.0032	0.01260.0124
80	0.0042	0.0036	0.0036	0.0051	0.0036	0.01420.0140
120	0.0054	0.0046	0.0046	0.0066	0.0046	0.01810.0178

Deemed Winter Demand Savings Tables

Table 298. DHW Tank Insulation-Winter Peak DemandEnergy Savings

		Conditioned				
Tank volume	Amarillo	Dallas	Houston	Corpus Christi	El Paso	All zones
30	0.0153	0.0136	0.0129	0.0113	0.0137	0.00870.0088
40	0.0191	0.0170	0.0161	0.0141	0.0172	0.01090.0110
50	0.0199	0.0176	0.0167	0.0147	0.0178	0.01130.0114
60	0.0236	0.0209	0.0199	0.0175	0.0212	0.0135
80	0.0266	0.0236	0.0224	0.0197	0.0239	0.01520.0153
120	0.0340	0.0301	0.0286	0.0251	0.0305	0.01940.0195

Claimed Peak Demand Savings

Refer to Volume 1, Section 4.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 7 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-TankIns-Elec.³⁶⁷

286

Residential: Water Heating Water Heater Tank Insulation

³⁶⁷ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Water heater location (conditioned, unconditioned)
- Tank volume (30, 40, 50, 60, 80, 120)
- The R-value of the installed tank insulation
- Water heater model number and manufacture date

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 299. DHW Tank Insulation—Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.

Residential: Water Heating Water Heater Tank Insulation 287

TRM version	Date	Description of change
v8.0	10/2020	TRM v8.0 update. Updated ambient temperatures.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. Clarified baseline and added deemed savings. Updated documentation requirements.
<u>v12.0</u>	<u>10/2024</u>	IRM v12.0 update. Updated ambient temperatures and deemed savings.

2.4.5 Water Heater Pipe Insulation Measure Overview

TRM Measure ID: R-WH-PI

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure requires the installation of pipe insulation on uninsulated water heater pipes that are served by an electric water heater.

Eligibility Criteria

Water heaters plumbed with heat traps are not eligible to receive incentives for this measure. It is recommended that the installer (or contractor) checks to see if the water heater heat trap works properly before declaring the water heater ineligible.

Water heater pipe insulation is a residential retrofit measure. New construction and retrofits involving the installation of new water heaters are not eligible for this measure, because they must meet current code requirements. To use these deemed savings, the fuel type of the water heater must be electricity.

Baseline Condition

The baseline is assumed to be a typical electric water heater with no heat traps and no insulation on water heater pipes.

High-Efficiency Condition

The efficiency standard requires an insulation thickness R-3. The International Residential Code (IRC) 2018 section N1103.4: Mechanical system piping insulation requires R-3 insulation.

All visible hot water piping must be insulated. Savings are based on a maximum allowable insulation length of 6 feet of piping.

289

Residential: Water Heating Water Heater Pipe Insulation

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Hot water pipe insulation energy savings are calculated using the following formula:

Energy Savings $|\Delta kWh| = \frac{(U_{pre} - U_{post}) \times A \times (T_{pipe} - T_{ambient.annual}) \times hours}{RE \times 3,412}$

Equation 78

Where:

Upre

А

$\frac{1}{2.03} = 0.494$	$^{Btu}/hr \cdot sq. ft. \cdot {}^{\circ}\mathrm{F}^{^{36}}$
1	Rtu,

U _{post}	=	$\frac{1}{2.03+R_{Insulation}}Btu/hr\cdot sq. ft. \circ F$
Rinsulation	=	R-value of installed insulation

Pipe surface area insulated in square feet (πDL) with L (length) and D (pipe diameter) in feet. The maximum length allowable for insulation is 6 feet; if the pipe area is unknown, use the following table.

Table 200	DHM/ Dipa	Inculation_	Entimated	Dine	Surface	Area.
TADIC JUV.		illisulauvii–	-countateu	FINC.	Juliace	AICa.

Nominal pipe diameter (inches):	Outside pipe diameter (inches)	iPipe surface⊨area⊨(square feet) ³⁶⁹
0.5	0.625	0.16 x required input "Pipe Length insulated (feet)"
0.75	0.875	0.23 x required input "Pipe Length insulated (feet)"
1.0	1.125	0.29 x required input "Pipe Length insulated (feet)"

 T_{pipe}

Average pipe water temperature [°F]; default³⁷⁰ = 120

290

³⁶⁶ 2.03 is the R-value representing the film coefficients between water and the inside of the pipe, and between the surface and air. Mark's Standard Handbook for Mechanical Engineers, 8th edition.

³⁶⁹ Factors used in the calculation for pipe area were determined by using the outside diameter of the pipe in inches, converting it to feet, and multiplying by π.

³⁷⁰ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 102. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

 Tambient, annual
 =
 Average annual ambient temperature [°F] (see Table 301)

 RE
 =
 Recovery efficiency (or in the case of heat pump water heaters, COP). If unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters.³⁷¹

hours = 8,760 hours per year

Demand Savings Algorithms

 $Peak \ Demand \ Savings \ [\Delta kW] = \frac{\left(U_{pre} - U_{post}\right) \times A \times \left(T_{pipe} - T_{ambient,seasonal}\right) \times CF_{S/W}}{RE \times 3,412}$

Equation 79

Where:

Tambient seasonal =

CFSW

Seasonal peak coincidence factor³⁷² = 1

Seasonal ambient temperature [°F] (see Table 301)

Seasonal peak coincidence factor³⁷² = 1

Table 301. DHW Pipe Insulation—Ambient Temperature (*F)

	Wate unco	er heater loca nditioned sp	ation: ace ³⁷³	Water heater location: conditioned space ³⁷⁴		
	Peak		asonal		Peak seasonal	
Climate zone	Annual	Summer	Winter	Annual	Summer	Winter
Zone 1: Amarillo	65.5	106.0	32.0	<u>71.7</u> 71.8 <u>7</u>	<u>73.2</u> 73.9	<u>69.7</u> 69.6
Zone 2: Dallas	73.1	108.1	42.0			
Zone 3: Houston	76.3	108.2	46.0			
Zone 4: Corpus Christi	78.4	103	55.0			
Zone 5: El Paso	71.8	108	41.1	1		

Residential Water Heating Water Heater Pipe Insulation

³⁷¹ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://www.ahrinet.org</u>.

³⁷² Coincidence factor of 1 assumes that a constant tank and near tank piping temperature is maintained across all hours of the year.

³⁷³ Average ambient temperatures for unconditioned space were taken from TMY3 data, with a 7°F increase in winter and an 11°F increase in summer based on ASHRAE 152 Heating System and Cooling System Location Temperatures (Garage).

³⁷⁴ Average ambient temperatures for conditioned space were taken from the <u>2020</u> US Energy Information Administration Residential Energy Consumption Survey (RECS), tables hc7.<u>89</u> and hc6.8. Summer and winter indoor temperature averages are weighted by the number of homes. Annual temperature is <u>weighted by the number of days from</u> the <u>average of summer and winter peak months</u> from the Texas peak definition in Volume 1 weighted by number of days.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 13 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-PipeIns-Elec.³⁷⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Water heater location (conditioned, unconditioned)
- The R-value of the installed insulation
- Recovery efficiency (RE) or COP, if available
- Pipe length insulated (feet)
- The pipe surface area insulated in square feet (at least the pipe diameter in inches)

Residential: Water Heating Water Heater Pipe Insulation

³⁷⁵ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 302. DHW Pipe Insulation—Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated ambient temperatures.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated documentation requirements.
v11.0	10/2023	TRM v11.0 update. No revision.
<u>v12.0</u>	10/2024	TRM v12.0 update. Updated ambient temperatures.

2.4.6 Faucet Aerators Measure Overview

TRM Measure ID: R-WH-FA

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves installing aerators on kitchen and bathroom water faucets as a retrofit measure.

Eligibility Criteria

The savings values are per faucet aerator installed. It is not a requirement that all faucets in a home be treated for the deemed savings to be applicable.

These deemed savings are for residential, retrofit or new construction, and installations of kitchen and bathroom faucet aerators. To be awarded these deemed savings, the fuel type of the water heater must be electricity.

Baseline Condition

The 2.2 gallon per minute (GPM) baseline faucet flow rate is based on the Department of Energy (DOE) maximum flow rate standard.³⁷⁶ The deemed savings assume that the existing faucet aerators have a minimum flow rate of 2.2 GPM. The US EPA WaterSense specification for faucet aerators is 1.5 GPM.³⁷⁷

High-Efficiency Condition

Aerators that have been defaced to make the flow rating illegible are not eligible for replacement. For direct install programs, all aerators removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

Residential: Water Heating Faucet Aerators

³⁷⁶ DOE maximum flow rate for faucet aerators.

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=40. 377 https://www.epa.gov/watersense/bathroom-faucets.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

The deemed savings, for any faucet aerator change case using aerators with flow rates of 1.5 GPM or lower, are calculated as follows:

$$= \frac{P \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times 365 \times (T_{faucet,avg} - T_{supply,annual})}{FPH \times RE \times 3,412}$$

Equation 80

Where:

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water [Btu/lb°F] = 1
GPM _{Base}	=	Average baseline flow rate of aerator = 2.2 gallons per minute
GPM _{Low}	=	Post-installation flow rate of aerator, typically 1.5, 1.0, or 0.5 gallons per minute; if unknown, assume 1.5 gallons per minute
N	=	Average number of persons per household = 2.83 persons ³⁷⁸
t	=	Average time in minutes of hot water usage per person per day; default = 2.34 min/person/day ³⁷⁹
T _{faucet, avg}	=	Average faucet temperature [°F] ³⁸⁰ = 88
$\mathcal{T}_{supply,annual}$	=	Average annual supply water temperature [°F] (see Table 303)
FPH	=	Average number of faucets per household = $3.993.87$ faucets ³⁸¹

³⁷⁸ Occupants per home for Texas from US Census Bureau, "Persons Per Household, 2016-2020". <u>https://www.census.gov/guickfacts/fact/table/TX,US/PST045221</u>.

Residential: Water Heating Faucet Aerators

³⁷⁹ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group. Derived by taking weighted average of average minutes per person per day specified for kitchens (4.5) and bathrooms (1.6) assuming 1 kitchen aerator and 2.93 bathrooms.

³⁸⁰ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group. Derived by taking weighted average of average temperature for kitchens (93°F) and bathrooms (86°F) assuming 1 kitchen aerator and 2.93 bathrooms.

Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

³⁸¹ Faucets per home assumed to be equal to one per kitchen and each half-bath plus 1.5 per each full bathroom per home. Bathroom counts extracted from the <u>20202045</u> Residential Energy Consumption Survey (RECS), Table HC2.8 Structural and Ggeographic <u>Ccharacteristics of Hhomes in West South-Central <u>Rr</u>egion. <u>https://www.eia.gov/consumption/residential/data/2020/.</u></u>
RE	=	Recovery Efficiency (or in the case of heat pump water heaters,
		COP). If unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters. ³⁸²

3,412 = Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year, with 365 canceling from the savings algorithm numerator and denominator.

Peak Demand Savings per aerator $[\Delta kW]$

$$= \frac{\rho \times C_{P} \times (GPM_{Base} - GPM_{Low}) \times N \times t \times (T_{faucel.avy} - T_{supply.seasonal})}{FPH \times RE \times 3,412} \times CF_{S/W}$$
Equation 81

Where:

 $T_{supply,seasonal}$ = Seasonal supply water temperature [°F] (Table 303) CF_{SW} = Seasonal peak coincidence factor (Table 304)

Table 303. Faucet Aerat	ors—Water Ma	ins Temperature (°F) ³⁸³

		'Tsupply,seasonal)		
Climate zone	′T _{supply¦avg}	'Sümmer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

296

³⁸² Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, <u>https://www.ahridirectory.org/</u>.

³⁸³ Based on typical meteorological year (TMY) dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Table 304. Faucet Aerators—Coincidence Factors

Climate zone	Summer	Winter
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068
Zone 5: El Paso	0.028	0.069

Figure 4. Faucet Aerators—Shower, Bath, and Sink Hot Water Use Profile³⁸⁴

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

297

Residential: Water Heating Faucet Aerators

³⁶⁴ Building America performance analysis procedures for existing homes.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Aert.³⁸⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Recovery Efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of faucet installed
- Water heater type (e.g., heat pump, electric resistance)

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Residential: Water Heating Faucet Aerators

³⁸⁵ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Document Revision History

Table 305. Faucet Aerators—Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. No revision.
∨3.1	10/30/2015	TRM v3.1 update. Supplemented reference for water heater setpoint temperature.
v4.0	10/10/2016	TRM v4.0 update. Updated methodology to calculate energy and demand savings.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. No revision.
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.
v11.0	10/2023	TRM v11.0 update. No revision.
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. Updated number of faucets per home.

Residential: Water Heating Faucet Aerators

2.4.7 Low-Flow Showerheads Measure Overview

TRM Measure ID: R-WH-SH

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of removing existing showerheads and installing low-flow showerheads in residences.

Eligibility Criteria

The incentive is for replacement of an existing showerhead with a new showerhead rated at or below 2.0gallons per minute (GPM). The only showerheads eligible for installation are those that are not easily modified to increase the flow rate.

These deemed savings are for showerheads installed as a retrofit or new construction measure. To be awarded these deemed savings, the fuel type of the water heater must be electricity.

Baseline Condition

Federal standards set a maximum flow rate of 2.5 GPM,³⁸⁶ while the US Environmental Protection Agency (EPA) WaterSense Program has implemented efficiency standards for showerheads requiring a maximum flow rate of 2.0 GPM.³⁸⁷

High-Efficiency Condition

In addition to meeting the baseline requirements above, existing showerheads that have been defaced to make the flow rating illegible are not eligible for replacement. All showerheads removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

Residential: Water Heating Low-Flow Showerheads 300

³⁸⁶ http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/37.

³⁶⁷ http://www.epa.gov/watersense/products/showerheads.html.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

Energy Savings per showerhead $|\Delta kWh|$ = $\frac{\rho \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times 365 \times (T_{shower,avg} - T_{supply,annual})}{SPH \times RE \times 3,412}$

Equation 82

Where:

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water [Btu/lb°F] = 1
GPM_{Base}	=	Average baseline flow rate of aerator = 2.5 gallons per minute
GPM _{Low}	=	Post-installation flow rate of aerator, if unknown. assume 2.0 gallons per minute
Ν	=	Average number of persons per household = 2.83 persons ³⁶⁸
t	=	Average time in minutes of hot water usage per person per day; default = 7.8 min/person/day ³⁶⁹
Tshawer;avg	=	Average shower temperature [°F] ³⁹⁰ = 101
T _{supply,annual}	=	Average annual supply water temperature [°F] (see Table 306)
SPH	=	Average number of showerheads per household = <u>1.80</u> 1.74 showerheads ³⁹¹

301

Residential: Water Heating Low-Flow Showerheads

³⁸⁸ Occupants per home for Texas from US Census Bureau, "Persons per household, 2016-2020". $\underline{https://www.census.gov/quickfacts/fact/table/TX, US/PST045221}.$

³⁸⁹ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group.

³⁸⁰ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study." Prepared for Michigan Evaluation Working Group

³⁸¹ Showerheads per home assumed to be equal to the number of full bathrooms per home as specified in the 20202009 Residential Energy Consumption Survey (RECS), Table HC2.82.10 Structural and geographic characteristics of homes in West South-Central region. https://www.eia.gov/consumption/residential/data/2020/.

RE	=	Recovery Efficiency (or in the case of heat pump water heaters,
		COP): if unknown, use 0.98 as a default for electric resistance
		water neutors of 2.2 for neut pump water neutors

3,412 = Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year, with 365 canceling from the savings algorithm numerator and denominator.

Demand Savings per showerhead $[\Delta kWh]$

$$= \frac{\rho \times C_P \times (GPM_{Base} - GPM_{Low}) \times N \times t \times (T_{shower,avg} - T_{supply,seasonal})}{SPH \times RE \times 3,412} \times CF_{S/W}$$
Equation 83

Where:

 $T_{supply, seasonal}$ = Seasonal supply water temperature [°F] (see Table 306)

CF_{S/W} = Seasonal peak coincidence factor (see Table 307)

Table 306. Low-Flow Showerheads—Water Mains Temperature (°F)³⁹³

		Tsupplyseasonal)		
Climate zone	TsupplyAverage	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Residential: Water Heating Low-Flow Showerheads

³⁹² Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://cafs.ahrinet.org/gama_cafs/sdpsearch/search.jsp?table=CWH</u>.

³⁸³ Based on typical meteorological year (TMY) dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

Climate zone	Summer	Winter	
Zone 1: Amarillo	0.039	0.073	
Zone 2: Dallas	0.035	0.075	
Zone 3: Houston	0.038	0.080	
Zone 4: Corpus Christi	0.038	0.068	
Zone 5: El Paso	0.028	0.069	

Table 307. Low-Flow Showerheads-Coincidence Factors

Figure 5. Low-Flow Showerheads—Shower, Bath, and Sink Hot Water Use Profile³⁹⁴ Source: Building America Performance Analysis Procedures for Existing Homes.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

303

Residential: Water Heating Low-Flow Showerheads

³⁹⁴ Building America performance analysis procedures for existing homes.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Shrhd.³⁹⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Recovery efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of showerhead installed
- Water heater type (e.g., heat pump, electric resistance)

References and Efficiency Standards

Petitions and Rulings

 Docket No. 41722. Petition of AEP Texas Central Company, AEP Texas North Company, CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Sharyland Utilities, L.P., Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company to Approve Revisions to Residential Deemed Savings to Incorporate Winter Peak Demand Impacts and Update Certain Existing Deemed Savings Values. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

304

Residential: Water Heating Low-Flow Showerheads

³⁹⁵ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

Document Revision History

Table 308. Low-Flow Showerheads—Revision History

TRM version	iDate	Description of change			
v1.0	11/25/2013	TRM v1.0 origin.			
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.			
v2.1	1/30/2015	TRM v2.1 update. No revision.			
v3.0	4/10/2015	TRM v3.0 update. No revision.			
v3.1	11/05/2015	TRM v3.1 update. Provided clarification that savings are to be awarded per showerhead. Supplemented reference for water heater setpoint temperature.			
v4.0	10/10/2016	TRM v4.0 update. Updated methodology to calculate energy and demand savings.			
v5.0	10/2017	TRM v5.0 update. No revision.			
v6.0	11/2018	TRM v6.0 update. No revision.			
v7.0	11/2019	TRM v7.0 update. No revision.			
v8.0	10/2020	TRM v8.0 update. Added new savings category and updated coincidence factors.			
v9.0	10/2021	TRM v9.0 update. Updated EUL reference.			
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.			
v11.0	10/2023	TRM v11.0 update. No revision.			
<u>v12.0</u>	10/2024	TRM v12.0 update. Updated number of showerheads per home.			

2.4.8 Showerhead Temperature Sensitive Restrictor Valves Measure Overview TRM Measure ID: R-WH-SV Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily; manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of installing a temperature sensitive restrictor valve $(TSRV)^{396}$ between the existing shower arm and showerhead. The valve restricts hot water flow through the showerhead once the water reaches a set temperature (generally 95°F) to prevent water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste.

Eligibility Criteria

These deemed savings are for temperature sensitive restrictor valves installed in new construction or as a retrofit measure in residential applications. Buildings must have electrically-fueled hot water to be eligible for this measure.

Baseline Condition

The baseline condition is the residential shower arm and standard (2.5 GPM) showerhead without a temperature sensitive restrictor valve installed.

High-Efficiency Condition

The high-efficiency condition is a temperature sensitive restrictor valve installed on a residential shower arm and showerhead with either a standard (2.5 GPM) or low-flow (2.0, 1.75, or 1.5 GPM) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-flow Showerheads measure and claim additional savings as outlined in that measure.

306

³⁹⁶ A temperature sensitive restrictor valve is any device that uses water temperature to regulate water flow in showers.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Estimated Hot Water Usage Reduction

To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used:

Annual Showerhead Behavioral Waste = SHFR × BW × n_S × 365 × $\frac{n_0}{n_{SH}}$

Equation 84

Where:

SHFR	=	Showerhead flow rate, gallons per minute [gpm] (see Table 309)
BW	=	Behavioral waste, minutes per shower (see Table 309)
ns	=	Number of showers per person per day (see Table 309)
365	=	Constant to convert days to years (see Table 309)
no	=	Number of occupants per home (see Table 309)
n _{sh}	=	Number of showerheads per home (see Table 309)

Applying the formula to the values from Table 309 returns the following values for baseline behavioral waste in gallons per showerhead per year:

Showerhead (2.5 GPM): $2.5 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{18072} = 681713 \ gal$ Showerhead (2.0 GPM): $2.0 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.8072} = 545570 \ gal$ Showerhead (1.75 GPM): $1.75 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.8072} = 477499 \ gal$ Showerhead (1.5 GPM): $1.5 \times 0.783 \times 0.6 \times 365 \times \frac{2.86}{1.8072} = 409428 \ gal$

Gallons of hot water saved per year can be found by multiplying the baseline behavioral waste gallons per year by the percent of hot water from Table 309.

Gallons of hot water saved per year = Annual Behavioral Waste \times HW%

307

Equation 85

Residential: Water Heating Showerhead TSRVs Texas Technical Reference Manual, Vol. 2 October 2024 **Commented [DN9]:** Updated to reflect revised number of showerheads.

Where:

HW% = Hot water percentage (see Table 309)

Gallons of hot water saved per year (2.5 GPM): $681713 \times 0.825 = 562588$ gal Gallons of hot water saved per year (2.0 GPM): $545570 \times 0.825 = 450470$ gal Gallons of hot water saved per year (1.75 GPM): $477499 \times 0.825 = 393412$ gal

Gallons of hot water saved per year (1.5 GPM): 409428 × 0.825 = 337353 gal

Table 309. Showerhead TSRVs—Hot Water Usage Reduction

Description	2.5 GPM	2.0 GPM	1.75 GPM	1.5 GPM
Average behavioral waste (minutes per shower) ³⁹⁷	I waste (minutes per shower) ³⁹⁷			0.783
Showers/person/day398	0.			
Occupants per home ³⁹⁹	2.83			
Showerheads/home400	<u>1.80</u> 4-			
Behavioral waste/showerhead/year (gal)	<u>681713 545570 477499 409428</u>			409428
Percent hot water ⁴⁰¹		8	0-85%, or 82.	5% average
Hot water saved/year (gal)	562588	450470	393412	337353

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

 $Energy Savings \ per \ TSRV \ [\Delta kWh] = \frac{\rho \times C_P \times V \times (T_{setpoint} - T_{supply,annual})}{RE \times 3,412}$

Equation 86

Texas Technical Reference Manual, Vol. 2 October 2024 Commented [DN11]: Updated.

Commented [DN10]: Updated.

³⁹⁷ "Disaggregating Residential Shower Warm-Up Waste", Sherman, Troy. August 2014. Derived by dividing average behavioral waste time (47 seconds) by 60 seconds.

³⁸⁸ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study". Prepared for Michigan Evaluation Working Group. June 2013.

³⁹⁹ Occupants per home for Texas from US Census Bureau, "Persons per household, 2016-2020". <u>https://www.census.gov/quickfacts/fact/table/TX,US/PST045221.</u>

⁴⁰⁰ Showerheads per home assumed to be equal to the number of full bathrooms per home. Bathroom counts extracted from the <u>20202015</u> Residential Energy Consumption Survey (RECS) Table HC2.8 Structural and geographic characteristics of homes in the West South-Central region. <u>https://www.eia.gov/consumption/residential/data/2020/https://www.eia.gov/consumption/residential/data/2015/#structural.</u>

⁴⁰¹ "Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV", Sherman, Troy. Evolve Technologies. December 15, 2015.

Where:

ρ	=	Water density [ibs/gal] = 8.33
C_p	=	Specific heat of water [Btu/lb°F] = 1
V	=	Gallons of hot water saved per year per showerhead (see Table 309)
$T_{setpoint}$	=	Water heater setpoint temperature [°F] ⁴⁰² = 120
T _{supply,annual}	=	Average annual supply water temperature [°F] (see Table 310)
RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year.

 $Peak Demand Savings per TSRV |\Delta kW| = \frac{\rho \times C_{P} \times V \times (T_{setpoint} - T_{supply, seasonal})}{RE \times 3,412 \times 365} \times CF_{S/W}$

Equation 87

Where:

Residential: Water Heating

Showerhead TSRVs

${\cal T}_{supply,seasonal}$	=	Seasonal supply water temperature [°F] (see Table 310)
CF_{SW}	=	Seasonal peak coincidence factor (see Table 311)

⁴⁰² 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

Table 310. Showerhead TSRVs—Water Mains Temperature (°F)⁴⁰³

		T _{Supplys}	(easonal)
Climate zone	TSupplyAverage	Summer	Winter
Zone 1: Amarillo	62.9	73.8	53.7
Zone 2: Dallas	71.8	84.0	60.6
Zone 3: Houston	74.7	84.5	65.5
Zone 4: Corpus Christi	77.2	86.1	68.5
Zone 5: El Paso	70.4	81.5	60.4

Table 311. Showerhead TSRVs—Coincidence Factors

Climate zone	Summer	Winter ²
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068
Zone 5: El Paso	0.028	0.069

Figure 6. Showerhead TSRVs—Shower, Bath, and Sink Hot Water Use Profile⁴⁰⁴

Source: Building America Performance Analysis Procedures for Existing Homes.

⁴⁰³ Based on typical meteorological year (TMY) dataset for TMY3 available through the National Solar Radiation Database (NSRDB) Data Viewer, https://nsrdb.nrel.gov/data-viewer, Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

⁴⁰⁴ Building America performance analysis procedures for existing homes.

310

Residential: Water Heating Showerhead TSRVs

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Shrhd.⁴⁰⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- DHW recovery efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of showerhead installed
- Water heater type (heat pump, electric resistance)

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Residential: Water Heating

Showerhead TSRVs

⁴⁰⁵ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

311

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 312. Showerhead TSRVs—Revision History

'TRMiversion	Date	Description of change	
v5.0	10/2017	TRM v5.0 origin.	
v6.0	11/2018	TRM v6.0 update. No revision.	
v7.0	10/2019	TRM v7.0 update. No revision.	
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.	
v9.0	10/2021	TRM v9.0 update. Updated EUL reference and restricted measure to electric DHW.	
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.	
v11.0	10/2023	TRM v11.0 update. No revision.	
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. Updated number of showerheads per home and resulting behavioral waste and hot water saved assumptions.	Commented [DN12]: Upda

Residential: Water Heating

Showerhead TSRVs

312

2.4.9 Tub Spout and Showerhead Temperature Sensitive Restrictor Valves Measure Overview

TRM Measure ID: R-WH-TV Market Sector: Residential Measure Category: Water heating Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of replacing existing tub spouts and showerheads with an automatically diverting tub spout and showerhead system with a temperature sensitive restrictor valve (TSRV)⁴⁰⁶ between the existing shower arm and showerhead. The tub spout will contain temperature sensitive restrictor technology that will cause the tub spout to automatically engage the anti-leak diverter once the water reaches a set temperature (generally 95'F). The water will divert to a showerhead with a normally closed valve that will prevent the hot water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste and tub spout leakage waste.

Eligibility Criteria

These deemed savings are for tub spout and showerhead systems with temperature sensitive restrictor technology installed in new construction or as a retrofit measure in existing homes. Buildings must have electrically fueled hot water to be eligible for this measure.

Baseline Condition

The baseline condition is the residential tub spout with a standard diverter and a standard (2.5 gpm) showerhead.

⁴⁰⁶ A temperature sensitive restrictor valve is any device that uses water temperature to regulate water flow in showers.

Residential: Water Heating Tub Spout and Showerhead TSRVs

High-Efficiency Condition

The high-efficiency condition is an anti-leak, automatically diverting tub spout system with temperature sensitive restrictor technology installed on a residential shower arm and showerhead with a standard (2.5 GPM) or low-flow (2.0, 1.75, or 1.5 GPM) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-flow Showerheads measure and claim additional savings as outlined in that measure.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Estimated Hot Water Usage Reduction

This system provides savings in two parts: elimination of behavioral waste (hot water that goes down the drain prior to the user entering the shower) and elimination of tub spout diverter leakage.

Part 1: To determine baseline gallons of behavioral waste per year, the following formula was used:

Annual Showerhead Behavioral Waste =
$$\%WUE_{SH} \times SHFR \times BW \times n_S \times 365 \times \frac{n_o}{n_{SH}}$$

Equation 88

Annual Tub Spout Behavioral Waste =
$$\%WUE_{TS} \times TSFR \times BW \times n_S \times 365 \times \frac{n_0}{n_{SH}}$$

Equation 89

Where:

%WUE _{sн}	=	Showerhead percentage of warm-up events (see Table 313)
%WUE _{TS}	=	Tub spout percentage of warm-up events (see Table 313)
SHFR	=	Showerhead flow rate, gallons per minute [gpm] (see Table 313)
TSFR	=	Tub spout flow rate, gallons per minute [gpm] (see Table 313)
BW	=	Behavioral waste, minutes per shower (see Table 313)
ns	=	Number of showers per person per day (see Table 313)
365	=	Constant to convert days to years (see Table 313)
no	=	Number of occupants per home (see Table 313)
n _{sH}	=	Number of showerheads per home (see Table 313)

Residential: Water Heating Tub Spout and Showerhead TSRVs 314

Applying the formula to the values from Table 313 returns the following values:

Showerhead (1.5 GPM):
$$0.6 \times (1.5 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1 \times 1072}) = 245257$$

Showerhead (1.75 GPM): $0.6 \times (1.75 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.8072}) = 286299$
Showerhead (2.0 GPM): $0.6 \times (2.0 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.8072}) = 327342$
Showerhead (2.5 GPM): $0.6 \times (2.5 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.8072}) = 409428$
Tub Spout (5.0 GPM): $0.4 \times (5.0 \times 0.783 \times 0.60 \times 365 \times \frac{2.86}{1.8072}) = 545570$

Part 2: To determine baseline gallons of diverter leakage per year, the following formula was used:

Annual Diverter Waste =
$$DLR \times t_S \times n_S \times 365 \frac{days}{year} \times \frac{n_o}{n_{SH}}$$

Equation 90

Where:

DLR ts

=	Diverter leakage rate [gpm] (see Table 313)
=	Shower time (min/shower) (see Table 313)

Applying the formula to the values from Table 313 returns the following values:

Diverter (0.8 *GPM*): $0.8 \times 7.8 \times 0.60 \times 365 \times \frac{2.86}{1.8072} = 2,171\frac{2.272}{2.272}$

Part 3: To determine gallons of water saved per year can be found by multiplying the total waste by the percent of hot water from Table 313.

Gallons of hot water saved = $(SHBW + TSBW) \times HW\%_{SH,TS} + DW \times HW\%_{D}$

Equation 91

Where:

Residential: Water Heating

Tub Spout and Showerhead TSRVs

SHBW	=	Showerhead behavioral waste [gal]
TSBW	=	Tub spout behavioral waste [gal]
DW	=	Diverter waste [gal]
HW% _{SH.TS}	=	Showerheads and tub spout hot water percentage (see Table 313)
HW%⊳	=	Diverter hot water percentage (see Table 313)

315

Texas Technical Reference Manual, Vol. 2 October 2024 Commented [DN13]: Updated to reflect revised number of showerheads.

Applying the formula to the values from Table 313 returns the following values:

Total Annual Waste (1.5 gpm): $(245257 + 545570) \times 0.825 + 2,1712,272 \times 0.737 = 2,2522,357$

Commented [DN15]: Updated.

 $Total Annual Waste (1.75 gpm): (286299 + 545570) \times 0.825 + 2,1712,272 \times 0.737 \\ = 2,2862,392$

Total Annual Waste (2.0 gpm): (327342 + 545570) × 0.825 + 2,1712,272 × 0.737 = 2,3202,427

Total Annual Waste (2.5 gpm): $(409428 + 545570) \times 0.825 + 2,1712,272 \times 0.737 = 2,3872,498$

Table 313. Tub Spout/Showerhead	TSRVs—Hot Water U	sage Reduction
---------------------------------	-------------------	----------------

	Part 1—Beha	vioral waste	Dart 2	
Description	SH Warm-up	TS Warm-up	Diverter leakage	Part 3— Total
Baseline showerhead flow rate (GPM)	1.5, 1.75, 2.0, or 2.5			-
Tub spout flow rate (GPM) ⁴⁰⁷	-	5.0		-
Percent of warm-up events408	60%	40%		-
Average behavioral waste (minutes per shower)409	utes per shower)409		-	
Average diverter leakage rate (GPM)410	5-		0.80	-
Average shower time (minutes per shower)411	- 7.8		-	
Showers/person/day412				0.60
Occupants/home413	2			2.83
Showerheads/home414	1.3			1.801.72
Gallons behavioral waste. per tub spout/showerhead per year (1.5 GPM)	245257	<u>545</u> 570	<u>2.171</u> 2,272	<u>2,961</u> 3,09 8

Commented [DN16]: Updated.

⁴¹⁴ Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from <u>20202015</u> RECS, Table HC2.8. <u>https://www.eia.gov/consumption/residential/data/2020/https://wwww.eia.gov/c</u>

Residential: Water Heating Tub Spout and Showerhead TSRVs

⁴⁰⁷ Assumption from (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

⁴⁰⁸ Percent of warm-up events from (Sherman 2014) Disaggregating Residential Shower Warm-Up Waste (Appendix B, Question 8).

⁴⁰⁹ Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

⁴¹⁰ Average diverter leak rate from (Taitem 2011) Taitem Tech Tip – Leaking Shower Diverters.

⁴¹¹ Cadmus and Opinion Dynamics Evaluation Team, "Memorandum: Showerhead and Faucet Aerator Meter Study". Prepared for Michigan Evaluation Working Group.

⁴¹² Derivation of value for showers per person per day defined in the Low Flow Showerhead measure.

⁴¹³ Occupants per home for Texas from US Census Bureau, Texas, "Persons per household, 2016-2020." <u>https://www.census.gov/guickfacts/fact/table/TX,US/PST045221</u>.

	Part 1—Beha	vioral waste	Part 2-	
Description	SH Warm-up	TS Warm-up	Diverter leakage	Part 3— Total
Gallons behavioral waste per tub spout/showerhead per year (1.75 GPM)	<u>286</u> 299			<u>3,002</u> 3,14 2
Gallons behavioral waste per tub spout/showerhead per year (2.0 GPM)	<u>327</u> 342			<u>3,043</u> 3,18 5
Gallons behavioral waste per tub spout/showerhead per year (2.5 GPM)	409428			<u>3,125</u> 3,27 0
Percentage hot water415	80-85%, or 82	.5% average	73.7%	-
Gallons hot water saved per year (1.5 GPM)			-	<u>2,252</u> 2,35 7
Gallons hot water saved per year (1.75 GPM)				2,2862,39 2
Gallons hot water saved per year (2.0 GPM)			-	2.3202,42 7
Gallons hot water saved per year (2.5 GPM)			-	2,3872,49 8

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

$$Energy Savings per TSRV [\Delta kWh] = \frac{\rho \times C_P \times V \times (T_{setpoint} - T_{supply,annual})}{RE \times 3,412}$$

Equation 92

Where:

ρ	=	Water density [lbs/gal] = 8.33
C_p	=	Specific heat of water [Btu/b°F] = 1
V	=	Gallons of hot water saved per year per showerhead (see Table 313)
Tsetpoint	=	Water heater setpoint temperature ⁴¹⁶ [°F] = 120

⁴¹⁵ Average percentage hot water for warm up events from (Lutz 2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

317

⁴¹⁶ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

T _{supply,annual}	=	Average annual supply water temperature [°F] (see Table 314)
RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters or 2.2 for heat pump water heaters
3,412	=	Constant to convert from Btu to kWh

Demand Savings Algorithms

Demand savings are calculated by substituting the average supply temperature for the average seasonal temperature, multiplying by a coincidence factor equivalent to the daily fraction hot water use during the weighted peak hour for each climate zone (see Volume 1, Section 4), and dividing by 365 days/year.

Peak Demand Savings per TSRV
$$[\Delta kW] = \frac{\rho \times C_P \times V \times (T_{supply, seasonal})}{RE \times 3,412 \times 365} \times CF_{S/W}$$

Equation 93

Where:

Table 314. Tub Spout/Showerhead TSRVs—Water Mains Temperature (°F)417

		Tsupplyseasonal)		
Climate zone	TsupplyAverage	Summer	Winter	
Zone 1: Amarillo	62.9	73.8	53.7	
Zone 2: Dallas	71.8	84.0	60.6	
Zone 3: Houston	74.7	84.5	65.5	
Zone 4: Corpus Christi	77.2	86.1	68.5	
Zone 5: El Paso	70.4	81.5	60.4	

Table 315. Tub Spout/Showerhead TSRVs—Coincidence Factors

Climate zone	Summer	'Winter'
Zone 1: Amarillo	0.039	0.073
Zone 2: Dallas	0.035	0.075
Zone 3: Houston	0.038	0.080
Zone 4: Corpus Christi	0.038	0.068

⁴¹⁷ Based on typical meteorological year (TMY) dataset for TMY3, available through the National Solar Radiation Database (NSRDB) Data Viewer. <u>https://nsrdb.nrel.gov/data-viewer</u>. Data for Texas climate zones can also be accessed directly here: <u>https://texasefficiency.com/index.php/regulatoryfilings/deemed-savings</u>.

318

Residential: Water Heating Tub Spout and Showerhead TSRVs

Climate zone	Summer	Winter
Zone 5: El Paso	0.028	0.069

Figure 7. Tub Spout/Showerhead TSRVs—Shower, Bath, and Sink Hot Water Use Profile⁴¹⁸

Source: Building America Performance Analysis Procedures for Existing Homes.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

319

Residential: Water Heating Tub Spout and Showerhead TSRVs

⁴¹⁸ Building America performance analysis procedures for existing homes.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID WtrHt-WH-Shrhd.⁴¹⁹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Flow rate in gallons per minute (GPM) of showerhead installed
- Water heater type (heat pump, electric resistance)
- DHW recovery efficiency (RE) or COP, if available

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 316. Tub Spout/Showerhead TSRVs—Revision History			
TRM version	Date	Description of change	

v5.0	10/2017	TRM v5.0 origin.	
v6.0	11/2018	TRM v6.0 update. No revision.	
v7.0	10/2019	TRM v7.0 update. No revision.	
v8.0	10/2020	TRM v8.0 update. Updated coincidence factors.	
v9.0	10/2021	TRM v9.0 update. Updated EUL reference and restricted measure to electric DHW.	
v10.0	10/2022	TRM v10.0 update. Updated number of occupants per home.	
v11.0	10/2023	TRM v11.0 update. No revision.	
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. Updated number of showerheads per home and resulting behavioral waste and hot water saved assumptions.	Commented [DN17]: Updated

⁴¹⁹ DEER READI (Remote Ex-Ante Database Interface). <u>http://www.deeresources.com/index.php/readi</u>.

320

Residential: Water Heating Tub Spout and Showerhead TSRVs

2.4.10 Water Heater Temperature Setback Measure Overview

TRM Measure ID: R-WH-TS

Market Sector: Residential

Measure Category: Water heating

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure outlines the demand and energy savings yielded from reprogramming residential water heater thermostats with default settings of greater than 120° F to 120° F.

Eligibility Criteria

Electric storage water heaters with default temperature setpoints in excess of 120°F are eligible to claim savings from this measure.

Baseline Condition

The baseline condition is an electric storage water heater with a thermostat setting that is higher than 120° F.

High-Efficiency Condition

The efficient condition is an electric storage water heater with a thermostat setting reduced to 120° F.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Water heater temperature setback savings are calculated on a per-unit basis. Deemed savings variables include the tank surface area, the heat transfer coefficient for the tank, and hot water setpoint prior to adjustment.

321

Residential: Water Heating Water Heater Temperature Setback

Energy Savings Algorithm

=

$$Energy Savings \left[\Delta kWh\right] = \frac{A \times U \times (T_{pre} - T_{post}) \times 8,760}{RE \times 3,412}$$

Equation 94

Where:

А

Tank surface area insulated in square feet (πDL) with L (length) and D (tank diameter) in feet; if the tank area is not known, use Table 317

Table 317. DHW Temperature Setback—Estimated Tank Area420

Volume (gal)	A (sq.ft.)
30	17.45
40	21.81
50	22.63
60	26.94
80	30.36
120	38.73

U =	Overall heat transfer coefficient for the tank ⁴²¹	(Btu/Hr·°l	⊑∙ft²)
-----	---	------------	--------

- T_{pre} = Hot water setpoint prior to adjustment [°F]
- T_{post} = Water heater setpoint [°F]⁴²² = 120
- 8,760 = Total hours per year
- RE = Recovery efficiency of electric hot water heater = 0.98⁴²³
- 3,412 = Constant to convert from Btu to kWh

322

Residential: Water Heating Water Heater Temperature Setback

AHRI database, at http://www.ahrinet.org.

⁴²⁰ Texas TRM Vol 2, 2.4.4 Water Heater Tank Insulation, Table 317.

⁴²¹ If unknown, assume R-5 (U = 1/5).

 ⁴²² 120°F represents the assumed water heater setpoint. The New York Department of Public Service recommends using the water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs." Page 99. October 2010. The data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015) also supports a default value of 120°F.
 ⁴²³ Default values based on median recovery efficiency of residential water heaters by fuel type in the

Demand Savings Algorithm

Summer Peak Demand Savings $[\Delta kW] = \frac{kWh_{savings}}{8,760} \times CF_s$

Equation 95

Where:

 CF_S

Summer peak coincidence factor = 1.0

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 2 years⁴²⁴.

323

Residential: Water Heating Water Heater Temperature Setback

⁴²⁴ 2022 Illinois Statewide Technical Reference Manual Version 10.0, Volume 3 – 5.4.6 Water Heater Temperature Setback. September 24, 2021.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- R-value or overall heat transfer coefficient of tank (1 / R-value)
- Tank surface area insulated in square feet (πDL) with L (length) and D (tank diameter) in feet; if unable to determine tank area, tank volume must be recorded
- Hot water setpoint prior to adjustment
- Photo of reprogrammed temperature setpoint or another pre-approved method of verification
- Water heater manufacture date

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Residential: Water Heating

Water Heater Temperature Setback

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 318. DHW Temperature Setback—Revision History

TRM version	Date	Description of change
v10.0	10/2022	TRM v10.0 origin.
v11.0	10/2023	TRM v11.0 update. No revision.
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. No revision.

2.5 RESIDENTIAL: APPLIANCES

2.5.1 ENERGY STAR® Ceiling Fans Measure Overview

TRM Measure ID: R-AP-CF Market Sector: Residential Measure Category: Appliances Applicable Building Types: Single-family, multifamily, manufactured Fuels Affected: Electricity Decision/Action Type(s): Retrofit, new construction Program Delivery Type(s): Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR ceiling fan and light kit. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

Savings values in this measure are based on indoor usage patterns and are not applicable to outdoor applications.

Baseline Condition

Residential: Appliances

Ceiling Fans

The baseline is a conventional non-ENERGY STAR labeled ceiling fan and light kit.

High-Efficiency Condition

The table below displays the ENERGY STAR Version 4.0 Requirements for eligible ceiling fans effective June 15, 2018.⁴²⁵ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

⁴²⁵ ENERGY STAR Ceiling Fan and Light Kits, Final Version 4.0 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Ceiling%20Fans%20and%20Ceiling%20Fan%20Light%20Kits%20Version%204.0 Program%20Requirements 0 0.pdf.</u>

Table 319. Ceiling Fans—	Fan Definitions
--------------------------	-----------------

Fan type	Description
Ceiling fan	A non-portable device designed for home use that is suspended from the ceiling for circulating air via the rotation of fan blades; for which the lowest point on fan blades is greater than 10 inches from the ceiling.
Hugger ceiling fan	A ceiling fan for which the lowest point on the fan blades is less than or equal to 10 inches from the ceiling. Hugger ceiling fans can be safely installed on low ceilings, and some are sold with ceiling fan light kits.

Table 320.	Ceiling	Fans-Efficiency	Requirements
------------	---------	-----------------	--------------

Туре	Diameter (inches)	Minimum efficiency (cfm/W)	Minimum high speed airflow (cfm)
Ceiling fan	D <u>≤</u> 36	≥ 0.72 x D + 41.93	<u>></u> 1,767
	36 < D < 78	≥ 2.63 x D - 26.83	$\geq 250 \times \pi \times (D/24)^2$
	D ≥ 78		<u>></u> 8,296
Hugger ceiling fan	D ≤ 36	≥ 0.31 x D + 36.84	<u>></u> 1,414
	36 < D < 78	≥ 1.75 x D – 15	\geq 200 x π x (D/24) ²
	D ≥ 78		<u>≥</u> 6,637

Table 321. Ceiling Fans-Light Kit Efficacy Requirements

Туре	Minimum efficacy (lumens/W)	Minimum light output (lumens)
Shipped with ENERGY STAR certified light bulbs	65.0	-
Separable light source	65.0	800
Integrated light source	70.0	

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings were calculated using the ENERGY STAR Ceiling Fan Savings Calculator found on the ENERGY STAR website.⁴²⁶ Default values were taken directly from the ENERGY STAR Ceiling Fan Savings Calculator, unless otherwise specified.

⁴²⁶ ENERGY STAR Ceiling Fan Savings Calculator (updated September 2013). <u>https://www.energystar.gov/sites/default/files/asset/document/light_fixture_ceiling_fan_calculator.xlsx</u>.

Energy Savings $[\Delta kWh] = (kWh_{baseline} - kWh_{ES})_{fan} + (kWh_{baseline} - kWh_{ES})_{lgt} \times IEF_E$ Equation 96

 $kWh_{haseline,Fan} = \frac{W_{Fan,baseline} \times AOH_{Fan}}{1,000}$

Equation 97

 $kWh_{ES,Fan} = \frac{W_{Fan,ES} \times AOH_{Fan}}{1,000}$

Equation 98

 $W_{Fan} = (W_{LS} \times OP_{LS}) + (W_{MS} \times OP_{MS}) + (W_{HS} \times OP_{HS})$

Equation 99

 $kWh_{baseline,l,gt} = \frac{W_{Lyl,buseline} \times AOH_{Lyl}}{1,000}$

 $kWh_{ES,Lgt} = \frac{W_{Lgt,ES} \times AOH_{Lgt}}{1,000}$

Equation 101

Equation 100

Where:

kWh _{baseline}	=	Non-ENERGY STAR baseline energy usage
kWh _{ES}	=	ENERGY STAR average energy usage
I EF E	=	Energy interactive effects factor from Table 322 assuming heating/cooling unknown ⁴²⁷
₩Lgt.baseline	=	Conventional lighting total wattage = 58 W (160 W default value from ENERGY STAR calculator reduced to comply with EISA 2007 45 lumens/watt backstop) ⁴²⁸
$W_{Lgt,ES}$	=	Actual wattage of installed ENERGY STAR lighting; assume one high-efficiency 32 W lamp
W Fan, baseline	=	Conventional fan motor wattage
$W_{Fan,ES}$	=	ENERGY STAR fan motor wattage
WLSMSHS	=	Fan motor wattage at low, medium, and high speed; see Table 323

⁴²⁷ The assumed energy interactive effects factors are taken from the residential lighting measure.
 ⁴²⁸ Assumes a mix of general service incandescent lamps. EISA 2007 45 lumens/watt backstop is approximately 36 percent of standard incandescent wattages for the 40, 60, 75, and 100 equivalent wattage categories. 160 W x 0.36 = 58 W.

327

Residential: Appliances Ceiling Fans

OP LSMS/HS	=	Fan operating percentage at low, medium, and high speed; see Table 324
AOH _{Lgt}	=	Annual lighting operating hours = 803 hours/year (assuming 2.2 hours/day and 365 days/year operation) ⁴²⁹
AOH _{Fan}	=	Annual fan operating hours = 1,095 hours/year (assuming 3.0 hours/day and 365 days/year operation) ⁴³⁰
1.000	=	Constant to convert from W to kW

Table 322. Ceiling Fans—Interactive Effects Factor for Cooling Energy Savings and Heating Energy Penalties⁴³¹

IEFe							
Heating/cooling type	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso		
Heating/cooling unknown432	0.88	0.98	1.04	1.07	0.95		

Table 323. Ceiling Fans— Motor Wattages

Fan type	Fan speed	Fan motor wattage (W)
Conventional	Low	15
	Medium	34
	High	67
ENERGY STAR	Low	6
	Medium	23
	High	56

Residential Appliances Ceiling Fans

⁴²⁹ The assumed annual operating hours are taken from the residential lighting measure.

⁴³⁰ The assumed annual operating hours are taken from the previously cited ENERGY STAR Light Fixture and Ceiling Fan Calculator.

⁴³¹ Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60watt equivalent lamp (900 lm), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 lm/W), CFLs (70 lm/W), and LEDs (90 lm/W). IEF values were calculated using the following formula: 1 + HVACsavings/Lightingsavings.

⁴³² Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Table 324. Ceiling Fans—Operating Percentages

Ean speed	Operating, percentage (OP)
Low	40%
Medium	40%
High	20%

Demand Savings Algorithms

Peak demand savings were calculated using separate coincidence factors for the lighting and the fan motor portion of the ceiling fan savings. For lighting the coincidence factor varies based on climate zone. For the fan motor a coincidence factor of 0.446 was applied (derived from the EnergyGauge software ceiling fan profiles).

Peak Demand Savings $|\Delta kW| = kW_{Fan} + kW_{Lgt}$

Equation 102

$$kW_{Fan} = \frac{W_{Fan,haseline} - W_{Fan,ES}}{1,000} \times CF_{Fan}$$

Equation 103

$$kW_{Lgt} = \frac{W_{Lgt,haseline} - W_{Lgt,ES}}{1,000} \times CF_{Lgt,S/W} \times IEF_{D,S/W}$$

Equation 104

Where:

kW _{Fan}	=	Fan demand savings
CF _{Fan}	=	Fan motor peak coincidence factor = 0.446
<i>kW_{Lgt}</i>	=	Lighting demand savings
$CF_{Lgt,SW}$	=	Lighting seasonal peak coincidence factor (Table 325)
IEF _{D.SM}	=	Demand interactive effects factor from Table 326 assuming heating/cooling unknown ⁴³³

⁴³³ The assumed demand interactive effects factors are taken from the residential lighting measure.

Table 325. Ceiling Fans—Lighting Coincidence Factors⁴³⁴

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.060	0.053	0.063	0.059	0.032
Winter	0.275	0.232	0.199	0.263	0.358

Table 326. Ceiling Fans—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties⁴³⁵

IEF _{D,S}						
Heating/cooling type	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
Heating/cooling unknown ⁴³⁶	1.39	1.28	1.58	1.20	1.38	
		IEFo.w				
Heating/cooling type	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
Heating/cooling unknown437	0.76	0.72	0.73	0.75	0.80	

Deemed Energy Savings Tables

Table 327. Ceiling Fans—Energy Savings (kWh)

Climate Zone 1:	Climate Zone 2:	Climate Zone 3:	Climate Zone 4:	Climate Zone 5:
Amarillo	Dallas	Houston	Corpus Christi	El Paso
29.5	31,6	32.9	33.5	

Deemed Summer Demand Savings Tables

Table 328. Ceiling Fans—Summer Peak Demand Savings (kW)

Climate Zone 1:	Climate Zone 2:	Climate Zone 3:	Climate Zone 4:	Climate Zone 5:
Amarillo	Dallas	Houston	Corpus Christi	El Paso
0.007	0.006	0.007	0.006	0.006

434 See Volume 1, Section 4.

⁴³⁷ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Residential Appliances Ceiling Fans

⁴³⁵ See Table 322.

⁴³⁶ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Deemed Winter Demand Savings Tables

Table 329. Ceiling Fans—Winter Peak Demand Savings (kW)

Climate Zone 1:	Glimate Zone 2:	Climate Zone 3:	Climate Zone 4:	Climate Zone:5:
Amarillo	Dallas	Houston	Corpus Christi	El Paso
0.010	0.009	0.008	0.010	0.012

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 10 years according to the ENERGY STAR Ceiling Fan Savings Calculator.

This EUL is consistent with Docket No. 38025 approved in 2010.438

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Quantity of installed ENERGY STAR ceiling fan and light kits
- Manufacturer and model number
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

• Docket No. 38025. Petition of Electric Utility Marketing Managers of Texas to Amend Deemed Savings for ENERGY STAR Appliance Measures. Public Utility Commission of Texas.

Texas Technical Reference Manual, Vol. 2 October 2024

Residential: Appliances Ceiling Fans

⁴³⁸ Docket No. 38025. Petition of Electric Utility Marketing Managers of Texas to Amend Deemed Savings for ENERGY STAR Appliance Measures. Public Utility Commission of Texas.
Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 330. Ceiling Fans—Revision History

TRM version	Date	Description of change	
v1.0	11/25/2013	TRM v1.0 origin.	
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language and updates to the ENERGY STAR specification table.	
v2.1	1/30/2015	TRM v2.1 update. No revision.	
v3.0	4/10/2014	TRM v3.0 update. Explanation of methodology and alignment with ENERGY STAR calculator. Introduction of interactive effects factors and in-service rates. New peak savings calculated according to revised peak definition.	
v3.1	11/05/2015	TRM v3.1 update. Revision of interactive effects factors to reflect indoor-specific values for additional heating and cooling equipment types.	
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.	
v4.0	10/10/2016	TRM v4.0 update. Updated interactive effect values using building energy simulation.	
v5.0	10/2017	TRM v5.0 update. Updated footnote reference to ENERGY STAR calculator.	
v6.0	11/2018	TRM v6.0 update. Updated interactive effect values.	
v7.0	11/2019	TRM v7.0 update. Established deemed savings approach.	
v8.0	10/2020	TRM v8.0 update. No revision.	
v9.0	10/2021	TRM v9.0 update. No revision.	
v10.0	10/2022	TRM v10.0 update. Reduced baseline lighting wattage and resulting deemed energy savings for compliance with reinstated EISA 2007 45 lumens/watt baseline.	
v11.0	10/2023	TRM v11.0 update. No revision.	
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. No revision.	

Residential: Appliances Ceiling Fans

2.5.2 ENERGY STAR® Clothes Washers Measure Overview

TRM Measure ID: R-AP-CW

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR clothes washer. Savings are awarded at a flat per unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

These deemed savings are calculated using the federal standards effective January 1, 2018.

Eligibility Criteria

Not applicable.

Baseline Condition

Effective January 1, 2018, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴³⁹ for top-loading clothes washers. While the DOE provides criteria for both top- and front-loading washers, only the standards for top-loading washers are listed below, as a top-loading unit is assumed to be the baseline equipment. This approach is based on customers having the option to install a top-loading clothes washer. Therefore, savings are calculated using the lower top-loading baseline condition.

<u>The DOE has published a Federal Register notice of Direct Final Rule pertaining to energy</u> conservation standards for residential clothes washers, effective July 15, 2024.⁴⁴⁰ This standard will transition the efficiency metric from IMEF to EER. However, compliance is not required until March 1, 2028.

⁴³⁹ DOE minimum efficiency standard for residential clothes washers.

https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/39

https://www.energy.gov/eere/buildings/consumer-clothes-washers.

333

Residential: Appliances Clothes Washers

Table 331. Clothes Washers—Federal Standard

Product type	Current criteria as of January 1, 2018
Top-loading, standard (1.6 ft ³ or greater capacity)	IMEF ≥ 1.57 IWF≤ 6.5
Top-loading, compact (less than 1.6 ft ³ capacity)	IMEF ≥ 1.15 IWF≤ 12.0

Table 331. Clothes Washers—Federal Standard

F	
Top-loading, standard (1.6 ft ³ or greater capacity)	EER ≥ 4.27
	WER ≥ 0.57
Top-loading, compact (less than 1.6 ft ³ capacity)	EER > 3.79
	WER ≥ 0.29

High-Efficiency Condition

Eligible equipment must be compliant with the current The table below displays the ENERGY STAR Final Version v8.1 specification Requirements for eligible clothes washers, effective February 5, 2018.⁴⁴¹ Qualified products must meet the minimum requirements from Table 332Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Table 332. Clothes Washers—ENERGY STAR Requirements

Product type	Current criteria as of February 5, 2018
ENERGY STAR residential front-loading (> 2.5 ft ³)	IMEF ≥ 2.76 IWF ≤ 3.2
ENERGY STAR residential top-loading (> 2.5 ft ³)	IMEF ≥ 2.06 IWF ≤ 4.3
ENERGY STAR residential small or compact (< 2.5 ft ³)	IMEF ≥ 2.07 IWF ≤ 4.2

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Residential Appliances Clothes Washers

⁴⁴¹ ENERGY STAR <u>Program Requirements Product Specification for Clothes Washers</u> Final Version 8.1 <u>Program Requirements</u>.

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version%208.0%20Clo thes%20Washer%20Partner%20Commitments%20and%20Eligibility%20Criteria.pdf.

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator found on the ENERGY STAR website.⁴⁴² This document will be updated regularly to apply the values provided in the latest available ENERGY STAR Appliance Savings Calculator. The most recent TRM version should be referenced to determine the savings for this measure.

Energy Savings $[\Delta kWh] = kWh_{baseline} - kWh_{ES}$

Equation 105

Baseline Unit

 $kWh_{baseline} = kWh_{conv,machine} + kWh_{conv,WII} + kWh_{conv,dryer} + kWh_{conv,l,PM}$

Equation 106

$$kWh_{conv,machine} = MCF \times RUEC_{conv} \times \frac{LPY}{RLPY}$$

Equation 107

$$kWh_{conv,WH} = WHCF \times RUEC_{conv} \times \frac{LPY}{RLPY}$$

Equation 108

$$kWh_{conv,LPM} = kW_{conv,LPM} \times (8,760 - LPY)$$

Equation 109

$$kWh_{conv.dryar} = \left[\left(\frac{Cap_{conv}}{IMEF_{FS}} \times LPY \right) - \left(RUEC_{conv} \times \frac{LPY}{RLPY} \right) - kWh_{conv,LPM} \right] \times \frac{DU}{DUF}$$

Equation 110

Where:

kWh _{baseline}	=	Federal standard baseline energy usage
kWhconv,machine	=	Conventional machine energy
kWh _{conv.WH}	=	Conventional water heater energy
kWh _{conv,dryer}	=	Conventional dryer energy
kWh _{conv.LPM}	=	Conventional combined low-power mode energy
RUECconv	=	Conventional rated unit electricity consumption = 381 kWh/year (top-loading, standard) ⁴⁴³ , 163 kWh/year top-loading, compact)
LPY	=	Loads per year = 295

⁴⁴² ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

335

⁴⁴³ This value is taken from the ENERGY STAR appliance calculator and corresponds with the federal standard after March 7, 2015.

RLPY	=	Reference loads per year = 392
kW _{conv,LPM}	=	Combined low-power mode wattage of conventional unit = 0.00115 kW (top-loading, standard), 0.00144 kW (top-loading, compact)
Cap _{conv}	=	Average machine capacity = 4.5 ft ³ (top-loading, standard), 2.1 ft ³ (top-loading, compact)
IMEF _{FS}	=	Federal standard integrated modified energy factor (Table 331)
MCF	=	Machine consumption factor = 20 percent
WHCF	=	Water heater consumption factor = 80 percent
DU	=	Dryer usage in households with both a washer and a dryer = 95 percent
DUF	=	Dryer use factor (percentage of washer loads dried in machine) = 91 percent

ENERGY STAR Unit

 $kWh_{ES} = kWh_{ES,machine} + kWh_{ES,WH} + kWh_{ES,dryer} + kWh_{ES,LPM}$

Equation 111

$$kWh_{ES,machine} = MCF \times RUEC_{ES} \times \frac{LPY}{RLPY}$$

Equation 112

$$kWh_{ES,WH} = WHCF \times RUEC_{ES} \times \frac{LPY}{RLPY}$$

Equation 113

$$kWh_{ES,LPM} = kW_{ES,LPM} \times (8,760 - LPY)$$

Equation 114

$$kWh_{ES,dryer} = \left[\left(\frac{Cap_{ES}}{IMEF_{ES}} \times LPY \right) - \left(RUEC_{ES} \times \frac{LPY}{RLPY} \right) - kWh_{ES,LPM} \right] \times \frac{DU}{DUF}$$
Equation 115

Where:

kWh _{ES}	=	ENERGY STAR average energy usage
kWh _{ES,machine}	=	ENERGY STAR machine energy
kWh _{ES.WH}	=	ENERGY STAR water heater energy
kWh _{ES,dryer}	=	ENERGY STAR dryer energy
kWh _{ES.LPM}	=	ENERGY STAR combined low-power mode energy

336

Residential: Appliances Clothes Washers

RUEC _{ES}	=	ENERGY STAR rated unit electricity consumption (see Table 333)
kW _{ES,LPM}	=	Combined low-power mode wattage of ENERGY STAR unit (see Table 333)
IMEF _{ES}	=	ENERGY STAR integrated modified energy factor (see Table 332)
Capes	=	Average machine capacity (see Table 333)

Table 333. Clothes Washers—ENERGY STAR Characteristics⁴⁴⁴

Produčt type	ENERGY STAR rated unit electricity consumption (kWh)	,Average ∙capacity (ft³)	Combined low-power mode wattage (kW)
Residential front-loading (> 2.5 \hat{t}^3)	127	4.0	0.00160
Residential top-loading (> 2.5 ft ³)	230	4.5	0.00115
Residential small or compact (< 2.5 ft ³)	108	2.1	0.00144

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{AOH} \times CF_{S/W}$$

$$AOH = LPY \times d$$

Equation 117

Where:

AOH	=	Annual operating hours
CF _{S/W}	=	Seasonal peak coincidence factor (Table 334)
LPY	=	Loads per year = 295
d	=	Average wash cycle duration = 1 hour ^{445,446}

337

⁴⁴⁴ This value is taken from the ENERGY STAR appliance calculator and corresponds with the ENERGY STAR specification after March 7, 2015.

 ⁴⁴⁵ Weighted average of Consumer Reports Cycle Times for Top and Front-Loading Clothes Washers.
 ⁴⁴⁶ Consumer Reports. "Top-loading washers remain more popular with Americans". April 13, 2010.

⁴⁴⁰ Consumer Reports. "Top-loading washers remain more popular with Americans". April 13, 2010. Weighted average of 75 percent Top-Loading Clothes Washers and 25 percent Front-Loading Clothes Washers.

Table 334. Clothes Washers—Coincidence Factors447

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.040	0.040	0.040	0.041	0.041
Winter	0.043	0.043	0.043	0.044	0.039

Deemed Energy Savings Tables

Table 335. Clothes Washers—Energy Savings (kWh)

Туре	Water heater fuel type	Dryer fuel type	kWh/unit
Front-loading	Electric	Electric	428
> 2.5 ft ³		Gas	187
	Gas	Electric	275
		Gas	34
Top-loading	Electric Gas	Electric	205
> 2.5 ft ³		Gas	114
		Electric	114
		Gas	23
All ≤ 2.5 ft ³	Electric	Electric	248
		Gas	41
		Electric	215
		Gas	8

Deemed Summer Demand Savings Tables

Table 336. Clothes Washers-Summer Peak Demand Savings (kW)

	Fuel Type					Climate		
Washer type	Water heater	Dryer	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Zone 4: Corpus Christi	Climate Zone 5: El Paso	
Front-loading	Electric	ng Electric	Electric	0.058	0.058	0.058	0.060	0.060
> 2.5 ft ³		Gas	0.025	0.025	0.025	0.026	0.026	
	Gas Elec	Electric	0.037	0.037	0.037	0.038	0.038	
			Gas	0.005	0.005	0.005	0.005	0.005

447 See Volume 1, Section 4.

Texas Technical Reference Manual, Vol. 2 October 2024

Residential Appliances Clothes Washers

	Fuel	Fuel Type				Climate	
Washer type	Water heater	Dryer	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Zone 4: Corpus Christi	Climate Zone 5: El Paso
Top-loading > 2.5 ft ³	Electric	Electric	0.028	0.028	0.028	0.028	0.028
		Gas	0.015	0.015	0.015	0.016	0.016
	Gas	Electric	0.015	0.015	0.015	0.016	0.016
		Gas	0.003	0.003	0.003	0.003	0.003
All ≤ 2.5 ft ³	Electric	Electric	0.034	0.034	0.034	0.034	0.034
		Gas	0.006	0.006	0.006	0.006	0.006
	Gas	Electric	0.029	0.029	0.029	0.030	0.030
		Gas	0.001	0.001	0.001	0.001	0.001

Deemed Winter Demand Savings Tables

Table 337. Clothes Washers-Winter Peak Demand Savings (kW)

	Fuel type			12255 14	2005 V	Climate	
Washer type	Water heater	Dryer	Zone 1: Amarillo	Zone 1: Zone 2: Amarillo Dallas	Climate Zone 3: Houston	Zone 4: Corpus Christi	Climate Zone 5: El Paso
Front-loading	Electric	Electric	0.062	0.062	0.062	0.064	0.057
> 2.5 ft ³		Gas	0.027	0.027	0.027	0.028	0.025
	Gas	Electric	0.040	0.040	0.040	0.041	0.036
		Gas	0.005	0.005	0.005	0.005	0.005
Top-loading	Electric	Electric	0.030	0.030	0.030	0.031	0.027
> 2.5 ft ³		Gas	0.017	0.017	0.017	0.017	0.015
	Gas	Electric	0.017	0.017	0.017	0.017	0.015
		Gas	0.003	0.003	0.003	0.003	0.003
$\text{All} \leq 2.5 \text{ ft}^3$	Electric	Electric	0.036	0.036	0.036	0.037	0.033
		Gas	0.006	0.006	0.006	0.006	0.005
	Gas	Electric	0.031	0.031	0.031	0.032	0.028
		Gas	0.001	0.001	0.001	0.001	0.001

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Residential Appliances Clothes Washers 339

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an ENERGY STAR clothes washer is established at 11 years based on the Technical Support Document for the current DOE Final Rule standards for residential clothes washers.⁴⁴⁸

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- Type of unit (top-loading, front-loading, or compact)
- DHW fuel type (gas or electric)
- Dryer fuel type (gas or electric)
- Proof of purchase with date of purchase and quantity
 - \odot Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Residential: Appliances Clothes Washers

⁴⁴⁸ The median lifetime was calculated using the survival function outlined in the DOE Technical Support Document. Final Rule: Standards, Federal Register, 77 FR 32308 (May 31, 2012) and associated Technical Support Document.

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=68&action=vi ewlive. Download TSD at: https://www.regulations.gov/document/EERE-2008-BT-STD-0019-0047.

Document Revision History

Table 338. Clothes Washers—Revision History

'TRM! version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. New ENERGY STAR standards incorporated.
v3.0	4/10/2015	TRM v3.0 update. Updated EUL to align with median lifetime. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. New ENERGY STAR algorithms and default assumptions incorporated.
v3.1	3/28/2016	TRM v3.1 March revision. Updated winter coincidence factors and winter and summer demand savings tables.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. Updated baseline IMEF to reflect changes in Federal Standard. Updated Front Load Washer IMEF to reflect changes in ENERGY STAR Specification. Added baseline for compact units to reflect Federal Standard for compact washers.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. Updated links and dates.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. General reference checks and text edits. Updated deemed savings tables to match savings algorithms and ENERGY STAR calculator.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. Clarified upcoming federal standard. Incorporated latest ENERGY STAR specification.

2.5.3 ENERGY STAR® Clothes Dryers Measure Overview

TRM Measure ID: R-AP-CD

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR electric clothes dryer. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

Gas dryers are ineligible to claim savings under this measure. Savings may be claimed for the replacement of gas dryers if the decision to switch fuels predates the decision to install efficient equipment.

Baseline Condition

Effective January 1, 2015, the baseline is the Department of Energy (DOE) minimum federal efficiency standard⁴⁴⁹, adjusted to reflect recent combined energy factor (CEF) definition updates for vented and ventless clothes dryers. These adjusted baselines consider calculated differences between CEF values under original clothes dryer testing procedures of 10 CFR 430, Subpart B, Appendix D1, and those amended procedures outlined in Appendix D2; a change indicated in detail in the September 5, 2013, ENERGY STAR stakeholder webinar. These values are consistent with the current ENERGY STAR Appliance Savings Calculator.

The DOE has published a new final rule effective July 10, 2024.⁴⁵⁰ However, compliance is required on and after March 1, 2028.

⁴⁴⁹ DOE minimum efficiency standard for residential clothes dryers.
 <u>https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0050.</u>
 ⁴⁵⁰ DOE updated federal standard: https://www.energy.gov/eere/buildings/consumer-clothes-dryers.

342

Residential: Appliances Clothes Dryers

Table 339.	Clothes	Dryers-Current	Federal Standard
------------	---------	----------------	------------------

Product type	Average capacity (ft ³)	Amended minimum CEF: calculations	Minimum CEF levels (lbs/kWh)
Vented electric, standard	≥ 4.4	3.73 - (3.73 x 0.166)	3.11
Vented electric, compact (120 V)	< 4.4	3.61 - (3.61 x 0.166)	3.01
Vented electric, compact (240 V)	< 4.4	3.27 - (3.27 x 0.166)	2.73
Ventless electric, compact (240 V)	< 4.4	2.55 - (2.55 x 0.166)	2.13

Table 339. Clothes Dryers—Updated Federal Standard (As of March 1,2028)

والمسجور ا		
Vented electric, standard	<u>≥4.4</u>	<u>3.73</u>
Vented electric, compact (120 V)	<u>~4.4</u>	3.61
Vented electric, compact (240 V)	<u>~4.4</u>	3.27
Ventless electric, compact (240 V)	<u>< 4.4</u>	2.55

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 1.1 Requirements for eligible clothes dryers effective January 1, 2015.⁴⁵¹ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Table 340. Clothes Dryers-ENERGY STAR Requirements

	Product type	Harles.	Average Capacity (ft3)	Minimum CEF levels (lbs/kWh)	Andreas (22)
ENERG	Y STAR ventless or vented electric, standard	Electric	≥ 4.4	3.93	4.01
ENERG	Y STAR ventless or vented electric, compact (120 V)		< 4.4	3.80	3.80
ENERG	Y STAR vented electric, compact (240 V)		< 4.4	3.45	3.45
ENERG	Y STAR ventless electric, compact (240 V)		< 4.4	2.68	2.68
ENERG	Y STAR ventless or vented electric, standard	Heat Pump	≥ 4.4	<u>3.93</u>	8.65
ENERG	Y STAR ventless or vented electric, compact (120 V)		< 4.4	3.80	6.37
ENERG	Y STAR ventlessed electric, compact (240 V)		<u>< 4.4</u>	3.45	4.97

451 ENERGY STAR Clothes Dryers Final Version 1.1 Program Requirements.

Residential Appliances Clothes Dryers

https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Final%20Versio n%201.1%20Clothes%20Dryers%20Specification%20-

^{%20}Program%20Commitment%20Criteria%20and%20Eligibility%20Criteria.pdf. 452 ENERGY STAR Clothes Dryers Qualified Product Listing (QPL).

https://www.energystar.gov/productfinder/product/certified-clothes-dryers/results.

ENERGY STAR ventless or vented electric, standard compact	Hybrid Heat	<u>< 4.4</u>	<u>3.93</u>	<u>5.11</u>
<u>(240 V)</u>	Pump			

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator found on the ENERGY STAR website.⁴⁵³ This document will be updated regularly to apply the values provided in the latest available ENERGY STAR appliance calculator. The most recent TRM version should be referenced to determine the savings for this measure.

₽,roduct type/	Average load (lbs)
Vented electric, standard	8.45
Vented electric, compact (120 V)	3.00
Vented electric, compact (240 V)	3.00
Ventless electric, compact (240 V)	3.00

Energy Savings $[\Delta kWh] = kWh_{baseline} - kWh_{ES}$

Equation 118

Baseline Unit

 $kWh_{baseline} = \frac{AvgLoad \times LPY}{CEF_{baseline}}$

Equation 119

Where:

kWh _{baseline}	=	Federal standard baseline energy usage
AvgLoad	=	Average load in lbs (Table 341)
LPY	=	Loads per year = 283
	=	Baseline combined energy factor (see Table 339)

⁴⁵³ ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

Residential: Appliances Clothes Dryers

ENERGY STAR Unit

$$kWh_{ES} = \frac{AvgLoad \times LPY}{CEF_{ES}}$$

Equation 120

Where:

kWhes	=	ENERGY STAR average energy usage
CEFES	=	ENERGY STAR minimum combined energy factor (see Table 340)

Demand Savings Algorithms

Peak Demand Savings
$$[\Delta kW] = \frac{\Delta kWh}{AOH} \times CF_{S/W}$$

Equation 121

Where:

Annual operating hours = (8,760 - 8,463) = 297 hours⁴⁵⁴

= Seasonal peak coincidence factor (Table 342)

Table 342. Clothes Dryers—Coincidence Factors⁴⁵⁵

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.041	0.041	0.041	0.041	0.042
Winter	0.045	0.045	0.041	0.048	0.047

Deemed Energy Savings Tables

=

Table 343. Clothes Dryers—Energy Savings (kWh)

Product type	ويتعون ا	Average capacity (ft ³)	Energy savings (kWh)
Ventless or vented electric, standard	Electric	≥ 4.4	<u>172</u> 460
Ventless or vented electric, compact (120 V)		< 4.4	59
Vented electric, compact (240 V)		< 4.4	65
Ventless electric, compact (240 V)]	< 4.4	82

⁴⁵⁴ Concerning annual operating hours: Minute-by-minute field data shows "96.6% ± 0.5% idle time, or about 8463 hours." Hannas, Benjamin and Gilman, Lucinda. Dryer Field Study, 39. https://neea.org/img/uploads/neea-clothes-dryer-field-study.pdf. 455 See Volume 1, Section 4.

345

Residential Appliances Clothes Dryers

Product type		Average capacity (ft³)	Energy savings (kWh)
Ventless or vented electric, standard	<u>Heat Pump</u>	<u>≥ 4.4</u>	<u>492</u>
Ventless or vented electric, compact (120 V)		<u>< 4.4</u>	<u>149</u>
Ventless electric, compact (240 V)		<u>< 4.4</u>	<u>140</u>
Ventless or vented electric standard	Hybrid Heat Pump	<u>< 4.4</u>	<u>301</u>

Residential: Appliances Clothes Dryers 346

Deemed Summer Demand Savings Tables

Table 344. Clothes Dryers—Summer Peak Demand Savings (kW)

Product type	(bether	Average capacity (ft ³)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Ventless or vented electric, standard	Electric	≥ 4.4	0.0242	0.0242	0.0242	0.0242	0.02 <u>5</u> 3
Ventless or vented electric, compact (120 V)	electric, compact (120 V)		0.008	0.008	0.008	800.0	0.008
Vented electric, compact (240 V)		< 4.4	0.009	0.009	0.009	0.009	0.009
Ventless electric, compact (240 V)		< 4.4	0.011	0.011	0.011	0.011	0.012
Ventless or vented electric, standard	Heat Pump	≥ 4.4	0.067	0.067	0.067	0.068	0.070
Ventless or vented electric, compact (120 V)		<u>< 4.4</u>	0.020	0.020	0.020	0.020	0.021
Ventless electric, compact (240 V)		<u>< 4.4</u>	0.019	0.019	0.019	0.019	0.020
Ventless or vented electric standard	Hybrid Heat Pump	<u>< 4.4</u>	0.041	0.041	0.041	0.041	0.043

Residential: Appliances Clothes Dryers

Deemed Winter Demand Savings Tables

Table 345. Clothes Dryers—Winter Peak Demand Savings (kW)

Product type	dest Des y	Average capacity (ft ³)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Ventless or vented electric, standard	Electric	≥ 4.4	0.024	0.024	0.022	0.026	0.025
Ventless or vented electric, compact (120 V)		< 4.4	0.009	0.009	0.008	0.009	0.009
Vented electric, compact (240 V)		< 4.4	0.010	0.010	0.009	0.011	0.010
Ventless electric, compact (240 V)		< 4.4	0.012	0.013	0.011	0.013	0.013
Ventless or vented electric, standard	Heat Pump	≥ 4.4	0.074	0.075	0.068	0.080	0.078
Ventless or vented electric, compact (120 V)		< 4.4	0.023	0.023	0.021	0.024	0.024
Ventless electric, compact (240 V)		< 4.4	0.021	0.021	0.020	0.023	0.022
Ventless or vented electric standard	Hybrid Heat Pump	< 4.4	0.046	0.046	0.042	0.049	0.048

Residential: Appliances Clothes Dryers

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an ENERGY STAR clothes dryer is established at 16 years based on the current DOE Final Rule standards for clothes dryers.⁴⁵⁶

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone or county
- Unit quantity
- Manufacturer and model number
- Type of unit (vented or ventless)
- Capacity (≥ 4.4 ft³/standard or < 4.4 ft³/compact)
- Heating type (electric, heat pump, hybrid heat pump)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

349

Texas Technical Reference Manual, Vol. 2 October 2024

Residential: Appliances Clothes Dryers

⁴⁵⁶ Technical Support Document (April 2011). See "Appendix 8C.Lifetime Distributions": <u>https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0053</u>

Document Revision History

Table 346	Clothes Di	vere_F	Revision	History
1 8016 340.	VIOLITES DI	yers—r	Veriai011	πιδιυίγ

TRM version	Date:	Description of change		
v7.0	10/2019	TRM v7.0 origin.		
v8.0	10/2020	TRM v8.0 update. No revision.		
v9.0	10/2021	TRM v9.0 update. No revision.		
v10.0	10/2022	TRM v10.0 update. No revision.		
v11.0	10/2023	TRM v11.0 update. No revision.		
<u>v12.0</u>	<u>10/2024</u>	TRM v12.0 update. Clarified upcoming federal standard. Added heat pump dryer savings tier.		

350

Residential: Appliances Clothes Dryers

2.5.4 ENERGY STAR® Dishwashers Measure Overview

TRM Measure ID: R-AP-DW

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR dishwasher. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

This measure applies to both standard and compact dishwasher types.

Baseline Condition

Effective May 30, 2013, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴⁵⁷ for dishwashers.

Table 347. Dishwashers—Fed	eral Standard
----------------------------	---------------

Product type	Annual energy use (kWh/year)	Water consumption (gallons/cycle)
Standard (≥ 8 place settings)	≤ 307	≲ 5.0
Compact (< 8 place settings)	≤ 222	≤ 3.5

The DOE issued an updated direct final rule effective August 22, 2024. However, compliance with the amended federal standard is not required until April 23, 2027.⁴⁵⁸ The baseline will be updated at that time to reflect the current federal standard.

⁴⁵⁷ DOE minimum efficiency standard for residential dishwashers. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=38&action=vi.</u>

ewlive.

458 DOE minimum efficiency standard for residential dishwashers. https://www.regulations.gov/document/EERE-2019-BT-STD-0039-0065.

Table 347. Dis	hwashers-I	Federal Standard
----------------	------------	------------------

and the second second	Annual	Name and Address of the Owner, where the
Standard (≥ 8 place settings)	<u>€-223</u>	<u>= 3.3</u>
Compact (< 8 place sottings)	≤174	<u>5-3.1</u>

High-Efficiency Condition

The following table displays the ENERGY STAR Final Version 7.06.0 Requirements for eligible dishwashers effective <u>July 19, 2023January 29, 2016, 459</u> Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Product type	Annual energy use (kWh/year)	Water consumption (gallons/cycle)
Standard (≥ 8 place settings + 6 serving pieces)	≤ <u>240</u> 270	≤ <u>3.2</u> 3.5
Compact (< 8 place settings + 6 serving pieces)	≤ <u>155</u> 203	≤ <u>2.0</u> 3.1

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR Appliance Savings Calculator found on the ENERGY STAR website and the revised ENERGY STAR specification in Table 348.⁴⁶⁰ Default values were taken directly from the ENERGY STAR Appliance Savings Calculator. This document will be updated regularly to apply the values provided in the latest available ENERGY STAR specification and appliance calculator. The most recent TRM version should be referenced to determine measure savings for this measure.

Energy Savings $[\Delta kWh] = kWh_{baseline} - kWh_{ES}$

Equation 122

 $kWh_{baseline} = kWh_{conv,machine} + kWh_{conv,WH}$

Equation 123

⁴⁵⁹ ENERGY STAR Dishwashers Final Version <u>7.06-0</u> Program Requirements. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%207.0%20Residential %20Dishwasher%20Final%20Specification.pdf.https://www.energystar.gov/sites/default/files/ENERGY %20STAR%20Residential%20Dishwasher%20Version%206.0%20Final%20Program%20Requirement s.pdf.

440 ENERGY STAR Appliance Savings Calculator (updated October 2016). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

Residential Appliances Dishwashers

$kWh_{conv,machine} = RUEC_{conv} \times MCF$	
	Equation 124
$kWh_{conv,WH} = RUEC_{conv} \times WHCF$	
	Equation 125
$kWh_{ES} = kWh_{ES,machina} + kWh_{ES,WH}$	
	Equation 126
$kWh_{ES,machine} = RUEC_{ES} \times MCF$	
	Equation 127
$kWh_{ES,WH} = RUEC_{ES} \times WHCF$	
	Equation 128

Where:

Ι

kWh _{baseline}	=	Federal standard baseline energy usage
kWhes	=	ENERGY STAR average energy usage
kWh _{conv.machine}	=	Conventional machine energy
kWh _{conv,WH}	=	Conventional water heater energy
kWh _{ES.machine}	=	ENERGY STAR machine energy
kWh _{ES,WH}	=	ENERGY STAR water heater energy
RUEC _{conv}	=	Conventional rated use electricity consumption = 307 kWh/year for standard and 222 kWh/year for compact (Table 347)
RUEC _{ES}	=	ENERGY STAR rated use electricity consumption = 270 kWh/year for standard and 203 kWh/year for compact (Table 348)
MCF	=	Machine consumption factor = 44 percent
WHCF	=	Water heater consumption factor = 56 percent

Demand Savings Algorithms

Peak Demand Savings
$$|\Delta kW| = \frac{\Delta kWh}{AOH} \times CF_{S/W}$$

Equation 129
 $AOH = CPY \times d$

Equation 130

Residential: Appliances Dishwashers 353

Where:

AOH	=	Annual operating hours
CFSW	=	Seasonal peak coincidence factor = (Table 349)
CPY	=	Cycles per year = 215
d	=	Average wash cycle duration = 2.1 hours ⁴⁶¹

Table 349. Dishwashers—Coincidence Factors⁴⁶²

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.042	0.041	0.042	0.041	0.042
Winter	0.106	0.104	0.090	0.112	0.129

Deemed Energy Savings Tables

Table 350. Dishwashers—Energy Savings (kWh)

Product type	Electric DHW	Gas DHW
Standard	6737	<u>29</u> 16
Compact	-19	8

Deemed Summer Demand Savings Tables

Table 351	Dishwashers-	-Summer	Peak	Demand	Savings	(kW)	İ
-----------	--------------	---------	------	--------	---------	------	---

Dishwasher type	DHW fuel	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Standard	Electric	0.00 <u>6</u> 3	0.0063	0.00 <u>6</u> 3	0.00 <u>6</u> 3	0.0063
	Gas	0.00 <u>3</u> 2	0.00 <u>3</u> 4	0.00 <u>3</u> 2	0.00 <u>3</u> 4	0.0032
Compact	Electric	0.00 <u>6</u> 2	0.00 <u>6</u> 2	0.00 <u>6</u> 2	0.00 <u>6</u> 2	0.0062
	Gas	0.00 <u>3</u> 4	0.00 <u>3</u> 4	0.00 <u>3</u> 4	0.00 <u>3</u> 4	0.00 <u>3</u> 4

⁴⁶¹ Average of consumer reports cycle times for dishwashers.

462 See Volume 1, Section 4.

Deemed Winter Demand Savings Tables

Table 352. Dishwashers—Winter Peak Demand Savings (kW)

Dishwasher type	DHW fuel	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Standard	Electric	0.0 <u>16</u> 09	0.0 <u>15</u> 09	0.0 <u>13</u> 07	0.0 <u>17</u> 09	0.0194
	Gas	0.00 <u>7</u> 4	0.00 <u>7</u> 4	0.00 <u>6</u> 3	0.0074	0.0085
Compact	Electric	0.0 <u>16</u> 94	0.0 <u>15</u> 04	0.0 <u>13</u> 04	0.0 <u>17</u> 05	0.0 <u>19</u> 05
	Gas	0.0072	0.0072	0.0062	0.0072	0.0082

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Additional Calculators and Tools

Not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 15 years based on the Technical Support Document for the current DOE Final Rule standards for residential dishwashers.⁴⁶³

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- · Climate zone or county
- Unit quantity
- · Manufacturer and model number
- · Type of dishwasher (standard or compact)
- · Fuel type of water heater (gas or electric)
- · Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

355

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=38&action=vi ewlive.

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

Please refer to measure citations for relevant standards and reference sources.

Document Revision History

Table 353.	Dishwashers-	-Revision	History

'TRMiversion	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Energy, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. New ENERGY STAR specification incorporated into the measure. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. Final ENERGY STAR specification incorporated into the measure. Consolidated table formats.
v3.1	3/28/2016	TRM 3.1 March revision. Updated summer and winter coincidence factors and demand savings tables.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. Updated footnote reference to ENERGY STAR calculator.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated links and dates.
v8.0	10/2020	TRM v8.0 update. No revision.
v9.0	10/2021	TRM v9.0 update. No revision.
v10.0	10/2022	TRM v10.0 update. No revision.
v11.0	10/2023	TRM v11.0 update. No revision.
<u>v12.0</u>	10/2024	TRM v12.0 update. Clarified upcoming federal standard. Incorporated latest ENERGY STAR specification.

Residential: Appliances Dishwashers

2.5.5 ENERGY STAR® Refrigerators Measure Overview

TRM Measure ID: R-AP-RF

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, multifamily, manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, early retirement, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to all ENERGY STAR refrigerators that meet the criteria for the ENERGY STAR label specified below.

Eligibility Criteria

To qualify for early retirement, the ENERGY STAR unit must replace an existing, full-size unit with a maximum age of 20 years. To determine the remaining useful life of an existing unit, see Table 357. All retired refrigerators must be dismantled in an environmentally safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of refrigerators. To receive early retirement savings, the unit to be replaced must be functioning at the time of removal.

Newly installed refrigerators must meet current ENERGY STAR efficiency levels.

Baseline Condition

For new construction or replace-on-burnout, the baseline is the Department of Energy (DOE) minimum efficiency standard⁴⁶⁴ for refrigerators, effective September 15, 2014.

The DOE issued an updated direct final rule effective June 13, 2024. However, compliance with the new amended standard is not required until either January 31, 2029 or January 31, 2030 depending on product class.⁴⁶⁵ The baseline will be updated at that time to reflect the current federal standard.

⁴⁶⁴ DOE minimum efficiency standard for residential refrigerators and freezers.
 <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43</u>.
 ⁴⁶⁵ Notice of new DOE minimum efficiency standard for residential refrigerators and freezers.

https://www.regulations.gov/document/EERE-2017-BT-STD-0003-0116.

357

Residential: Appliances Refrigerators

For early retirement, the baseline for refrigerators is the annual unit energy consumption of an assumed refrigerator's adjusted energy usage rating based on an average of values reported by the Midwest Energy Performance Analytics (MwEPA) Refrigerator and Freezer Energy Rating Database.⁴⁹⁶ Since the federal standard effective date occurred in late 2014, existing units manufactured as of 2015 are not eligible for early retirement.

High-Efficiency Condition

The table below displays the ENERGY STAR Final Version 5.1 Requirements for eligible consumer refrigeration products effective September 15, 2014.⁴⁶⁷ Energy efficiency service providers are expected to comply with the latest ENERGY STAR requirements.

Table 354. Refrigerators-ENERGY STAR Requirements

ENERGY STAR refrigerator						
Product type Volume Criteria as of September 15, 2						
Full-size refrigerators and refrigerator-freezers	7.75 cubic feet or greater	Approximately 10 percent more energy efficient than the minimum federal standard (see Table 355)				

⁴⁶⁷ ENERGY STAR Consumer Refrigeration Products Final Version 5.1 Program Requirements. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%205.1%20Consumer%</u> <u>20Refrigeration%20Products%20Final%20Specification_0.pdf</u>.

Residential Appliances Refrigerators

 ⁴⁶⁶ Refrigerator and Freezer Energy Rating Database. Midwest Energy Performance Analytics, Inc. in combination with the State of Wisconsin and US Department of Energy's Weatherization Assistance Program. <u>https://www.energy.gov/eere/wap/articles/refrigerator-and-freezer-energy-rating-databasesearch-tool.</u>
 ⁴⁶⁷ ENERGY STAR Consumer Refrigeration Products Final Version 5.1 Program Requirements.

Product number	Product class	Baseline energy usage federal standard as of September 15, 2014 (kWh/year) ⁴⁶³	Average ENERGY STAR energy usage (kWh/year) ⁴⁷⁰	Adjusted volume471 (cubic feet)	Baseline energy usage (kWh/year)	ENERGY STAR energy usage (kWh/year)
3	Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker	8.07 × AV + 233.7	7.26 × AV + 210.3	16.9	370.1	333.0
5	Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	8.85 × AV + 317.0	7.97 × AV + 285.3	18.6	481.5	433.5
5A	Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	9.25 × AV + 475.4	8.33 × AV + 436.3	32.1	772.1	703.5
7	Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	8.54 × AV + 432.8	7.69 × AV + 397.9	30.4	692.1	631.4

Table 355. Refrigerators—Formulas to Calculate the Energy Usage by Product Class⁴⁶⁸

Residential: Appliances Refrigerators

 ⁴⁶⁹ Federal standard for refrigerators and freezers.
 <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=37&action=viewlive</u>. Select product classes excluded.
 ⁴⁶⁹ <u>http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf</u>.

⁴⁷⁰ Approximately ten percent more efficient than baseline, as specified in the ENERGY STAR Appliance Savings Calculator (updated September 2015). The previously cited URL is no longer available, but a copy of the calculator can be provided upon request.

⁴⁷¹ AV is calculated as a simple average across all refrigerators in the corresponding Product Class utilizing data provided by https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results.