

## **Filing Receipt**

Filing Date - 2024-06-03 03:30:56 PM

Control Number - 56510

Item Number - 7

TE TETRA TECH

Heat Pump Working Group Biweekly meeting Agenda Date: 06/04/2024 @ 11:00 CDT

| Contacts           | Mark Bergum: (608) 316-3630 or mark.bergum@tetratech.com                                      |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------|--|--|--|
|                    | Graham Thorbrogger: (608) 316-3623 or graham.thorbrogger@tetratech.com                        |  |  |  |
|                    |                                                                                               |  |  |  |
|                    |                                                                                               |  |  |  |
| Access             | PUC – Interchange Filing: Case 56510                                                          |  |  |  |
|                    | Interchange - Documents (texas.gov)                                                           |  |  |  |
|                    |                                                                                               |  |  |  |
|                    | Teams site                                                                                    |  |  |  |
|                    | https://tetrateching.sharepoint.com/:f:/r/teams/PLICTHeatPump\//orkinggroup/Shared            |  |  |  |
|                    | %20Documents/General?csf=1&web=1&e=mCHkFb                                                     |  |  |  |
|                    |                                                                                               |  |  |  |
|                    | Past Meeting recordings: https://wimeg.com/chappels/HP\//C                                    |  |  |  |
|                    |                                                                                               |  |  |  |
| Review of          | Residential Measure 2.2.2 (Review)                                                            |  |  |  |
| Residential        | Load Calculations (Manual 18 S)                                                               |  |  |  |
| Moacuro Barriore   | <ul> <li>Consumption bours</li> </ul>                                                         |  |  |  |
| Measure Darners    | Consumption nours     Direct size a standations (listic time to different time)               |  |  |  |
|                    | Right-sizing calculations (limitations to different capacities)                               |  |  |  |
|                    | <ul> <li>Winter savings for gas heat replacement – Baseline as std. heat pump</li> </ul>      |  |  |  |
|                    | <ul> <li>Winter savings for HP replacement – Pre and post are both equal amount</li> </ul>    |  |  |  |
|                    | of supplemental heat (77%)                                                                    |  |  |  |
|                    | <ul> <li>Current ID of VSHP is based on SEER being greater than 15.2</li> </ul>               |  |  |  |
|                    | VSHP do not have the mismatched equipment concern seen with units a                           |  |  |  |
|                    | few years ago.                                                                                |  |  |  |
|                    | New Construction baseline = 115% of summer load                                               |  |  |  |
|                    | Summer and Winter Peak Coincident demand factors need to adjust                               |  |  |  |
|                    | based on summer neak canacity and winter supplemental heat                                    |  |  |  |
|                    | EELH is multiplied times SEER/HSPE to determine consumption                                   |  |  |  |
|                    | El Lin 15 vors for host nume                                                                  |  |  |  |
|                    | EUL IS 15 years for neat pumps.                                                               |  |  |  |
| Identification of  | Commercial Measure 2.2.2                                                                      |  |  |  |
|                    | <ul> <li>Replacement capacity limited to 20% adjustment</li> </ul>                            |  |  |  |
| Barriers that vary | <ul> <li>New Construction baseline capacity = Installed capacity</li> </ul>                   |  |  |  |
| from Residential   | Baseline efficiencies per DOE standards or IECC2015                                           |  |  |  |
|                    |                                                                                               |  |  |  |
| Discussion         | <ul> <li>May /: Identification of VSHP, Load Calculation requirements, Consumption</li> </ul> |  |  |  |
| Schedule           | calculation (EFLH), EUL                                                                       |  |  |  |
|                    | <ul> <li>May 21: Summer Peak &amp; Consumption</li> </ul>                                     |  |  |  |
|                    | <ul> <li>June 4: Winter Peak &amp; Consumption</li> </ul>                                     |  |  |  |
|                    | <ul> <li>June 18: Baseline Equipment and Right sizing calculation</li> </ul>                  |  |  |  |
|                    | <ul> <li>July 02: Envelope incorporation</li> </ul>                                           |  |  |  |
|                    | <ul> <li>July 16: Draft measure</li> </ul>                                                    |  |  |  |
| Illinois TRM       |                                                                                               |  |  |  |
| savings            | ASHPSiteCoolingImpact =                                                                       |  |  |  |
| calculation        | ((CoolingLoad/DuctlessSave * (1/(SEER2_base * (1 – DeratingCool <sub>Base</sub> ))))          |  |  |  |
| approach           | MINUS                                                                                         |  |  |  |
|                    | (CoolingLoad * 1/(SEER2_ee * (1 – DeratingCool <sub>Eff</sub> ))))/1000                       |  |  |  |



|                       | ASHPSiteHeatingImpact =<br>((HeatLoad_Disp/DuctIessSave * (1/(HSPF2_base * HSPF2_ClimateAdj * (1 –<br>DeratingHeat <sub>Base</sub> ))))<br>MINUS<br>(HeatLoad_Disp * 1/(HSPF2_ee * HSPF2_ClimateAdj * (1 – DeratingHeat <sub>Eff</sub> )))) / 1000                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                                   |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Winter<br>Consumption | Heating Energy Savings $[kWh_H] = \left(\frac{Cap_{H,pre}}{\eta_{baseline,H}} - \frac{Cap_{H,post}}{\eta_{installed,H}}\right) \times EFLH_H \times \frac{1 \ kW}{1,000 \ k}$<br>• $Cap_{C,pre}$ = Existing Equip. (ER) or match $Cap_{C,post}$ (ROB/NC)<br>Upsizing/Downsizing rules apply.<br>• $\eta_{baseline,H}$ = HSPF of Heat Pump (6.7-7.5) or Electric Resistance (3.4)<br>• $\eta_{installed,H}$ = HSPF                                                                                                                                                                           |                                                                              |                                                                                                   |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Climate zone                                                                 |                                                                                                   |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone 1: Amarillo                                                             | 1.880                                                                                             |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone 2: Dallas                                                               | 1.343                                                                                             |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone 3: Houston                                                              | 1,127                                                                                             |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone 4: Corpus Christi                                                       | 776                                                                                               |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone 5: El Paso                                                              | 1,559                                                                                             |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                   |  |
| Winter Peak           | Winter Peak Demand Savings $[\Delta kW] = \left(\frac{Cap_{H,pre}}{\eta_{baseline,H}} - \frac{Cap_{H,post}}{\eta_{installed,H}}\right) \times CF_W \times \frac{1 \ kI}{1,000}$                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                   |  |
|                       | • Coincident Factor current calc:<br>Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat<br>pumps be sized at 115 percent of the maximum cooling requirement of the residence (for<br>cooling-dominated climates). Based on AHRI data for 1.5–5 ton HVAC systems, the average<br>ratio of rated heating capacity to cooling capacity is 0.96. Assuming that maximum heating<br>occurs during the peak period and adjusting for the average ratio of heating to cooling<br>capacity, the guideline leads to a coincidence factor of 0.96 / 1.15 = 0.83. |                                                                              |                                                                                                   |  |
| Summer Peak           | Tetra Tech provided a t<br>the peak demand savin<br>assumption that the cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | background on the coir<br>gs calculation. The cur<br>bacity is a 15% oversiz | ncident factor currently used in<br>rent factor incorporates the<br>e. With time available, Tetra |  |

| TE TE        |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|              | Tech provided guidance that the coincident factor is expected to be adjusted<br>in the calculation to manage the capacities to load variation.                                                                                                                                                                                                                                          |  |  |  |
|              | Summer Peak Demand Savings $[\Delta kW] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times CF_S \times \frac{1 \ kl}{1,000}$                                                                                                                                                                                                         |  |  |  |
|              | • Coincident Factor current calc:<br>Air Conditioning Contractors of America (ACCA) Manual S recommends that residential heat<br>pumps be sized at 115 percent of the maximum cooling requirement of the residence (for<br>cooling-dominated climates). Assuming that maximum cooling occurs during the peak period,<br>the guideline leads to a coincidence factor of 1 / 1.15 = 0.87. |  |  |  |
| Next Meeting | June 18 at 11:00<br>Topic – Baseline Equipment and Right sizing calculation                                                                                                                                                                                                                                                                                                             |  |  |  |