oject	Dania de Marcolo - 1	Daniel War	g "julist"	talinas (Barrana)	T-+-1	Project Catego Total
egory	Project Number	Description	Additions	Salvage / Removal	Total	logal
		includes the following:				ļ
		Rebuild approximately 18.71 miles of wooden H-				1
		frame and single-pole line on three segments of				
		138 kV ckt 93 from Algoa Corner – Alta Loma –				
		Hitchcock – La Marque with the latest standard				
		double-circuit-capable concrete and/or steel				
		structures except for the 3.5-mile long loop				
		section to Hitchcock which will utilize single-				
		circuit concrete and/or steel structures along the				
		1				
		city streets;				
	ļ	Replace the existing 18.71 miles of 2-397 ACSR				
	1	and 1-2000AAC conductor, including substation				1
		jumpers and spans, with the latest standard 2-959				ŀ
		ACSS conductor;				
		Replace the necessary substation equipment at				
		138 kV Hitchcock substation with 4000 A				
		equipment.				
	1	This project is needed to replace aging				I
	1	infrastructure and to address multiple line				I
		clearance concerns on 138 kV ckt 93 P.H.				1
		Robinson to La Marque segments from Algoa		1		
		Corner – Alta Loma – Hitchcock – La Marque. The				
		majority of the line was constructed in 1951				
		followed by the Hitchcock loop in 1988, and an				1
		upgrade of the 1951 vintage wooden H-frame line				
	HI.P/00/0922/001	and 1988 vintage wooden single-pole line to the				
	6	storm-hardened, modern concrete and/or steel	24,775,233.00	1,693.44	24,776,926.44	
	HLP/00/0922/001	Distribution work required to maintain clearances				
	8	from LaPorte substation taps	27,435,283.80		27,435,283.80	
	HLP/00/0922/001					
	9	REBUILD/RECONDUCTOR GULFGATE SUB	18,245,594.81		18,245,594.81]
		1		į l		i
	HLP/00/0922/002	Distribution work required to maintain clearances		1		ļ
	ļo	for Ckt 06F-2 Holmes to Structure 11434	14,225,925.63	2,362,753.20	16,588,678.83	
	HLP/00/0922/002	Distribution work required to maintain clearances			<u> </u>	1
	1	from LaPorte substation taps	9,505,077.05	2,240,202.94	11,745,279.99	
	HLP/00/0922/003				,,	1
	9	BRAZOS RIVER CROSSING Relocate Str #05429	2,411,558.32		2,411,558.32	
	ř	Substation improvements include conversion at	2,421,555,62		2,421,030.02	1
		Fannin substation and new feeder panel at				
	UI 5 /00 /0026	Needville substation.	2 724 002 04	225 662 05	1 047 565 06	
	HLP/00/0936	Needville substation.	3,721,902.91	225,663.05	3,947,565.96	-
	1	L				
		Major Underground -automation of switching by				
		adding relaying and either adding motor				
		operators to existing switches or replacing the				
		switches. This will automatically transfer				
		customers load to an alternate circuit during an		1		
		outage of their normal circuit. This will reduce]		
		outage duration in remote locations or areas with		1		
	HLP/00/1010	restricted access such as airports.	1,380,239.32	54,805.27	1,435,044.59	
		Fiber Duct & Cable- Replace underground fiber				1
		conduits (bituminous fiber pipe) with concrete				
	HLP/00/1015	encased PVC ductbanks.	1,752,336.42		1,752,336.42	
	, 55, 1015	Distribution line clearance corrections between	2,.02,000.42	 	0,700,000,446	┧
		transmission and distribution facilities to meet		1		1
		1 '				
	uu nilon ta casa	National Electrical Safety Code (NESC)	40 775 655 51	3 540 634 64	12 223 060 40	
	HLP/00/1055	requirements.	20,775,932.54	2,548,036.64	23,323,969.18	4
		Substation Physical Security Enhancement:				1
		Replacement of substation facility fencing with		ļ l		
	1	more protective fencing to ensure our critical				
	HLP/00/1099	assets receive a greater level of protection.	5,826,667.35		5,826,667.35	
	HLP/00/1189	Replacement of GE UR Relays/Panels	972,023.19	35,618.89	1,007,642.08	-1

Project						Project Category
Category	Project Number	Description	Additions	Salvage / Removal	Total	Total
		SUBSTATION NETWORK MODIFICATIONS -				
		Physically isolate substation communications				
	HLP/00/1195	infrastructure	1,758,894.26	0.02	1,758,894.28	
	HLP/00/1232	Replace underground vault switches	1,140,367.91	101,828.88	1,242,196.79	
		Rebuild Memorial substation due to extensive				
		damage due to Hurricane Harvey. Rebuild				
		Included upgrade of transformers and storm				
		hardening measures to mitigate future flooding				
	HLP/00/1247	issues.	4,651,709.41	204,047.49	4,855,756.90	
		Acquisition of property for the construction of			i	
	HLP/00/1316	new Hermann substation	75,430,951.21	ļ	75,430,951.21	
		BUS TO 4000A. The project includes the.				
		following:				
		Rebuild approximately 17.1 miles of wooden H-				
		frame line on three segments of 138 kV ckt 65				
		from Wallis - GEBHRT - Sealy - Peters with the				
		latest standard double-circuit-capable concrete				ŀ
		and/or steel structures;				
		Replace the existing 17.1 miles of 1-795 AAC		! !		
		conductor, including substation jumpers and		1		
		spans, with the latest standard 2-959 ACSS				
		conductor;				
		Replace the necessary substation equipment at				
		Wallis, Sealy, and Peters 138 kV substations with				
		at least 4000 A.				
		This project is needed to replace aging				
		infrastructure and to address line clearance				
		concerns on three segments of the 138 kV ckt 65		İ		
		from Wallis - GEBHRT - Sealy - Peters. As shown in				
		the analysis, the project would also resolve some				
		significant P6 (maintenance outage) loading				
		concerns that currently exist on the system. The				
		upgrade of the 1974 vintage wooden H-frame line				
		to the storm-hardened, modern concrete and/or				
		steel structures will improve the resiliency of the				
		line against hurricane-force winds. The rebuild will				
		also provide a much higher circuit capacity and		-		1
	HLP/00/1399	the ability to add another circuit to accommodate	2,139,259,18	315,865.03	2,455,124.21	

Project	Deploys Novel an	Descri ptio n	Additions	Salvage / Removal	Total	Project Category Total
ategory	Project Number	 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	Additions	.sawage / Removai	TOTAL	Total
		includes the following:				
		Rebuild approximately 25.69 out of 27.35 miles				
		of wooden H-frame line on the 138 kV FOSTER -		1		
		Peters circuit 25 with the latest standard double-				
		circuit-capable concrete and/or steel structures;				
		Reconductor 0,55 miles of 1-795 AAC conductor				
	ļ	on the 138 kV Flewellen - POSTER circuit 25				
		segment, and 26.04 miles of 1-795 AAC or 1-795				
		ACSR conductor on the 138 kV FOSTER - Peters				
		circuit 25 segment, including substation jumpers				
		and spans, with the latest standard 2-959 ACSS				
		conductor. The total length of reconductoring is				
		26.59 miles; and				
		Replace the necessary substation equipment at				
		Flewellen and Peters 138 kV substations with at				
		Jeast 4000 A.				
		This project is needed to replace aging				
		infrastructure and to address line clearance				
		concerns on the 138 kV FOSTER - Peters circuit 25				
		segment. The upgrade of the 1974 vintage				
		wooden H-frame line to the storm-hardened,				
		modern concrete and/or steel structures will				
		improve the resiliency of the line against				
		hurricane-force winds. Also, the project resolves				
		CNP Planning Event P3 and CNP Maintenance				
		Outage P6 loading concerns seen in summer peak				
	HLP/00/1413	base cases. The rebuild will also provide a much	19,952,691.01		19,952,691.01	
		several transmission lines crossing the Houston				
		Ship Channel serving a large amount of Industrial				
		load. Near the mouth of the Ship Channel, one				
		345kV and two 138kV transmission lines originate				
		from Cedar Bayou (CBY) and cross the channel				
	i	onto Spillman Island. To maintain the depth of				ļ
		the channel, mud is dredged from the base of the				
		channel and dumped onto Spillman Island. The				
		accumulated mud has steadily buried the base of				
		the transmission line towers and caused				
		degradation to the structures. Since these towers				
		have an elevated risk of failure, restoration would				
		be needed immediately to support the high				
		density of industrial loads in the area. Restoration				
		of the towers on Spillman Island will be extremely				1
		challenging and time consuming; therefore, this				
		study was undertaken to proactively determine		1		
		the restoration plan should a Spillman Island				
	1	fallure occur. A separate study to determine the				i
		long-term permanent solution for Spillman Island				
	1	will be performed.				1
	1	Four Immediate Restoration options were				1
	1 .	evaluated to resolve the loading concerns while				
		maintaining reliability during other contingencies.				1
		The Spillman Island Immediate Restoration Plan				
	1	study concluded that Option 3 of the proposed				
	HLP/00/1414	options proved to be the optimal solution based	3,191,288.02	30,461.59	3,221,749.61	1

Project ategory	Project Number	Description	Additions	Salvage / Removal	Total	Project Category Total
			l		Ï	
		P1415 Jordan-BENDER-CONNER. The industrial				
		customer at the existing BENDER substation has				
		requested to increase their existing 9.7 MVA by				
		34 MVA at 0.97 p.f beginning peak 2020 for a				
		total load of 43.7 MVA.		j		
		BENDER is a loop-tap substation located on circuit 86 between CONNOR and Jordan substations in				
		the Mont Belvieu area. Results from steady-state				
		power flow analysis indicate that no system				
		upgrades or configuration changes are needed to				
		serve the customer's new 34 MVA load in 2020.			'	
	1	However, sensitivity analysis including potential				
		load additions at DALTON and WINFRE on ckt 86				
		and the associated third Jordan autotransformer				
		and looping 345 kV circuit 97 into Jordan were				
		performed. The results show thermal loading				
		concerns on Jordan - BENDER ckt 86 beginning in summer 2024. However, when the 34 MVA load				
		increase at BENDER is included, this thermal				
	HLP/00/1415	loading concern to begins in summer 2021.	4,890,815.04	1,153,088.81	6,043,903.85	
		SRB'AREA 69 KV UPGRADES. With the permanent removal of the SRB units and conversion of all customers and substations between South Channel and SRB, Transmission Planning decided to review the existing configuration with the idea of deenergizing: all 69 kV between SRB and South Channel. Also, permanently joining: the SRB 138 kV buses and moving HOC CB2 to SRB will be tested to see the impact on the system. CenterPoint Energy Transmission Planning Department evaluated several proposed changes to SRB substation and recommends the following: • De-energize all 69 kV equipment at SRB • De-energize ckt 16 and 23 between SRB and South Channel				
		Reconfigure ckt 23 to terminate into South Channel creating a new ckt 23 Deepwater – South Channel Permanently joined the two existing SRB 138 kV				į
		buses by closing breaker 8750 and adding a new				
		breaker joining the north 138 kV buses				
	HLP/00/1419	Move 100 MVAR HOC CB2 to SR8	3,306,713.16	253,447.83	3,560,160.99	}
		Rehab Underground vault single phase	<u> </u>			
	HLP/00/1433	transformers	1,931,631.63	683,083.07	2,614,714.70	

roject ategory	Project Number	Description	Additions	Salvage / Removai	Total	Project Categor Total
<u> </u>	<u> </u>	CenterPoint Energy Houston Electric, LLC				
		(CenterPoint Energy) High Voltage Projects (HVP)				
		requested Transmission Studies and Modeling				
		(TSM) to review a potential project after a				
		pipeline company requested available space to be				
		allocated between the Explorer Corner and				
		Channelview substation. HVP indicated that space				
	!	can be made available if the currently				
		deenergized 69 kV ckt 38 were to be upgraded for				
		use at 138 kV by replacing the existing H-frame				
		structures with concrete poles. HVP requested				
		TSM to review the potential project for reliability				
		impacts, particularly any benefits that utilizing the		1		
		deenergized circuit might provide. TSM identified				
		that this tower section of ckt. 38 could be used to				
		lower the fault duty at the Greens Bayou 138 kV				
		substation by adding approximately 6.5 miles of				i
		additional conductor impedance to 138 kV Greens				
		Bayou to LYCHEM ckt 08. CenterPoint Energy's				
		TSM studied the reconfiguration of Greens Bayou				
	1	to LYCHEM ckt 08 project which includes the				
		following:				
		• Rebuild about 3.25 miles of the retired Explorer				
		Corner to Channelview ekt 38 using a double				
		circuit arrangement and loop it into Greens Bayou to LYCHEM ckt 08.				
	HLP/00/1447	Convert existing H-frame construction to a 138kV	8,430,187.26	1,640,277.89	10,070,465.15	
	1121700727-17	Major Underground Control And Monitoring	0,100,101,110	2,010,411.00	20,010,00	
	HLP/00/1458	System	3,441,387.24		3,441,387.24	
		P1509.1 New Gulf Approach Spans. TEXGLF				
		substation is a customer-owned breakered				
		substation which had a single generator				
	1	connected to it and is connected to South Lane				
		City via 138 kV ckt 60 and West Columbia via 138				
		kV ckt 04. CenterPoint Energy received an ERCOT				
		Notification of Suspension of Operations for this				
		resource on Dec 1, 2020. The notification				
		indicated that the unit had a forced outage and				
		the resource owner decided to retire the unit				
		immediately rather than repair. Since the				ļ
		resource owner also owns the 138 kV TEXGLE				1
		substation, the resource owner has decided to be disconnected from the transmission system.				1
		Removing this substation will force CenterPoint				
		Energy to make modifications to the topology.				1
		The 138 kV CenterPoint Energy New Gulf				1
	1	distribution substation currently double tapped				1
	1	off 138 kV South Lane City – TEXGLF ckt 60 and				l
		West Columbia TEXGLF ckt 04, will need to be		}		l
	1	converted to a sectionalizing substation when				1
	HLP/00/1509	TEXGLF is removed from the transmission system.	1,240,093.80	1	1,240,093.80	I

roject						Project Categor
tegory	Project Number	Description	Additions	Salvage / Removal	Total	Total
		HOC 69 kV Upgrades. As a follow-up to the White				
		Oak 138/69 kV Auto and Ckt.34 Heights to White				
		Oak Upgrade study finalized in October 2020,		1		
		CenterPoint Energy has determined the need to				ĺ
		resolve additional loading and voltage concerns				
		still present on the 69 kV transmission system. To				
		resolve these remaining concerns, Transmission				
		Planning is recommending the following projects:				
	i	Join the HO Clarke 69 kV buses				
		•Retire HOC auto A3				
		1 1 1 1 1				
		Upgrade joined HOC 69 kV bus to Minimum 60	2 040 473 00		2 040 472 00	
	HLP/00/1538	kA	3,040,472.08		3,040,472.08	
		Modernization Program in Major Underground to				
		convert circuit feeders crossing freeways from	A - W - A4			1
	HLP/00/1539	overhead to underground.	8,154,916.84		8,154,916.84	!
		Modernization Program in Major Underground to				
		replace aging cable on dedicated underground		!		
		circuit feeders, substation getaways and roadway				
	HLP/00/1540	dips.	16,734,555.23	573,878.48	17,308,433.71	
		Replace Underground Network protectors with				
		new protectors. Protectors were more than 20				
		years old and had been flooded in various storms.				1
	HLP/00/1542	Electric parts are largely unavailable	2,602,015.13	26,028.69	2,628,043.82	
	1721 / 2 3/ 1-2 1-	The maintenance, installation, and/or			1	ĺ
	TRIP	replacement of Trip Saver Devices.	7,109,790.27	910,573.51	8,020,363.78	1
lligen			· · ·			27,184,8
	· ·	Planned Upgrades or Replacements of				
		Communication Equipment supporting				
		Distribution Automation. (IGSD, DACs,		1		
	ÇG1E	Monitoring Systems, etc)	1,698,126.25	55,243.90	1,753,370.15	
	COIL	Project to replace standard IDR meters with AMS	-,,	35,2	2// 0 2// 0 1 - 0	1
	IDR	IDR meters	1,851,542.04	1	1,851,542.04	
	1617	Planned/proactive IGSD device	1,001,04	 	_,,	1
	tGSD	installations/replacements.	12,409,422.85	522,572.60	12,931,995.45	
	1030	matanations/Teptacements.	A101710171744.00	322,37 E.30	11,504,550,70	1
		Domand Bosnoora Management Cyclem (DOMAC)				
		Demand Response Management System (DRMS) -				
		E-curtailment product was purchased for AMS				
	S/101220/CN/HED	· · ·	0.000 000 00		0.000.004.00	
	070	meter level.	8,865,501.98		.8,865,501.98	-
		Landing and the state of the st				
		Intelligent Grid Switching Device capital				
		replacements, each switch has a Telecom box				1
		which contains communications equipment which				
		is used to remotely operate the switch and the		1		
	5/101710/CE/CG1	equipment is replaced or repaired by CNP Radio				
	£	Communications personnel on this project.	1,772,236.77	10,216.12	1,782,452.89	
		Total Projects Greater than \$1,000,000	1,971,014,786	126,604,779	2,097,619,565	2,097,619,
			1134	W. 28.1 80.2	A 444 PAA	
		Total of Projects Less than \$1,000,000	(420,520) 7,181,028	6,760,508	6,760,
		Total of All Projects	1,970,594,266	133,785,807	2,104,380,073	2,104,380,
		rotal of All Projects	1,57 0,554,256	100,100,001	5,10-9,000,010	

roject	Project Number	Description	Additions	Salvage / Removal	Total	Project Category
	guipment	осыфион	Additions	PARTUBO / INCIDENTAL	10101	206,200,70
		HLPD - Meter & Communications Cap - This	_			· ·
		project captures tabor costs incurred to install				
	13090056	meters.	1,378,822.79		1,378,822.79	
		The GIS (Geographic Information System) upgrade				
		will allow us to migrate from our current				
		environment nearing end-of-life (Jan 2024) and				
		standardize platforms, processes, solutions, and				
	1	data for a "One CenterPoint" initiative. Aligns with				
	13096913	GIS server relocation project (CNP Tower to AOC), which addresses the Management Action Plan.	3,211,760.22		3,211,760.22	
	12030212	which addresses the imanagement Action Fight.	3,223,700.22	-	3,211,760.22	
		Datacenter Modernization using Cisco Application				
		Centric Infrastructure (ACI), on multiple				
		datacenters and 150 remote offices, to deliver an				
		agile datacenter with simplified operations and				
		increased application responsiveness to support a				
		new generation of distributed applications while		ļ l		
		accommodating existing virtualized and non-				
	13097334	virtualized environments.	4,144,038.74		4,144,038.74	
		Development / implement tasks for new		Τ		
		capabilities to the Texas Electric Market systems (
		SAP, EAI, SERVICE SUITE, WEB, BW) for				
		automation of manual processes, enhancements				
		to sync process, exception management, service				
	47007543	order processing & automation for compliance	2 425 206 17		2 425 206 42	
	13097542	reporting.	2,125,306.17		2,125,306.17	
		investment is required for the design, development, testing and implementation of				
		existing systems to improve system security				
		controls and ongoing security posture for system		! [
		resiliency. Primary cost will be labor. No				
		software or hardware acquisitions planned at this				
	13098327	time.	3,504,587.25		3,504,587.25	
	ľ	Formulate a strategy that utilizes Customer				
		Experience (CX) and IT digital capabilities to				
		bolster the CNP corporation's ongoing				
		improvement initiatives (CI) for digital				i
	1	transformation. The digital delivery products				
		involved include the Builders Portal, ClearPath +				
		CenterPay (payment platforms), and CrewPoint				
		(Field Capacity planning). Additionally, the Dispatch+ application suite, which includes				
		puispatenit application soite, which includes				
		Dienatch+ Ontimizer Routing Solution and				
		Dispatch+, Optimizer, Routing Solution, and WorkforceHub, is set to launch in 2024 as a field				
	13098367	WorkforceHub, is set to launch in 2024 as a field	19.660.079.75		19,660.079.75	
	13098362	WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard.	19,660,079.75		19,660,079.75	
	13098362	WorkforceHub, is set to launch in 2024 as a field	19,660,079.75		19,660,079.75	
	13098362	WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement -	19,660,079.75 1,585,163.03		19,660,079.75 1,585,163.03	
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for				
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for				
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for Distribution related mobile data.				
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for Distribution related mobile data. Provides critical spares to cover reduced OM				
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for Distribution related mobile data. Provides critical spares to cover reduced OM maint plans for production failures. In addition delivered recommended best practice spare equipment for critical component failures.				
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for Distribution related mobile data. Provides critical spares to cover reduced OM maint plans for production failures. In addition delivered recommended best practice spare equipment for critical component failures. Provides hardware for required capacity, data				
	13104890	WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for Distribution related mobile data. Provides critical spares to cover reduced OM maint plans for production failures. In addition delivered recommended best practice spare equipment for critical component failures. Provides hardware for required capacity, data center server hosting and organic growth.	1,585,163.03		1;585,163.03	
		WorkforceHub, is set to launch in 2024 as a field routing solution complete with a dashboard. Capital Mobile Data Computer Replacement - Replacement of computer equipment for Distribution related mobile data. Provides critical spares to cover reduced OM maint plans for production failures. In addition delivered recommended best practice spare equipment for critical component failures. Provides hardware for required capacity, data				

ct orv P	roject Number	Description	Additions	Salvage / Removal	Total	Project Catego Total
·· / ·	TOJCCC INDINISCI	Безаприон	Ficultions	ourrigo / Harmerer	10111	
1		Refresh storage hardware and provide organic				
		growth for Windows, Linux, AIX, and VMware				
		platforms utilizing SAN storage, including				
1	13105299	distribution hardware and applications.	2,826,390.79		2,826,390.79	
		HEBM015RM6-2022 TRM - Retail Market			•	
		Transactions. Ongoing enhancements to electric				l
1	3 10532 5	market transaction systems	2,280,639.55		2,280,639.55	
						•
		Unix server equipment is replaced based on a				
- 1		refresh schedule or purchased based on needs in				
- 1		the environment. Refresh/replacement of		1		
		existing server hardware is necessary to ensure				
		efficiency, security and performance of the				
		environment as well as to ensure data reliability				
		and business continuity. Organic growth				
		(adding net new hardware) is required to increase				
		the hardware to keep up with demand within the				
1	13105343	environment (risk mitigation).	1,337,506.85		1,337,506.85	
		Equipment acquired specifically for the AOC Phase				
-		Il location; Refresh/replacement of network				
		security and enterprise network equipment				
		hardware is necessary to ensure efficiency and				
		security. Replacing aging hardware increases				
		efficiencies and reliability. Organic growth				
		(adding net new hardware) is required to keep up				
		with demand within the environment (risk				
1	13105363	mitigation).	1,336,345.75		1,336,345.75	
		HEB017-3-2022 Advanced Data Management				
		_				
		Platform. Migrate of Hadoop to Google Cloud,				
		new use case development on Google Cloud such				
		as smart meter analytics enhancements; load				
- 1,		research and forecasting, and gas / electric			4 224 507 44	
	13105371	operations reporting.	1,221,502.11		1,221,502.11	-
<u> </u>	13106016 13106020	ENTB020-Enterprise Network Transform 23 ITB005 - Storage Capacity 2023	4,679,902.83 4,921,338.33		4,679,902.83 4,921,338.33	<u> </u>
F			• •		. ,	•
		Computer equipment replacement such as				
		laptops/desktops, peripherals (like keyboard,				
	13106022	mouse, AC adapters, etc), monitors, tablets.	1,274,370.48		1,274,370.48	ļ
-	13106053	IT8092-x86 Server Infrastructure Rel 23	1,677,454.73		1,677,454.73	4
	13106392	HEBMO15RM7-2023 TRM - Retail Market Tran	2,730,473.75	ļI	2,730,473.75	-
1	13106432	Fracilities modifications including fencing, shelving,	1,431,421.79	 	1,431,421.79	-
	AA80	furniture, etc.	53,735,337.37		53,735,337.37	
ľ	nnou	Purchase of Vehicles and Power Operated	ا ت. ا دجرت ، روج		20,100,001,01	1
	FLEET	Equipment.	30,818,090.74	(2,706,688.99)	28,111,401.75	
Ī]
		CKT35A: RELOC FOR BUR/SF RR BAYTOWN.	774.000		7744 600 60	
4	HLP/00/0032/42	Relocate Transmission for BNRR Bayport Loop	7,741,993.36		7,741,993.36	-
		Replacement of the REDE critical infrastructure				
		support systems. These systems include the				
		Mapboard, Video Graphic Recorders and REDE				
		consoles used by RTO System Controllers for				i
١,	HLP/00/0636	power system observability.	7,956,716.09		7,956,716.09	
F	, 55, 2555	Field Metering - Purchase of In-service meter	. 10.000, 20.000		.,_ 50,, 25.05	i
	HXSF	equipment.	19,465,815.75		19,465,815.75	
		ADMIN & MISC WORK ORDERS. General charges	,			1
- 1						

roject stegory	Project Number	Description	Additions:	Salvage / Removal	Total	Project Catego Total
	,		, ., ., .,		_	
		Control Systems Project: build-out and				
		enhancements to CEHE control center (ECDC and				
	S/101427/CE/XA1	AOC) infrastructure, computer hardware, and				
	1	EMS/SCADA and related software.	1,188,200.71		1,188,200.71	
	S/101784/CE/TO	Replace Generators where repair is no longer a	1,100,200,71		2,200,000112	
	WER	viable option.	2,567,406.90		2,567,406.90	
	WER	viable option.	2,307,490.30		2,567,400.50	
		D. J. S.D. Addis Midli March at a formation				
		Purchase of the Video Wall Monitoring Expansion				
		System for the Telecom Control Center, which is				
	S/101784/CG/MIS.	used to monitor and manage the				
	C .	Telecommunications Infrastructure.	1,036,340.27		1,036,340.27	
		MPLS Network - replace routers and related				l
		network equipment for the Telecom				
		communications system that are End of Life,				
	S/101785/CE/MPL	damaged and/or no longer functioning to the				
	s	necessary capacity.	1,723,964.28	L	1,723,964.28	
		·			•	
		Purchase and labor to install fiber optic cable.				
		Expand network infrastructure requires increase		[
		in network to geographically support expanding				
		backhaul Infrastructure, establish fiber footprint				
	C I 101 70E (CN /EIDE	in locations microwave communications may limit				1
		1	40.443.007.04		10,117,986.61	
	R'	capacity.	10,117,986.61		10,117,586.61	-
		Provide SCADA communication to new electrical				
		substations controlled, managed, monitored by				
		CNP. Services provided by internal				
	1	telecommunications infrastructure or leased				1
	S/101785/CN/SCA	carrier services to fulfill new operational,				
	DA	business, compliance requirements.	3,594,944.12	<u> </u>	3,594,944.12	
		Purchase and install new Microwave radio and]
	S/101785/CN/TMS	related equipment/systems for the Transport				
	Y	Network.	2,376,858.67		2,376,858.67	1
	SHOPWO	General Supplies and Tools	1,328,164.28	İ	1,328,164.28	1
rconn	ection	deliant replication and	_,+,_+			81,710,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	<u> </u>		<u> </u>	_	
		FT BEND SOLAR INTERCONNECTION. The				
		proposed New Generation Facility will consist of				
		128 PV solar inverters for a maximum output of				
		240 MW. The New Generation Facility is expected				
		to be connected to a new 138 kV substation				
		("Beasley"), owned by CenterPoint Energy, to be				Į.
		looped on circuit 60, between Orchard and East				1
		Bernard substations.				
		* Interconnect new CNP 0.5 miles west of Orchard				1
		substation				[
		* New 138 kV CNPSub with a breaker and ½				1
		configuration				
		1 - 1				
		* 138 kV generator lead with two fiber cables for		1		
		0.5 mile (includes \$180,000 for a 75ft Right-of-				
		Way)				
		* Upgrade carrier equipment (East Bernard				
		substation)			!	
	HLP/DO/1395	* Upgrade 138 kV loop bus (Sealy substation)	4,205,552.25	1	4,205,552.25	1

						B - 1 - 1 O - 1 -
Project	Project Number	Description	Additions	Salvage / Rémoval	Total	Project Category Total
Category	Project Number	Description	Additions	Saivage / Removal	iotai	1041
		MYRTLE SOLAR INTERCONNECTION. Previously				
		completed a (FIS) Full Interconnection Study				
		Myrtle Solar II ("Solar Generation			!	
		Expansion")(20INR0263) for a 100 MW solar				
		generation expansion of the planned 240 MW				
		Myrtle Solar Generation Facility ("Solar				
		Generation Facility")(19INR0041). The Solar				
		Generation Facility will be directly connected to				
		an Existing CenterPoint Energy owned Angleton				
-		138 kV substation via a planned generator lead to				
		the planned Solar Generation Facility. The				
		proposed New Storage Facility will consist of 45				
		(PCSM FP3510M2) – 3.35 MW rated power				
		storage inverters for a combined total of 150.83				
		MW. The New Storage Facility is expected to be				
	!	connected to the same substation as the Solar				
		Generation Facility. All analysis for the proposed				
		New Storage Facility will include the				
		aforementioned Solar Generation Facility with the Solar Generation Expansion.				
		* Install new 138 kV generator position at				
		Angleton Substation, Install generator lead to new				
		generator facility				
	HLP/00/1445	* SCADA and Relay	1,878,575.67	71,503.03	1,950,078.70	
	110170072445	adular and richt	1,070,01070.07	12,505.00	1,500,010.10	
	1	Build new 345 kV lead from New Generation				
		Facility to CenterPoint Energy 345 kV Hillje				
		Substation. The proposed New Generation				
		Facility will consist of 183 (Sungrow SG3600UD-				
		MV) photovoltaic (PV) solar inverters, each rated				
		at 3.6 MVA, for a combined total output of 619.1				
		MW. The New Generation Facility is expected to				
1		connect to existing CenterPoint Energy owned				
1		345 kV Hillje substation through a single				İ
	HLP/00/1450	generator lead.	3,481,300.42	145,435.87	3,626,736.29	ļ

roject	Project Number	Description	Additions	Salvage / Removal	Total	Project Categor Total
исвогу	riojed namber		Additions	parvage / nemoval	rotai	iOtal
		Generation Owner applied to ERCOT requesting the interconnection of the New Generation				
		Facilities consisting of a new 200 MW solar				
		powered generation facility and a proposed 58				
		MW battery storage facility. The Westoria Solar				
		facility will consist of 80 TMEIC Solar Ware PVH-				
		L2700GR PV solar inverters each rated at 2.5 MW				
		rated output power while the Battery storage will				
		consist of 20 aggregated resources FREEMAQ				
		PCSK 600 V each rated at 2.9 MW output power.				l
		Together both resource represent a combined				
		gross total of 258 MW when the Battery storage is				
		on discharging mode. The New Generation				
		Facility is expected to be connected to a new 138				
		kV substation ("CNPSub"), owned by CenterPoint				
		Energy, to be looped on 138 kV circuit 02,				
		between Nash and West Columbia.		 		
		* Build 138 kV Breaker and a half interconnection				
		substation with two CenterPoint Energy positions		 		
		and one position for the generator lead to				
		connect to the existing 138 kV Ckt 02 between				
		West Columbia and Burke				
		* Burke:substation - install POTT relay scheme on				
		Eagle Nest ckt 02				
		* West Columbia substation - Install POT relay				
	HLP/00/1454	scheme on Eagle Nest ckt 02 * Install single span generator lead	5,081,817.12	28,837.76	5,110,654.88	
	111170071404	mistan single span generator read	2,061,617.12	28,637.70	3,110,034.00	
		RAMSEY SOLAR GENERATOR INTERCONNECTION.				
		The proposed New Generation Facility will consist				
		of 170, 3.021 MW PV solar inverters for a				
		combined total of 514 MW. The New Generation				
		Facility is expected to be connected to an existing				
		345 kV substation, Hillje, owned by CenterPoint		•		
		Energy.				
		* Expand Hillje to accommodate single lead at		į l		
		Hillje				
		* Construct approximately 1 mile of Generator				
		Lead from Hillje to end of customer constructed				
		generator lead on customer's ROW				
	HLP/00/1480	* Connect Ramsey Solar to Hillje 345 kV	1,538,005.55		1,538,005.55	
		CUTLASS SOLAR interconnection. The proposed				
		New Generation Facility will consist of 150 PV				
		solar inverters each rated at 2 MW for a		Į l		
		combined total gross capacity of 300 MW. The				
		New Generation Facility will connect to a new				
		CenterPoint Energy owned 345 kV substation				
		("CNPSub") looped on (Study Option 1) 345 kV				
		circuit 72, Bailey to WA Parish.				
		* Build new 345 kV CenterPoint Energy Substation				
	I	and generator lead (0.35 mils) to New Generation				I
		re- estado.				
		Facility				
		Facility * Build new 345 kV circuits looped in/out of New CenterPoint Energy Substation from Circuit 72C				

Project lategory	Project Number	Description	Additions	Salvage / Removal	Total	Project Calegor Total
	· -					
		FIGHTING JAYS Interconnection. The proposed				
		New Generation Facility will consist at least 0.18				
		PV solar inverters each rated at 3.36 MVA for a				
		combined total gross capacity of 356.54 MW. The				
		New Generation Facility will connect to a new				
		CenterPoint Energy owned 345 kV substation				
		("CNPSub") looped on (Study Option 1) 345 kV				
		circuit 64, WA Parish to Hillje.		i		
		* Build new 345 kV CenterPoint Energy Substation				
		and generator lead (0.10 miles) to new				
		Generation Facility				
		* Build new 345 kV circuits looped in/out of New		1		
		CenterPoint Energy Substation from Circuit 64C				
	HLP/00/1492	(W.A. Parish to Hillje)	12,062,240. <u>67</u>	5,394.86	12,067,635.53	{
		RED-TAILED HAWK Interconnection. The				
		Generation Owner applied to ERCOT requesting				İ
	Ì					
		the Interconnection of the New Generation Facility consisting of a new 353.41 MW solar				
		powered generation facility. The Red-tailed Hawk				
		Solar facility will consist of 27 INGECON SUN 3 IS				
		3825TL C630 and 104 INGECON SUN 3 IS 3600TL				
		C630 PV solar inverters each rated at 3.491 and				
		3.156 MW respectively. The New Generation]		
		Pacility is expected to be connected to future 345				
		kV substation ("Blue"), owned by CenterPoint				
		Energy, to be looped on circuit 72, between Hillje				
	+	and Bailey.				
	1	* Build 345 kV Breaker and a half interconnection				
		substation with two CenterPoint Energy positions		l i		1
		and one position for the generator lead to				
		connect to the existing 345 kV Ckt 72 between				
		Hillje and Bailey 345 substations. Would include				
	HLP/00/1493	cost of looping into Bailey to Hillje ckt 72	9,194,356,83	10,091.77	9,204,448.60	
	1					l
		SPACE CITY SOLAR INTERCONNECTION. The				
		proposed New Generation Facility will consist of				
		175 PV solar inverters rated at 3.807 MW for a				
		combined gross total of 609.74 MW. The New				1
		Generation Facility is expected to be connected to				
		a single position at the existing 345kV Hillje				
	1	substation in Wharton County, owned by				
		Center?oint Energy.				
	Ţ	* Expand 345 kV Hillje substatgion to				
		accommodate single lead at Hillje and connect				
		Space City Solar				
		* Construct single circuit 345 kV Generator Lead	0.007.407.67		2 002 102 02	
	HLP/00/1495	from Space City Solar	2,093,103.07	1	2,093,103.07	I

Project Category	Project Number	Description	Additions	Salvage / Removal	Tota!	Project Category Total
<u> </u>		RIVERSIDE SUB interconnection. The proposed				
		New Generation Facility will consist of two natural				
	1	gas-fired generating units (units 1 and 2) each				
		rated at 50 MW for a combined maximum				
		capacity of 100 MW. The New Generation Facility				
		is expected to be connected to a new CenterPoint				
		Energy owned 138 kV substation ("New CNP				
	•	Sub"). New CNP-Sub will be constructed and				
		connected between 138 kV CHAMON - PSARCO				
		circuit 94.				
		* Build new 138kV CenterPoint owned substation				
		"New CNP Sub" (breaker-and-half configuration,				
		one generator position, generator lead cost not				
		included)				
		* CHAMON (remove carrier equipment &				
		wavetrap, install dual fiber, T&C)				
		* PSARCO (remove UPLC-R, T&C)				
		* New approach spans and structures to				
		inteconnect New CNP Sub (Assuming 2-959ACSS				
		conductor				
		* Fiber optic cables between: New CNP Sub and				
		New Generation Facility and New CNP Sub and				
		CHAMON (Assuming no additional structures will				
		be needed to route the fiber)				
		* Generator lead portion. (Assuming one tangent				
		poles and one 30Deg dead end pole will be				
	HLP/00/1498:	needed to route the generator lead)	3,897,108.63	568,78	3,897,677.41	
	<u> </u>				· -]
		LONGBOW Interconnection. The proposed New				
	ì	Generation Facility will consist of 25 (Sungrow				
		SG3600UD) photovoltaic (PV) solar inverters, each				
		rated at 3.6 MVA, for a combined total output of				
	1	78.145 MW. The New Generation Facility is				•
		expected to connect to an upcoming CenterPoint				
		Energy owned 138 kV Danbury substation		1		
		through a single generator lead. Danbury will be				
	1	connected as a full loop station on circuit 04,				
		between Angleton and Liverpool.				
		* Build new 138kV CenterPoint owned Substation				
		"New CNP Sub" (breaker-and-half				
		configuration)(includes single generator lead) and				
		Interconnect between 138 kV Liverpool - PETSON				
		ckt 04				!
		* Angleton - upgrade line relaying, install POTT				
		scheme, T&C				
	1	* PETSON - upgrade line relaying, install POTT				
		scheme, T&C				
		* HUDSON - upgrade line relaying on MONSAN &			•	
		Webster circuits				
		* Webster - install POTT relay scheme on				
	HLP/00/1501	HUDSON circuit	7,881,556.74	57,962.19	7,939,518.93	

Project	Project Number	Description	Additions	5alvage / Removal	Total	Project Category Total
Lategory	Project Wumber	Description	Additions	2010085 \ VELLIONAL	10181	10441
		ARCHER - GENERATOR INTERCONNECTION. The				
		New Generation Facility will also include (7) Brush				
		BDAX 7 290ERIT/LM6000 PC electric machine/gas				
		turbine generators, each rated at 52 MW turbine				
		rating totaling 364 MW. The New Generation				
		Facility is expected to be connected to a new 138				
		kV substation ("New CNP Sub"), owned by				
		CenterPoint Energy, to be looped on circuit 26, between Rosharon and Karsten.				
		* Build new 138 kV CenterPoint owned Substation				
		"New CNPSub" (breaker-and-half configuration)				
		(Includes single generator lead) and interconnect				
i		between 138 kV Rosharon - Karsten ckt 26				
		* Upgrade Line relaying at 138 kV Karsten				
		Substation				
		* Upgrade Line relaying at 138 kV Angleton				
ľ		Substation		[
		* Upgrade 138 kV Angleton - Winmil circuit 26 to				
		384 MVA normal and emergency rating.				
		* Upgrade 138 kV Rosharon - New CNP Sub circuit				
	HLP/00/1567	25 to 401 MVA normal and emergency rating	11,547,344.59	43,211.28	11,590,555.87	
		SNUG INTERCONNECT. The proposed New		'		
	•	Generation Facility will consist of 106 (Sungrow				
	1	SG3600UD-MV) solar inverters for a combined total of 351.4 MW. The New Generation Facility is		•		
		expected to be connected to a future CenterPoint				
		Energy owned 138 kV Snug substation looped on				
		circuit 04 between Liverpool and PETSON.				
		* Build new 138 kV CenterPoint owned Substation				
	ļ	"New CNPSub" (breaker-and-half configuration)				
		(includes single generator lead) and interconnect				!
	HLP/00/1570	between 138 kV Liverpool - PETSON ckt 04	985,034.43	81,553.02	1,066,587.45	J
	1	WATERHOLE INTERCONNECTION. The proposed		1		1
,		New Generation Facility will consist of 178				
1		SunGrow SG3600UD solar inverters, rated at 3.6				
		MVA each, for a combined gross total of at least				
		608.76 MW. The New Generation Facility is expected to be connected to a new CenterPoint				
		Energy owned 345 kV substation ("CNPSub")				
		looped into Bailey and Jones Creek circuit 62.				
		* G-Star Solar - build new CNP 345 kV bkr-&-1/2				[
		switchyard				1
		* Jones Creek:- upgrade line relaying on G-Star				
		Solar ckt 62				!
		* Bailey - upgrade line relaying on G-Star Solar ckt				
]		62				
1		* Loop 345 kV Bailey - Jones Creek čkt 62 into				
		CNPsub. Includes installation of 1-72f ADSS from				
	HLP/00/1571	Balley	4,217,952.70	l	4,217,952:70]

Project ategory	Project Number	Description	Additions	Salvage / Removal	Total	Project Catego Total
		PEZZO319 GULFTIE BUILD NEW CNP 138KV BKR-&-		i		
		1/2 Interconnection SWITCHYARD . The proposed				
		Recommissioned Generation Facility will consist				
		of (1) natural gas-fired generating unit with a				
		rating of 94.0 MW. The Recommissioned		1		
		Generation Facility connects to a new CenterPoint				
		Energy owned 138 kV Guiftie Switchyard on				
		circuit 60 by a multi-span single generator lead.		1		
		* Build new 138 kV CenterPoint Energy				
		switchyard (Gulftie) and generator lead to TXGLF				
		substation (Dual fiber optic cables will be required				
		between Gulftie Switchyard and TXGLF				
		substation)		j		
		* Upgrade line relaying at South Lane City & San				
	HLP/00/1577	Bernard substations	7,302,951.79		7,302,951.79	
		LIMOUSIN OAK STORAGE INTERCONNECTION.		j l		
		The proposed New Generation Facility will consist		1		
		of 51 (SMA SCS 2475-US) = 2.0514 MW rated				
		power storage inverters for a combined gross				
		total of 104.62 MW. The New Generation Facility				
		is expected to be connected to a single position at				i
		the existing 345 kV Singleton substation in Grimes				
		County, owned by CenterPoint Energy.				
		* Expand 345 kV bus at Singleton Substation and				
		build new generator lead (0.10 miles) to New				ļ
	HLP/00/1584	Generation Facility	4,382,263.20		4,382,263.20	
ad Gro	owth	<u> </u>	-	ή		694,946,9
		Planned additions/improvements to the 12kV and				
		35kV overhead distribution system feeder mains		l l		
		as called for in Planning Issued Distribution				
	AF1A	Development Plans.	105,442,586.45	11,927,081.07	117,369,667.52	
		Overhead services to new customers or adding				
		facilities to accommodate additional load to an				
	AF1H	existing customer.	68,863,352.99	2,210,410.19	71,073,763.18	i
		Underground residential distribution services to				
	AF1U	new customers.	91,667,540.33	159,019.88	91,826,560.21]
		Installation of overhead service drops and meters				1
		to a new customer or service drop replacement to				
	1	an existing customer adding load where no other				
	AF1Z	facilities are involved.	28,305,683.56	ļ	28,305,683.56	1
				1		
		Unplanned additions/improvements to the 12kV				
		and 35kV overhead distribution system feeder				
		mains relating to area load growth, in conjunction				
	AF2A	with providing service to customers.	57,167,875.68	2,913,602.99	60,081,478.67	1
		Overhead line extensions to new underground				
	AF2H	residential distribution subdivisions.	8,660,582.34	242,959.72	8,903,542.06	1
		Planned additions/improvements to the 12kV and				1
		35kV distribution system that requires		1		
	1	underground feeder mains and underground dips				
		as called for in Planning Issued Distribution				
	CE1A	Development Plans	4,417,571.36	40,892.98	4,458,464.34	-
					-	
		New major underground services to customers				
	1	that require three-phase underground facilities to		.		
	CF1R	serve their electrical load.	19,839,909.39		19,765,971.10	┥
	DF1U	Streetlight New Installations	21,473,149.49	1	21,473,149.49	1

ect	Dumin at November	Deignafination	0 dditions	Salvaga / Bamaral	Total	Project Catego Total
ory	Project Number	Description	Additions	Salvage / Removal	Total	otai
		MYKAWA SUB: BUILD 138KV DOUBLE TAP.				
		Mykawa 35kV substation was installed to support				
		the load growth and balance the load in the area				
		and to alleviate loading from two adjacent				
ļ		substations. Mykawa 12kV substation was				
		installed to support the load growth and balance				
		the load in the area and to alleviate loading from				
	HLP/00/0017	two adjacent substations.	16,222,497.18		16,222,497.18	
		MÓDIFY 138kV CKT 93C TXDOT NON CPAY. Raise				
	l l	1.024 circuit miles of 138kV Ckt 93C-1 from Str				
	1	#11740-11752 to accommodate TXDOT (45				
		roadway project, initial assumption is to install				
	HLP/00/0032/142	post insulator brackets on tangent structures.	2,538.52	1,700,382.34	1,702,920,86	j
						Ì
		JONTE -INSTALL ZOMVAR CAP BANK. The Internal				
		Base Cases also did show a potential CNP P7				1
		Planning Event voltage deviation larger than 8% at		<u> </u>		
		Jonte, Scenic Woods, Lauder, and Lockwood. The		j l		1
	HLP/00/0095/011	voltage deviation concern was corrected by				
	7	adding a 20 MVAR capacitor bank at Jonte substation.	1,175,190.58		1,175,190.58	
	иср/00/0130/003	Upgrade Crosby 138 kV substation to a 50 kA			2,2.3,230.30	1
	4	minimum fault duty rating	1,130,194.29		1,130,194.29	
		Upgrade Limestone 345kV React Bus Split.				
		The following are the recommended upgrades for		!		
		Option 5:				
		•Replace all 63 kA 345 kV breakers at Limestone				
		with 80 kA 345 kV breakers. *Upgrade all substation equipment at Limestone				
	HLP/00/0130/004	to withstand a minimum 80 kA fault interrupting				
	1	capability.	15,641,962.33	604,295.53	16,246,257.86	
						1
	1	"Upgrade CBY 138kV Fault Current - East.		1		!
		The following are the recommended upgrades for				1
		Option 2:				
		•Swap the 138 kV side connections between				
		Cedar Bayou autotransformer A1 and Cedar Bayou autotransformer A3. The Cedar Bayou A1		Į l		
		138 kV side will be connected to Cedar Bayou 138				
	ĺ	kV East bus and the Cedar Bayou A3 138 kV side				
		will be connected to Cedar Bayou 138 kV West				
	HLP/00/0130/004	bus. "				
	6		1,533,576.39		1,533,576.39	_
	_	Elevelles applications de Mol & Milliano III				
	1	Flewellen 138kV Upgrade to 50kA. The 138 kV Flewellen bus has 40 kA fault interrupting rating.				
	1	Flewellen bus has 40 kA fault interrupting rating. Transmission Planning recommends upgrading				
		the breakers and any other applicable equipment				
		to 63 kA fault interrupting capability at the 138 kV				
	HLP/00/0130/004	Flewellen substation.				
	7		1,196,392.78	18;363.79	1,214,756.57	
		Distribution work required to support THWharton-				
	HLP/00/0496	Little York Ckt 29A Upgrades	17,586,083.89	8,191.81	17,594,275.70	-
		Treaschwig Substation- Install 3RD transformer &				
	HLP/00/0817	6th feeder to support load growth. & 6TH FEEDER	7,633,145.43	170,173.27	7,803,318.70	
	HLP/00/0922/001		, , , , , , , , , , , , , , , , , , , ,			
	3	FORT BEND CITY STRUCTURE RELOCATION	1,278,479,13	306,636.31	1,585,115.44	
		Build new Fulshear substation due to load growth	_			
	HLP/00/0971	in the area west of Katy.	1,893,942.24		1,893,942.24	
	HLP/00/0996	Karsten to Manvel 69KV Conversion	8,662,736.51	(371,276.98)	8,291,459.53	1

ct					Project Catego
pry Project Number	Description	Additions	Salvage / Removai	Total	Total
	Conversion of transmission and substation				
	facilities from 69kv to 138kv from Fort Bend to				
HLP/00/0997	West Columbia	5,575,266.98	(6,068.86)	5,569,198.12	
HLP/00/1021	Distribution Improvements at Grant Substation	1,471,951.58		1,471,951.58	
,,	Galena Park Substation-add 3rd transformer//8TH				
	& 9TH feeders at Galena Park to support load				
HLP/00/1086	growth.	1,998,619.00		1,998,619.00	
	Green Road Substation: Substation work to add	• • •		- 	
	three feeders at Greens Road substation to serve				
HLP/00/1110	load.	2,936,581.44		2,936,581.44	
HLP/00/1115/000					
6	Build 345kly Ckt from Bailey to Jones Creek.	.5,519,877.26		5,5 1 9, 8 77.26	
	Freeman Substation- Convert freeman Sub to				
HLP/00/1174	35ky	5,503,533.15		5,503,533.15	
	Tanner Substation: Add transformer and feeders				
HEP/00/1179	to support load growth	9,031,486.97	63,563.48	9,095,050.45	
	Crockett Substation; Ad transformers and feeders		Ι Τ		
HLP/00/1184	to support load growth	7,258,866.34	52,780.78	7,311,647.12	
	Lake Houston: Build new 35kv distribution				
HLP/00/1250	substation	6,413,911.02	<u> </u>	6,413,911.02	
	Plaza Substation: Add 3rd transformer and 3				
	feeders at Plaza substation to support load				
HLP/00/1289	growth	3,381,377.50	289,576.80	3,670,954.30	
HLP/00/1306	Land purchase for new Stone Lake substation	16,299,951.70	323,833.85	16,623,785.55	Į
1	Build new Wortham substation to support load				
HLP/00/1308	growth	5,182,957.58		5,182,957.58	
	Copper to Jones Creek - Work includes				
HLP/00/1337	reconfiguration of Jones Creek 138kv switchyard	985,907.46	437,013.55	1,422,921.01	
HLP/00/1345	Limburg: Build new 35kv distribution substation	7,226,937.31		7,226,937.31	}
	Add 40MVAR Capacitor bank at Pearland		450.000.05		
HLP/00/1424	substation	2,689,676.68	158,288.87	2,847,965.55	
			!		
	Mont Belvieu Reliability Project. This project				
	includes the following:				
	o Building of a new 138 kV circuit (ckt 52)				
	between Jordan and Mont Belvieu 138 kV using				
1	an open tower position.				1
1	p Reconfiguration of circuits to create the				1
1	following: 138 kV Jordan - CITIES - DALTON -				1
	BRINE – Mont Belvieu ckt 86, 138 kV Jordan –				1
	WINFRE - EAGLE - Mont Belvieu ckt 52, and 138				1
	kV Cedar Bayou – CHEV – LNGSTŅ – Mont Belvieu				1
	ckt 86.				1
	o Upgrade of 138 kV Cedar Bayou – Cedar		1		
	distribution tap - HOPSON ckt 84 to a minimum				
	Emergency Rating of 682 MVA.				
	o Upgrade of 138 kV Cedar Bayou - CHEV ckt 86 to				
	a minimum Emergency Rating of 669 MVA.				
	This project is the most cost-effective solution to				
	eliminate potentially significant load loss concerns				
	(300 MW or greater) due to maintenance outage				
	scenarios in the Mont Belvieu area. This project				Į.
	also provides capacity for future area load				I
	growth, including a configuration that meets				1
	CenterPoint Energy Transmission System Design				1
	Criteria that minimizes the number of two-line,				i
	loop breakered substations between the major	20 222 222 2	40.070.070.70	40.000.040.04	1
	icuperatione and minimum industrial impact	29,222,698.29	10,876,350.52	40,099,048.81	I .
HLP/00/1425 HLP/00/1434	substations, and minimizes landowner impact. Property for Substation expansions.	9,195,271.41	-	9,195,271.41	1

Project						Project Categor
ategory	Project Number	Description	Additions .	Salvage / Removal	Total	Total
	HLP/00/1460	Airline Substation; Add feeder to support load growth	2,552,411.13		2,552,411.13	
	HLP/00/1462	Pledger- Build new substation to support load erowth.	1.236.772.66		1,236,772,66	
	HLP/00/1462	growth. • Expand Zenith 138 kV substation with a new position; • Build a new 138 kV Zenith — Village Creek radial transmission line, with the latest standard 2-959 ACSS, conductor (about 3.6 miles, 838/893/893 MVA) on the vacant side of existing structures; and • Reposition one Village Creek 138/34.5-kV transformer, which serves the larger load, to the new 138 kV line; and reconfigure Village Creek into a double tap arrangement. This project is needed to resolve potential thermal overloading and low voltage concerns on the 138 kV Flewellen — Zenith ckt 09, which were identified in the 2021 Transmission Planning Annual Assessment, performed in compliance with North American Electric Reliability Corporation ("NERC") Reliability Standard TPL-001-4 Transmission System Planning Performance Requirements. The proposed upgrades will not only resolve the Identified thermal loading and voltage concerns on 138 kV Flewellen — Zenith ckt 09 under multiple CNP Planning Events (P1, P2, P3, and P6), but also provide a higher circuit	1,236,772.66		1,236,772.66	
		capacity to accommodate future load growth between Flewellen and Zenith substations.				
	HLP/00/1472	build a new switching station in northeast Houston near the North Belt and HWY 59. The	4,929,408.30	3	4,929,408.30	
		new Jonte substation is being proposed to address a CNP Planning Event P1 low voltage concern at Aldine as well as improving the reliability and operational flexibility of the				i
		transmission system. Currently, the two circuits which travel by the Jonte location are 138 kV Hardy – Crosby ckt 86 and 138 kV North Belt – Scenic Woods radial ckt 90. Ckt 86 is 36 miles long between breakered stations with 9 distribution transformers tapped off It at six different substations. The ckt 90 radial				
		has 5 distribution transformers at 4 different substations connected to it. The new Jonte substation provides operational flexibility by terminating the existing 36-mile, 138 kV Hardy – Crosby ckt 86 into Jonte, significantly reducing the exposure of the non-breakered substations on the circuit to be outaged due to disturbance to the				
		grid. The proposed project also improves the reliability of Greens Road substation that serves the Bush intercontinental Airport (IAH) and currently has one of its transformers tapped off radial ckt 90 out of North Belt. Greens Road serves the Bush				
	HLP/00/1483	Intercontinental Airport (IAH). Building Jonte	10,267,753.12		10,267,753.12	-
	HLP/00/1487	Crosby Substation - Add 35KV substation to support growth	1,311,108.85		1,311,108.85	

Project ategory	Project Number	Description	Additions _	Salvage / Removal	Total	Project Categor Total
		CKT 24 UPGRADES. Updated internal CenterPoint				
		Energy base cases completed in September 2020				
		identified a thermal loading concern on 138 kV				
		Dunvale - Hillcroft ckt24. The most cost-effective				
		way to address this thermal overload concern is				
		to upgrade the circuit. The upgrades for the				
		project are as follows:		!		
		• Upgrade 138 kV Denvale – Hillcroft ckt24 to have				
		a minimum emergency rating of 340 MVA by				
	HLP/00/1503	reconductoring with 2-959 ACSS	1,189,344.22	950,989.26	2,140,333.48	
		Angleton substation; Add transformers and				
	HLP/00/1506	feeders to support load growth	5,486,668.31	223,998.55	5,710,666.86	
		CKT D5 LINE REPOSITION. Recommended projects				
		include:				
		•Upgrade substation equipment which are not				
	1	part of parallel cable segments at Garrott,				
	1	Midtown, and Polk to 4000 A				
		• Reconductor 138 kV HOC – Kirby – Garrott ckt 90				
		with 2-959ACSS				
		•Refocate 138 kV ckt 05 to Webster (Southwyck)				İ
		at HOC to ring bus				
		•Thermally uprate 138 kV HOC Intermediate tap				
		ckt 05				
	1	These projects identified in this study are needed				
		to resolve potential loading concerns seen		1		
	HLP/00/1518	beginning in summer 2022.	4,458,552.96	5,254,870.72	9,713,423.68	ļ
		Dunvale to Westchase Ckt.24 Upgrade. Analysis				
		of the most recent CenterPoint Energy Houston				
	1	Electric, LLC (CenterPoint Energy) Internal Base				
		Cases indicate new loading concerns for a CNP P1				
		and P6 Planning Events on 138 kV Dunvale to				
		Jeanetta ckt 05, a CNP Planning Event P6 on 138		1		
		kV Dunvale to Westchase ckt 24, and a CNP				
		Planning Event P6 on 138 kV Bellaire to				
		Sharpstown, beginning in summer 2023.				
		Upgrade circuit 138 kV Dunvale tap to				
		Westchase tap ckt 24 to at least 350 MVA				
	HLP/00/1553	emergency rating.	7,073,623.10		7,073,623.10	-
		ANALYSIS STATES OF THE STATES				ļ
		CKt05E DUNVALE TO JEANETTA UPGRADE.				
		Analysis of the most recent CenterPoint Energy		1		1
		Houston Electric, LLC (CenterPoint Energy)				1
		Internal Base Cases indicate new loading concerns				1
		for a CNP P1 and P6 Planning Events on 138 kV				1
		Dunvale to Jeanetta ckt 05, a CNP Planning Event				1
		P6 on 138 kV Dunvale to Westchase ckt 24, and a		1		1
		CNP Planning Event P6 on 138 kV Bellaire to				1
		Sharpstown, beginning in summer 2023.				1
		Upgrade circuit 138 kV Dunvale tap to Jeanetta				1
		ckt 05 to at least 485 MVA normal rating and 630			4 00	1
	HLP/00/1558	MVA emergency rating.	1,327,687.82	ļ	1,327,687.82	4.
		Ckt 21 Airline – White Oak P1: Reconductor 0.14				1
		mi of 1-2000 AAC to 2-959ACSS to resolve a				1
	HLP/00/1575	thermal loading concern on ckt 21.	4,497,602.20		4,497,602.20	
	HLP/00/1576	Rayford - Install 3rd transformer at Rayford	1,906,987.78	1 I	1,906,987.78	1

oject	Project Number	Description	Additions	'Salvage / Removal	Total	Project Catego Total
egory I	Project (Name)	Description	Muditions	Salvage / Nerrioval	TOTAL	1000
		ADDICKS -CAMPBELL RECONDUCTOR CKTS				
		09&21. Reconductor the 138 kV Addicks –	'			
ļ		Campbell circuits 09 and 21, namely				
		•Reconductoring 138 kV Addicks – Campbell				
		- , ,				ł
		circuit 09 with the latest standard 2-959 ACSS				
		conductor (about 3.53 miles, expected ratings of				
		838/893/893 MVA); and				
		•Reconductoring 138 kV Addicks – Campbell				
		circuit 21 with the latest standard 2-959 ACSS				
		conductor (about 3.55 miles, expected ratings of				
		478/649/893 MVA).				
		This project is needed to resolve the				
		potential thermal overloading concerns on the				
l		138 kV Addicks – Campbell circuits 09 and 21,				
		which were observed in the latest CNP internal				
		base cases completed on November 2, 2021."		l l		
	HLP/00/1581		10,537,127.99	į	10,537,127.99	
lic Imp	rovements					26,358,
		The relocation of CEHE overhead distribution				
		facilities that are generally less than five poles,				
- !		due to customer request, including city, state, and				
		federal government infrastructure improvement				
		projects, such as road widening or roadway				
- 1	AD2D	improvements.	8,842,503.74	694,359.62	9,536,863.36	
ľ				35 1/255152		1
		The relocation of CEHE overhead distribution				
		facilities generally five poles or more, due to		ļ		
		customer request, including city, state, and/or				,
		federal government infrastructure improvement				
		1				
	4000	projects such as road widening or roadway	10 078 202 08	4 500 404 50	14 440 735 70	
- 1	AD3D	improvements.	12,878,203.85	1,562,121.53	14;440,325.38	ł
		Relocation of major underground facilities for				
		road widening, light rail, etc. Includes relocation				
		of overhead to underground at customer's				
toratio	CG1R	request.	2,823,798.65	[(442,279.21)]	2,381,519.44	154,835,
1						,,,,,,,
		Reactive capitalized replacements that are made				
		to the underground residential distribution				
		system requiring facility replacement. Includes				
		cable replacement, transformers, and other				
	AD06	retirement units and their related components.	36,191,559.59	6,508,852.45	42,700,412.04	
ſ		Reactive capitalized replacements made to the		İ		l
		overhead distribution system requiring facility				
	AD07	replacement.	46,849,356.19	14,111,147.48	60,960,503.67	
		Reactive capitalized replacements made to the				
		overhead distribution system requiring facility				
		replacement resulting from the effects of adverse				
	AD86	weather conditions.	21,795,274.35	6,864,383.27	28,659,657.62	1
İ		Reactive capitalized replacements made to the				1
		major underground system requiring				1
		replacement of equipment, cable or structures in				1
		response to "lights out." Also includes				1
		replacement of system neutral associated with				į
	CD1T	copper theft.	13,251,727.81	1,395,753.03	14,647,480.84	
	\$/101320/CE/XD1	Project P1020 Mining Sub Ckt 16C Permanent	+3,43+,1E1.GI	1,000,700.00	14,047,460.64	1
- 1	1	Construction	5,913,218.26	671,935.53	6,585,153.79	
ı		MARKET MEDICAL	.0 عارف عارف عارف	,	4,040,400.12	4
}	XD11	Transmission Restoration	1,282,427.66		1,282,427.66	

						Project Categ
gory	Project Number	Description	Additions	Salvage / Removal	Total	Total
		Planned capital replacement or rehabilitation of				
	ì	overhead distribution system associated with				
		reliability improvement. Includes target top 10%				
		of SAIDI circuits, outage-driven overhead rehab,		1		
	A D 4 70	recurring fuse outages, recurring transformer	12.252.552.63	1 47E 204 EG	10 000 760 40	
	AB1C	outages, etc.	12,253,562.92	1,475,204.56	13,728,767.48	
	1	Replacement of CEHE-owned poles found				
		defective that are not part of the Groundline.				
	AB1G	Inspection Program or trouble related.	10,689,817.80	1,310,771.36	12,000,589.16	
		Planned underground residential distribution				
		cable replacement on a one-span basis.				
	AB1S	Includes: spans referred from trouble	8,646,397.86	1,177,442.45	9,823,840.31	
	i	Planned underground residential distribution				
	1	cable replacement of 12kV and 35kV partial and		 		
	1	total loops.				
	I	Includes: cable relocations, transformer				
	I	relocation/replacements, raising transformers,				
	AB1V	and pedestals.	8,499,133.38	633,352.74	9,132,486,12	
	1	Congeitor hanks that include the sandagement of				
	Į .	Capacitor banks that include the replacement of capital material such as capacitor, vacuum				
	AB1X	switches, disconnects, controller, etc.	5,423,456.37	385,079.05	5,808,535.42	
	LIDIX	Replacement of existing CNP owned area lighting	Jy42J430.37	303,073.03	2,000,000,44	1
		fixtures as a result of failure or damage. (Does		,		
	A81Y	not include streetlights).	989,962.97	97,639.89	1,087,602.86	
	1 2444	Proactive routine capital replacements to the	202,000,01	2.,022.03	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	AB1Z	overhead distribution system.	167,633,592.62	7,751,693.12	175,385,285.74	
		Distribution overhead reliability improvement				
	AB2C	projects	16,039,864.41	3,169,914.87	19,209,779.28	
		Replacement of CEHE-owned poles based on				
		inspections for ground rotting the Groundline				
	AB2G	Inspection Program.	24,589,387.47	3,057,258.14	27,646,645.61	Į
		Dlauman LIDD gable conference				
		Planned URD cable replacement on a one-span		1		
		basis.: Spans identified for repair/replace based on Cable Life Extension Program.				1
		Includes: Spans identified as a result of Cable Life				
		Extension Program.				
		I - 1				
		Does not include: Multi-soan replacements				1
		Does not include: Multi-span replacements, partial loop or total loop]		
		partial loop or total loop				
	A82\$	partial loop or total loop replacement/rehabilitation, transformer	10,099,894.65	373,456.07	10,473,350.72	
	A82S	partial loop or total loop	10,099,894.65	373,456.07	10,473,350.72	
	AB2S	partial loop or total loop replacement/rehabilitation, transformer relocation/replacement, or URD cable relocations.	10,099,894.65 4,404,446.51	373,456.07 500,168.97	10,473,350.72 4,904,615.48	
	- "	partial loop or total loop replacement/rehabilitation, transformed relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve		500,168.97	<u> </u>	
	AB2Z	partial loop or total loop replacement/rehabilitation, transformer relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE	4,404,446.51	500,168.97	4,904,615.48	
	AB2Z	partial loop or total loop replacement/rehabilitation, transformer relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection	4,404,446.51 46,185,831.58	500,168.97	4,904,615.48 53,221,400.77	
	AB2Z	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program.	4,404,446.51	500,168.97	4,904,615.48	
	AB2Z AB3C	partial loop or total loop replacement/rehabilitation, transformer relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life	4,404,446.51 46,185,831.58	500,168.97	4,904,615.48 53,221,400.77	
	AB2Z AB3C	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline	4,404,446.51 46,185,831.58	500,168.97	4,904,615.48 53,221,400.77	-
	A82Z A83C AB48	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment,	4,404,446.51 46,185,831.58 5,974,401.20	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77 5,974,401.20	
	AB2Z AB3C	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment, fumlgation	4,404,446.51 46,185,831.58	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77	
	A82Z A83C AB48	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment, fumlgation Cable Life Extension Program – Testing the	4,404,446.51 46,185,831.58 5,974,401.20	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77 5,974,401.20	
	A82Z A83C AB48	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment, fumlgation Cable Life Extension Program – Testing the condition of underground cable and mitigating	4,404,446.51 46,185,831.58 5,974,401.20	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77 5,974,401.20	
	AB2Z AB3C AB48 AB49	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment, fumlgation Cable Life Extension Program - Testing the condition of underground cable and mitigating components of good cable with a high probability	4,404,446.51 46,185,831.58 5,974,401.20 2,067,643.56	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77 5,974,401.20 2,067,643.56	
	A82Z A83C AB48	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment, fumlgation Cable Life Extension Program - Testing the condition of underground cable and mitigating components of good cable with a high probability of failure.	4,404,446.51 46,185,831.58 5,974,401.20	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77 5,974,401.20	
	AB2Z AB3C AB48 AB49	partial loop or total loop replacement/rehabilitation, transformer, relocation/replacement, or URD cable relocations. Capital grid hardening work that does not involve replacement of a rotten pole. Grid Resiliency & Modernization Install C-truss or other approved brace on CEHE poles identified by the Groundline Inspection Program. Pole Treatment – Treatments that extend the life of wood poles. This includes groundline treatment, insect and internal decay treatment, fumlgation Cable Life Extension Program - Testing the condition of underground cable and mitigating components of good cable with a high probability	4,404,446.51 46,185,831.58 5,974,401.20 2,067,643.56	500,168.97 7,035,569.19	4,904,615.48 53,221,400.77 5,974,401.20 2,067,643.56	

ect			s. 1.367			Project Catego
ory	Project Number	Description	Additions	Sálvage / Removal	Total	Total
	AFNC	New Capacitor Installations	1,230,085.30	-	1,230,085.30	
		Proactive replacement of major underground				
	CE1B	equipment, cable or structures.	4,614,532.33	296,746.20	4,911,278.53	
	DB16	Streetlight Rehabilitation/Relocations	1,394,688.71	97,658.30	1,492,347.01	
		Replacement of streetlight standards and/or				
		luminaires as a result of failure or damage. Does				
	DB17	not include area lighting.	7,380,607.31	127,894.64	7,508,501.95	
		Streetlight LED Replacement- Program				
		replacement of high pressure sodium, metal				
	0010	halide, and mercury vapor streetlight luminaires	F 0DC 310 CO		E 000 140 CO	
	DB18	with LEO streetlight luminaires. Replacement of streetlight standards due to cable	5,006,119.69	+	5,006,119.69	
	DB2H	cuts.	14 457 442 20	1: 037 555 00	16 200 000 19	
	UBZR	cuts.	14,457,443.30	1,832,655.88	16,290,099.18	ļ
	HBFD	Installation of new meter on existing service	3,876,570.50		3,876,570.50	
	HFFD	Install, change or removal of CT service.	2,591,458.29		2,591,458.29	İ
		Unscheduled Substation Corrective Projects-	_,,			
		unscheduled corrective type projects and				
į		unforeseen equipment failures. These projects				1
		involve replacement of equipment and or				
	HLP/00/0011	structures.	8,666,672.11	971,604.83	9,638,276.94]
		Scheduled Substation Corrective Projects-				
		scheduled corrective projects. These projects				
		involve replacement of equipment and or		1		
	HLP/DO/0012	structures.	6,856,506.10	522,133.84	7,378,639.94	
	HLP/00/0013	Replace failed/obsolete metering equipment at industrial substations or install new metering at new industrial substations	3,712,081.64	65,523.00	3,777,604.64	Į
	HLP/00/0014	Replace the logic cages in aging and/or unreliable SCADA Remote Terminal Units (RTU's).	1,273,254.87	443,332.54	1,716,587.41	
	HLP/00/0054/TR/	· · · · · · · · · · · · · · · · · · ·	•			j
	0001	TRSM PREV MAINTENANCE PRGM - CAPITAL	12,239,540.70	830,259.17	13,069,799.87	
	HLP/00/0054/TR/	Replace deteriorating transmission facilities that if left in place could lead to outages in the near				
	0001-C	future and less reliable service.	9,697,959.97	1,219,082,48	10,917,042.45	1
	HLP/00/0054/TR/ 0018	Install Shunt Devices on Transmission Lines to Mitigate Failing Splices	1,375,335.75		1,375,335.75	
	HUP/00/0054/TR/		-//	 	2,0.0,000,000	1
	0018-C	Restore splice integrity on targeted circuits.	1,505,382.13		1,505,382.13]
	HLP/00/0054/TR/	Transmission System ROW Access Capital				1
	0022	Improvements	1,969,564.48	72,807.88	2,042,372.3 <u>6</u> .	-
		S90 Tower Replacement Program. The plan to guarantee circuit reliability and to harden our grid is to replace all approximately 80 S90 towers in our system over a multiyear timeframe. The S90 tower replacement will be done with single circuit 90-degree steel poles and engineered temporary poles. This unique design of varying heights for the single circuit 90-degree steel poles and engineered to more steel poles and engineered to work anywhere in our grid thus avoiding custom designs at each location. This allows ordering our steel pole structures faster due to long lead times				
	HLP/00/0054/TR/	or to hold in inventory various pole heights				
	0025	knowing they can be used anywhere in our grid.	38,060,412.53	4,482,572,43	42,542,984.96	

oject egory	Project Number	Description	Additions	Salvage / Removal	Total	Project Catego Total
СВСТ	HLP/00/0055/014		rio (to)is	Bolidge y Removal	15(4)	, , , , , ,
	0	BOGGY NEW CUSTOMER SUBSTATION	929,350.99	137,985.89	1,067,336.88	
	HLP/00/0072	Substation Transformer Firewall Program - Install firewalls between power transformers in a manner that reduces the risk of fire spreading from a failed transformer to adjacent units.	1,230,800.45		1,230,800,45	
-	1117/00/0072	from a lases transformer to adjacent units.	1,230,600.43	-	3,230,000.43	ł
	HLP/00/0075	Provides funding for replacement and repair of failed distribution and transmission transformers as well as replacement of failed transmission circult breakers. (Transformers may be rewound and the rewind would be capitalized).	19,005,290.52.	597,252.56	19,602,543.08	
	HLP/00/0187-	Replace obsolete and unreliable circuit switchers.	1,236,555.62	76,658.78	1,313,214.40	
		Substation Security Upgrades – Iristallation of security equipment to control physical and cyber access to CNP substations. This includes: Plant separation fencing, security cameres, & cyber security equipment at various substations. These substations are selected based on risk, vulnerability, and impact as determined by CNP security policies and/or future regulatory				
	HLP/00/0484	requirements.	5,827,581.95	310,167.11	6,137,749.06	
	H1P/00/0491/001 0	GREENS BAYOU FLOOD CONTROL. Flood mitigation project to elevate 345kV control cubicle and replace breaker A970. Replacement of older breakers. Breakers replaced include four at Grant substation; five at Satsuma	6,208,043.20	256,473.28.	6,464,516.48	
	HLP/00/0668	substation; three at Humble substation; and two at Ulrich substation.	1,250,558.79	100,718.72	1,351,277.51	
	HLP/00/0672	Provides for various protection improvements on the substation system. Work covered with these amounts was associated with replacement of transformer panels at Grant Substation.	4,426,877.69	99,997.95	4,526,875.64	
	HLP/00/0762	TWS FAULT LOCATOR INSTALLATIONS	1,674,479,75	71,934.20	1,746,413.95	1
		Add dual pilot 138kv line relaying for improved	-1 Marsh (2	. 1755-1120	27. 101-120133	i
	HLP/00/0798	protection and reliability.	5,561,469.93	198,176.33	5,759,646.26	ļ
		Foundation Replacements due to Alkali-Silica Reaction (ASR) in the foundation causing large cracks in the piers/foundations. The reaction				
	HLP/00/0801	cannot be stabilized and is not reversible. Projects and maintenance for CenterPoint portion	800,310.71	442,899.73	1,243,210.44	

roject	Drainet Newher	Decertation	Additions	Saluage / Personal	Total	Project Gatego Total
tegory	Project Number	Description	Additions	Salvage / Removal	rotai	Jotai
ĺ		project includes the following:				
		Before summer peak 2023				
		Rebuild approximately 6.2 miles of 69 kV				
		structures on the 69 kV Greens Bayou to				
	,	Walfisville Ckt 61 with				
		the latest standard concrete and/or steel				
		structures				
		Reconductor approximately 6.2 miles of 69 kV				
		Greens Bayou to Wallisville Ckt 61, including substation				
		jumpers and spans, with the latest standard 2-959 ACSS conductor				
		Reduce the size of the Greens Bayou capacitor				
		bank CB1 from 120 MVAR to 100 MVAR				
		Before summer peak 2024		l l		
		Convert customer-owned 69 kV TEXWAL				
		substation to a breakered 138 kV substation				
		Convert CenterPoint Energy-owned 69 kV				
		Wallisville distribution substation to a loop-tap 138 kV				
		substation				
		Convert customer-owned 69 kV CASTEN				
		substation to a 138 kV loop-tap substation as				
		described in		j		
		Option 1.or convert 69 kV CASTEN to distribution		}		
	HLP/00/0914/000	service from the converted 138 kV Wallisville				
		I I	E2 0E1 E0C 20		E2 0E1 E0E 20	
	5 HLP/00/0914/001	distribution substation as described in Option 2. Distribution support for 69kV conversion of Ckt	53,951,506.30	 	53,951,506.30	1
	HTF/dig/0314/001	32A: Dunlavy-Hyde Park-Downtown	958,307.50	2,181,240.89	3,139,548.39	1
	<u> </u>		930,307.30	2,101,240.03	2,132,340.32	{
		CenterPoint Energy has been working to gradually				
		phase out its 69 kV aging infrastructure, to				
		improve resiliency and maintain the reliability of		}		l
		the existing transmission system. The				
		comprehensive plan to eliminate 69 kV from the				
		CenterPoint Energy transmission system is a multi-				
		phase, multi-year effort. Several substations have				
		been converted from 69 kV to 138 kV which				
		allows aged 69 kV circuits to be retired or				
	l	converted to 138 kV. Heights substation				
		represents the largest 69 kV load left on the				1
		transmission at approximately 100 MW. This				1
		study will analyze the impact of converting				1
		Heights substation and its full load served from 69				1
	1	kV to 138 kV and retiring of 69kV infrastructure at		1		1
		White Oak and Heights substations on the				1
		CenterPoint Energy transmission system.				I
		Transmission Planning worked with the				Į .
		Transmission and Substation Engineering groups				
		to develop a feasible plan for converting Heights				
		to 138 kV service. As part of the Heights 138kV				
	[conversion, Eureka loop service substation will be				
	1	converted to double-tap service from 138 kV				
		White Oak - San Felipe Ckt 09D and White Oak -				
	1	Wirt Ckt 73E. The existing configuration at Eureka				
	HLP/00/0914/001	ISUBSTATION IS WITH CKT. USID 1000 SERVICE UTILIZING 1		1		I
	HLP/00/0914/001	substation is with Ckt.09D loop service utilizing two sectionalizing switches. With the addition of	8,025.018.09		8,025,018,09	1
	HLP/00/0914/001 Z	two sectionalizing switches. With the addition of	8,025,018.09		8,025,018,09.	-
	2	two sectionalizing switches. With the addition of	8,025,018.09		8,025,018,09.	
1.	2 H1P/00/0922/000	two sectionalizing switches. With the addition of Distribution work required to maintain clearances		1.637.685.97		_
1.	2	two sectionalizing switches. With the addition of Distribution work required to maintain clearances for Mody-Stewart Ckt 63C-4 Ckt 06F-2	8,025,018.09 25,507,341.39	1,637,685.97	8,025,018,09. 27,145,027.36	_
1.	2 H1P/00/0922/000	two sectionalizing switches. With the addition of Distribution work required to maintain clearances		1,637,685.97		

roject	Dueto ab Brownia	D	6 adulisis as a	Folyage (Sement)	Tatal	Project Categor Total
tegory	Project Number	Description	Additions	Salvage / Removal	Total	iotai
		following:				
		Rebuild approximately 17.1 miles of wooden H-				
		frame line on three segments of 138 kV ckt 65				
		from Wallis - GEBHRT - Sealy - Peters with the				
		latest standard double-circuit-capable concrete				
		and/or steel structures;				
		Replace the existing 17.1 miles of 1-795 AAC				
	!	conductor, Including substation jumpers and				
	1	spans, with the latest standard 2-959 ACSS				
		conductor;				
		Replace the necessary substation equipment at				
		Wallis, Sealy, and Peters 138 kV substations with				
		at least 4000 A.				
		This project is needed to replace aging				
		infrastructure and to address line clearance				
	ļ	concerns on three segments of the 138 kV ckt 65				
		from Wallis - GEBHRT - Sealy - Peters. As shown in				
		the analysis, the project would also resolve some				
		significant P6 (maintenance outage) loading				
		concerns that currently exist on the system. The				
		upgrade of the 1974 vintage wooden H-frame line				
		to the storm-hardened, modern concrete and/or				
		steel structures will improve the resiliency of the				
		line against hurricane-force winds. The rebuild will				
	1	also provide a much higher circuit capacity and		l i		
	HLP/00/0922/001	the ability to add another circuit to accommodate				
	2	future load growth and/or generation additions.	6,860,532.25	1,715,081,86	8,575,614.11	
		includes the following:				
		Rebuild approximately 18.71 miles of wooden H-				
	ł	frame and single-pole line on three segments of		ļ ,		
		138 kV ckt 93 from Algoa Corner – Alta Loma –				
		Hitchcock – La Marque with the latest standard				
		double-circuit-capable concrete and/or steel				
		structures except for the 3.5-mile long loop				
	1	section to Hitchcock which will utilize single-				
		circuit concrete and/or steel structures along the				
		city streets;				
		• Replace the existing 18:71 miles of 2-397 ACSR				
		and 1-2000AAC conductor, including substation		1		
		jumpers and spans, with the latest standard 2-959				
		ACSS conductor;				1
		Replace the necessary substation equipment at				
		138 kV Hitchcock substation with 4000 A]		
		equipment.				
		This project is needed to replace aging				
		infrastructure and to address multiple line				
		clearance concerns on 138 kV ckt 93 P.H.				1
		Robinson to La Marque segments from Algoa		Į Į		1
		Corner – Alta Loma – Hitchcock – La Marque. The				1
		majority of the line was constructed in 1951				1
		followed by the Hitchcock loop in 1988, and an				1
		upgrade of the 1951 vintage wooden H-frame line				1
	HLP/00/0922/001	and 1988 vintage wooden single-pole line to the				1
	6	storm-hardened, modern concrete and/or steel	80,749,607.41	4,029,794.66	84,779,402.07	1
	HLP/00/0922/001	Olstribution work required to maintain clearances	50/1-45/007/41	1,020,751,00	2,,,,	1
	R	from LaPorte substation taps	3,532,962.03	5,153,869.67	8,686,831.70	1
	HLP/00/0922/001	in our car once substantian taps	دن.عددرعددرب		0,000,001.10	1
						1
	4	REBUILD/RECONDUCTOR GULEGATE SUR	ว าาก สุดจ. อว	5.454.305.18	7 565 189 10	
	9 HLP/00/0922/002	REBUILD/RECONDUCTOR GULFGATE SUB Distribution work required to maintain clearances	2,110,883.92	5,454,305.18	7,565,189.10	

ect						 Project Catego
огу	Project Number	Description	Additions	Salvage / Removal	Total	Total
		138kV Ckt 02A-1: Str #24713 Slenna-Dewal				
		A grld hardening project consisting of the				
		following:				
	'	•Rebuild/Reconductor 5.32 circuit miles of 138kV				
		Ckt,02A-1 from Str #24713 to Str #20260. Install 2-				i
		959 ACSS, 3/8 HS Steel Static, and 1-72f ADSS or 1-				
		96f OPGW along with the replacement of wood				
		structures.				
		•Rebuild/Reconductor 1.56 circult miles of 138kV Ckt 02A-1 from Str #20260 (replaced under P1048-				
		1) to Dewalt Sub. Install 2-959 ACSS, 3/8 HS Steel				
		Static, and 72f ADSS.				
		Rebuild/Reconductor 2.23 circuit miles of 138kV				
-		Ckt 02A-2 from Dewalt Sub to Missouri City Sub				
	HLP/00/0922/00Z	Tap. Install 2-959 ACSS, 3/8 HS Steel Static, and				
	3	72f ADSS.	22,112,292.20		22,112,292.20	
	_					1
						1
		138kV Ckt 02B Burke-WAP				1
		A grid hardening project to rebuild/reconductor				
		18.1 ckt miles of 138kV Ckt 028-1 from Str #04618				
		to WAP Sub with 2-959 ACSS, 3/8 HS Steel Static,				
ļ		and 72f ADSS. Assumed installation of steel towers and steel poles at angle structures in				
[possible floodway near Big Creek. Assumed				
		temporary bypasses at angle structures only.				
		Assumed no full temporary bypass needed but to				
	HLP/00/0922/002	be updated during detailed engineering design.				ļ
	5		31,405,324.11		31,405,324.11	
		138kV Ckt 37C TECO-Garrott				
-		This work order covers the transmission line work				
		involved in the partial rebuild of the existing 37C-				
		2 transmission circuit from existing structure				
		#14556 to existing structure #14560 which are located in the proposed Hermann Dog Park. The		ļ		
		structures are located approximately 0.07 miles.				İ
	HLP/00/0922/003	east of the intersection of N MacGregor Way and				
	2	Cambridge St. in Harris County.	18,643,674.31		18,643,674.31	
						1
		COLLEGE SUB TAPS				
		A grid hardening project consisting of				
		Rebuild/Reconductor 1.70 circuit miles of 138kV				
		Ckt 06G-3 College Sub to Str #14242, Install 2-959				
	HID /AD (DODO /ODO	ACSS, 7#8 Static, and 1-72f ADSS using high-				
	HLP/00/0922/003	leakage insulators, Install conductor in a vertical configuration on the street side.	11,634,983.65		11,634,983.66	
	<u> </u>	admigaration on die street side.	22,004,200,000		11,00%,000.00	1
		Grid hardening project to rebuild 3.02 circuit				
		miles of 138kV Ckt 808-1 from Imperial Sub to Str				
Į		#06448 . This area is identified as an area with				
		reduced flood risk due to levee, need to consider				
		the expected water level if levee was breached for				
	HLP/00/0922/003	vertical clearance design purposes to avoid the need for outages due to high water. Install 2-959				
	8	ACSS, 3/8 HS Steel Static.	5,029,970.23		5,029,970.23	
	HLP/00/0922/003	mass, a/e no steerotatio	2,023,310.23		3,043,310,43	1
	9	BRAZOS RIVER CROSSING Relocate Str #05429 🔿	5,032,287.13	1,334,734.89	6,367,022.02	
		Substation improvements include conversion at	. ,			1
		Fannin substation and new feeder panel at				
	HLP/00/0936	Needville substation.	11,265,266.65	215,046.94	11,480,313.59	

roject	Project Number	Description	Additions	Salvage / Removal	Total	Project Categor Total
ategory	Project Number	Major Underground Rehab - VLT Replace 15KV	Additions	Salvage / Ketilovat	TOTAL	TOTAL
		BKRS: Replacement of 15KV Vacuum breakers				
		with 6&W Trident 15KV Solid Dielectric				
		Interrupters. Replacement reasons include but				
		not limited to obsolescence and operational				
	HLP/00/1004	issues.	1,584,009.39	125,071.70.	1,709,081.09	
	HEF/00/1004	Distribution line clearance corrections between	1,564,005.35	123,074.70.	10,700,004.00	
		transmission and distribution facilities to meet				
		National Electrical Safety Code (NESC)				
	LILD/OD/10FF		11 050 970 43	2 202 462 60	12 262 224 02:	
	HLP/00/1055	requirements.	11,059,870.42	2,202,463.60	13,262,334.02 2,938,825.06	
	HLP/00/1095	Rebuild Bringhurst Substation	2,938,825.06		2,958,825.06	
		Culturation Discount Company To Enhancement				
		Substation Physical Security Enhancement:				
		Replacement of substation facility fencing with				
		more protective fencing to ensure our critical		D 404 055 50	0.007.070.40	
	HLP/00/1099	assets receive a greater level of protection.	5,902,915.66	2,104,956.52	8,007,872.18	
	HLP/00/1128	Rebuild Galena Park substation	1,048,858.32	68,662.46	1,117,520.78	
		SUBSTATION NETWORK MODIFICATIONS -				
		Physically isolate substation communications				
	HLP/00/1195	infrastructure	1,429,697.39	5,308.45	1,435,005.84	ĺ
		includes the following:				
		Rebuild approximately 25.69 out of 27.35 miles				
		of wooden H-frame line on the 138 kV FOSTER -				ļ
		Peters circuit 25 with the latest standard double-				
		circuit-capable concrete and/or steel structures;				
		Reconductor 0.55 miles of 1–795 AAC conductor				
		on the 138 kV Flewellen - FOSTER circuit 25				
		segment, and 26.04 miles of 1-795 AAC or 1-795				
		ACSR conductor on the 138 kV FOSTER - Peters		1		
		circuit 25 segment, including substation jumpers				
		and spans, with the latest standard 2-959 ACSS				
		conductor. The total length of reconductoring is				
		26.59 miles; and				
		Replace the necessary substation equipment at				
	1	Flewelien and Peters 138 kV-substations with at				
		Jeast 4000 A.				
		This project is needed to replace aging				
		infrastructure and to address line clearance				
		concerns on the 138 kV FOSTER - Peters circuit 25				
		segment. The upgrade of the 1974 vintage				1
		wooden H-frame line to the storm-hardened,				1
		modern concrete and/or steel structures will				
	l					
	i	Improve the resiliency of the line against				
	1	hurricane-force winds. Also, the project resolves				
		CNP Planning Event P3 and CNP Maintenance: Outage P6 loading concerns seen in summer peak				
				1		1

roject ategory	Project Number	Description	Additions	Salvage / Removal	Total	Project Categor Total
		CKT96.DEER PARK TO CA UPGRADE. Real Time				
		Operations (RTO) approached Transmission				
		Planning regarding an overload seen on 138kV				
		Cardiff to Deer Park circuit 96 when an outage is				
		taken on 138kV Morgan's Point to DOWIAP				
		circuit 84 and the potential failure of breaker				
		C240 at BAYOU. When duplicating this scenario				
		on the study case, Transmission Planning			'	
		observed a potential overload of 128% of Rate B				
	•	on 138 kV Cardiff to Deer Park circuit 96. Should		1		
		this scenario occur in real-time, the overloaded				
		segment would likely either trip automatically or				
		manually due to the magnitude of the overload.				
		This could result in islanding well over 100 MW of				
		load involving seven industrial customers, causing				
		a NERC-EOP-004 reportable event. Upgrading this				İ
		single circuit segment would avoid this situation:				
		* Reconductoring 5.81 miles of 138 kV Cardiff to			2 140 252 50	
	HLP/00/1428	Deer Park circuit 96	8,400,059.98		8,400,059.98	
		CenterPoint Energy Houston Electric, LLC				
		(CenterPoint Energy) High Voltage Projects (HVP)				
		requested Transmission Studies and Modeling				
		(TSM) to review a potential project after a]
		pipeline company requested available space to be				
		allocated between the Explorer Corner and				
		Channelview substation. HVP indicated that space				
		can be made available if the currently				
		deenergized 69 kV ckt 38 were to be upgraded for				
		use at 138 kV by replacing the existing H-frame				
		structures with concrete poles. HVP requested				
		TSM to review the potential project for reliability				
		impacts, particularly any benefits that utilizing the				
		deenergized circuit might provide. TSM Identified				
		that this tower section of ckt. 38 could be used to		1		
		lower the fault duty at the Greens Bayou 138 kV				
		substation by adding approximately 6.5 miles of				
		additional conductor impedance to 138 kV Greens				
		Bayou to LYCHEM ckt 08. CenterPoint Energy's				
		TSM studied the reconfiguration of Greens Bayou				
		to LYCHEM ckt 08 project which includes the]		1
		following:				
		•Rebuild about 3.25 miles of the retired Explorer				1
		Corner to Channelview ckt 38 using a double				
	i	circuit arrangement and loop It into Greens Bayou				
	1	to LYCHEM ckt 08.				
	HLP/00/1447	•Convert existing H-frame construction to a 138kV	7,103,020.62	793,477.89	7,896,498.51]
	HLP/00/1466	Substation router refresh	2,678,735.23	99,760.36	2,778,495.59	

roject tegorγ	Project Number	Description	Additions	Salvage / Removal	Total	Project Categor Total
	1					
		P1509.1 New Gulf Approach Spans. TEXGLF				
		substation is a customer-owned breakered				
		substation which had a single generator connected to it and is connected to South Lane				
		City via 138 kV ckt 60 and West Columbia via 138				
		kV ckt 04. CenterPoint Energy received an ERCOT				
		Notification of Suspension of Operations for this				
		resource on Dec 1, 2020. The notification				
		indicated that the unit had a forced outage and				
		the resource owner decided to retire the unit immediately rather than repair. Since the				
		resource owner also owns the 138 kV TEXGLF				
		substation, the resource owner has decided to be				
		disconnected from the transmission system.				
		Removing this substation will force CenterPoint				
		Energy to make modifications to the topology.				
		The 138 kV CenterPoint Energy New Gulf distribution substation currently double tapped				
		off 138 kV South Lane City – TEXGLF ckt 60 and				
		West Columbia - TEXGLF ckt 04, will need to be				
		converted to a sectionalizing substation when				
	HLP/00/1509	TEXGLF is removed from the transmission system.	2,858,961.61	9,808.50	2,868,770.11	
		Transmission Planning has observed a potential				
		loading concern in future year cases on the 138				
		kV West Columbia to San Bernard circuit 04. San		ļ		
		Bernard is a new substation to be built in 2022 that connects a new solar plant looped on 138-kV				
		circuit 04 between the West Columbia and				
		Pledger substations. The existing conductor				
		configuration on the towers between West				
		Columbia and Pledger is a 1-795ACC on the north				
		side and bundled 2-959ACSS on the south side				
		connected in a parallel bundled arrangement. Due to the parallel bundling, the conductor's normal				
		rating (Rate A) is 532 MVA and the emergency				
		rating (Rate B) is 680 MVA. San Bernard				
	1	substation will have an equipment				
		normal/emergency ratings of 956/1051 MVA and				
		West Columbia has equipment		1		
		normal/emergency ratings of 478/525 MVA. The largest potential CNP Planning Event P1 loading				
		concern is 116% of the 478 MVA normal rating. In				
		addition, potential loading concerns are seen for				ļ
		NERC Category P6 Events as high as 142.0% of the				
		525 MVA emergency rating. Potential short circuit				
		issues are seen at West Columbia with a single line to ground fault at 100.57% of the existing				
		33.4 kA fault duty rating.				
	HLP/00/1512	* Upgrade West Columbia to a minimum	1,138,470.02		1,138,470.02	
		Modernization Program in Major Underground to				
		convert circuit feeders crossing freeways from				
	HLP/00/1539	overhead to underground.	5,297,030.00		5,297,030.00	
		Modernization Program in Major Underground to replace aging cable on dedicated underground				
		circuit feeders, substation getaways and roadway				
	HLP/00/1540	dips.	10,324,291.92	2,900,211.50	13,224,503.42	1

Project						Project Categor
	Project Number	Description	Additions	Salvage / Removal	Yotal	Total
	<u></u>	project includes the following:				
		Before summer peak 2023				
		Rebuild approximately 6.2 miles of 69 kV				
		structures on the 69 kV Greens Bayou to				
		Wallisville Ckt 61 with				
		the latest standard concrete and/or steel				
		structures				
		Reconductor approximately 6.2 miles of 69 kV				
		Greens Bayou to Wallisville Ckt 61, Including				
		substation				
		jumpers and spans, with the latest standard 2-959		!		
		ACSS conductor				
		Reduce the size of the Greens Bayou capacitor				
		bank CB1 from 120 MVAR to 100 MVAR				
		Before summer peak 2024				
		Convert customer-owned 69 kV TEXWAL				
		substation to a breakered 138 kV substation				
		Convert CenterPoint Energy-owned 69-kV				
		Wallisville distribution substation to a loop-tap				
		138 kV				
		substation				
		Convert customer-owned 69 kV CASTEN				
		substation to a 138 kV loop-tap substation as				
		described in				
		Option 1 or convert 69 kV CASTEN to distribution				
		service from the converted 138 kV Wallisville				
	HLP/00/1543	distribution substation as described in Option 2:	5,043,718:20		5,043,718.20	
		Electro-Mechanical Relay Replacements- Replace	2,7,			
		electromechanical relays with microprocesso		!		
	HLP/00/1565	relaying.	5,110,397.36	66,308.54	5,176,705.90	
		Cottonwood Bayou Rélated Upgrades.	-,,	11,11111	., .,	
		Upgrade MONSAN – HUDSON ckt04-to minimum				
		507/507MVA				
		Mustang Bayou – upgrade 138 kV loop bus to				
		minimum 568/568MVA				
		Angleton – upgrade Danbury ckt04 to minimum				
		563/563MVA				
		Webster – upgrade Friendswood tap ckt04 to.				
		minimum 525MVA continuous		í I		
		Liverpool – upgrade 138kV loop bus to minimum				
		517/517MVA				
		PETSON – upgrade MONSAN & Danbury ckt04 to				
		minimum 531/532MVA (upgrade ring & line				
		equipment to 4000A)				
		MONSAN – upgrade PETSON ckt04 to minimum				
		520/522MVA				
		Angleton – upgrade WINMIL ckt26 to minimum				
		287/341MVA"		1		
	HLP/00/1603		3,397,352.57		3,397,352.57	
		Relocate Ckt 01A and Ckt 63B underground	0,001,000.01		4,00.,,00	1
		transmission approach spans into Seawall Sub				
		including reconfiguration of associated				
	HLP/00/1608	pressurization plant connections.	2,379,930.57		2,379,930.57	
	S/101318/CG/TES	·	_,,	†··		Ì
	TEQUIP	Substations	2,324,068.33		2,324,068.33	1
	. 50,011	The maintenance, installation, and/or	-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-, 400000	1
	TRIP	replacement of Trip Saver Devices.	5,255,136.44	1,087,630.47	6,342,766.91	
tefligen	1	T production of the parties of th	5,230,400,44	2/00//00/4/	2,2 im,1 00.24	22,405,9
	T	Planned Upgrades or Replacements of		<u> </u>		22,400,0
		Communication Equipment supporting				1
		Distribution Automation. (IGSD, DACs,				1
				i l		

Project						Project Category
Category	Project Number	Description	Additions	Salvage / Removal	Total	Total
		Planned/proactive IGSD device				
	1GSD	installations/replacements.	12,570,393.94	958,108.20	13,528,502.14	
		Demand Response Management System (DRMS) -				
		E-curtailment product was purchased for AMS				
	S/101220/CN/RED	with the goal of reducing customer demand at the				
	070	meter level.	2,060,097.73		2,060,097.73	
	S/101392/CE/CELL			i i		
	RELAY	Deploy (Post DOE) existing cell relay	1,276,858.70	(143,279.47)	1,133,579.23	
		Installation of Telecom boxes for intelligent grid				
	scig	devices to support reliability.	1,451,448.70		1,451,448.70	ĺ

Total Projects Greater than \$1,000,000	2,093,297,964	144,396,685	2,237,694,650	2,237,694,650
Total of Projects Less than \$1,000,000	49,632,279	2,099,607	51,731,886	51,731,886
Total of All Projects	2,142,930,243	146,496,292	2,289,426,535	2,289,426,535

Workpaper RMP-1 2019 Capital Project List Pivot is voluminous and will be provided in electronic format.

Workpaper RMP-1 2020 Capital Project List Pivot is voluminous and will be provided in electronic format.

Workpaper RMP-1 2021 Capital Project List Pivot is voluminous and will be provided in electronic format.

Workpaper RMP-1 2022 Capital Project List Pivot is voluminous and will be provided in electronic format.

Workpaper RMP-1 2023 Capital Project List Pivot is voluminous and will be provided in electronic format.

Workpaper RMP-1 2019 Capital Project List Detail is voluminous and will be provided in electronic format.

Workpaper RMP-1 2020 Capital Project List Detail is voluminous and will be provided in electronic format.

Workpaper RMP-1 2021 Capital Project List Detail is voluminous and will be provided in electronic format.

Workpaper RMP-1 2022 Capital Project List Detail is voluminous and will be provided in electronic format.

Workpaper RMP-1 2023 Capital Project List Detail is voluminous and will be provided in electronic format.

PUC DOCKET NO. 56211

§	PUBLIC UTILITY COMMISSION
§	•
§	OF TEXAS
	89 89 89 89

DIRECT TESTIMONY

OF

MANDIE SHOOK

ON BEHALF OF

CENTERPOINT ENERGY HOUSTON ELECTRIC, LLC

MARCH 2024

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY	.ES-1
I.	INTRO	DDUCTION	1
II.	DESC	RIPTION OF THE ELECTRIC ENGINEERING DIVISION	6
	A. B.	TRANSMISSION ENGINEERINGPOLICY AND COMPLIANCE	8
	C.	MAJOR UNDERGROUND ENGINEERING	8
	D. E.	SUBSTATION ENGINEERINGDISTRIBUTION ENGINEERING	10
III.	ELEC	TRIC ENGINEERING OPERATIONS SINCE DOCKET NO. 49421.	11
IV.	ELEC	TRIC ENGINEERING PROGRAMS AND INITIATIVES	14
	A. B.	THE ROOT CAUSE ANALYSIS PROGRAMINFRA-RED PROGRAM	14 16
V.	CAPI	TAL AND O&M EXPENSE PLANNING AND COST CONTROL	18
	A. B. C.	WORKFORCE PLANNING PROCESS BUDGETING AND COST CONTROL USE OF CONTRACTORS	19
VI.	ELEC	TRIC ENGINEERING O&M EXPENDITURES	20
VII.	ELEC	TRIC ENGINEERING CAPITAL ADDITIONS	2:
VIII.	CONC	CLUSION	21

GLOSSARY OF ACRONYMS AND DEFINED TERMS

Acronym	Definition
CCN	Certificate of Convenience and Necessity
CenterPoint Houston or Company	CenterPoint Energy Houston Electric, LLC
Commission	Public Utility Commission of Texas
ERCOT	Electric Reliability Council of Texas
FERC	Federal Energy Regulatory Commission
NERC	North American Electric Reliability Corporation
O&M	Operation and Maintenance
SAIDI	System Average Interruption Duration Index: average number of outage minutes per customer per year.
SAIFI	System Average Interruption Frequency Index: average number of times that a customer's service is interrupted.
Test Year	12 months ending December 31, 2023
Texas RE	Texas Reliability Entity

1 EXECUTIVE SUMMARY ELECTRIC ENGINEERING 2 (MANDIE SHOOK) CenterPoint Energy Houston Electric, LLC's ("CenterPoint Houston" or the 3 "Company") Electric Engineering Division is one of the divisions within the Company that 4 is responsible for the daily operation of the Company's transmission and distribution 5 6 system. 7 My testimony: describes the creation of the Electric Engineering Division; 8 describes ongoing operations within the Electric Engineering Division; 9 describes the major programs and initiatives that drive Electric Engineering 10 investment and expense, including the reliability initiative and resiliency 11 12 standards; describes the planning and cost control programs within the Electric 13 Engineering Division; 14 supports the reasonableness and necessity of Operations and Maintenance 15 ("O&M") expenses incurred in support of the Electric Engineering Division 16 during the 12 months ended December 31, 2023 ("Test Year") in the amount 17 of \$4.04 million; and 18 supports the reasonableness and necessity of Electric Engineering capital 19 costs from January 1, 2019 through December 2023 in the amount of 20 approximately \$300 thousand, including amounts reflected in Schedule M 21 of the rate filing package. 22 Together with the cost-of-service data and testimony of the Company's other witnesses, 23 my testimony demonstrates that the capital expenditures and Test Year O&M expenses for 24 the Electric Engineering Division are reasonable, necessary, and representative of the costs 25 to provide service to customers of CenterPoint Houston and thus, should be included in the 26 27 Company's cost of service.

1		DIRECT TESTIMONY OF MANDIE SHOOK
2		I. <u>INTRODUCTION</u>
3	Q.	PLEASE STATE YOUR NAME AND POSITION.
4	A.	My name is Mandie Shook and I am employed by CenterPoint Houston as Vice
5		President of Electric Engineering.
6	Q.	PLEASE DESCRIBE YOUR EDUCATIONAL AND PROFESSIONAL
7		BACKGROUND.
8	A.	I graduated from Louisiana State University with a Bachelor of Science degree in
9		Electric Engineering in 1998. I am a registered professional engineer in the state
10		of Texas. I have been employed by CenterPoint Energy, Inc. and its predecessor
11		companies for the past 25 years. My career experience includes distribution
12		engineering, substation engineering, distribution operations, asset management,
13		system protection, major underground engineering, Electric Reliability Council of
14		Texas ("ERCOT") and market regulatory affairs and policy and compliance.
15		Currently, I am Vice President of Electric Engineering.
16	Q.	WHAT ARE YOUR CURRENT RESPONSIBILITIES?
17	A.	As Vice President of Electric Engineering, I lead the division that is responsible for
18		engineering, design, and capital budgeting support for the Company's transmission
19		and distribution system, as well as support for compliance with North American
20		Electric Reliability Corporation ("NERC") Reliability Standards.

1	Q.	ON WHOSE BEHALF ARE YOU TESTIFYING IN THIS PROCEEDING?
2	A.	I am testifying on behalf of CenterPoint Houston.
3	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS
4		PROCEEDING?
5	A.	The purpose of my testimony is to provide an overview of the engineering and
б		design work that the Electric Engineering Division provides to the Company. I also
7		describe the cost control measures in place within the Electric Engineering Division
8		and support the O&M and capital expenses associated with activities performed by
9		the Electric Engineering Division.
10		At the end of the test year, CenterPoint Houston's Electric Business Unit in
11,		Texas consisted of six divisions: (1) Electric Engineering, (2) Grid Transformation
12		and Investment Strategy, (3) High Voltage and System Operations, (4) Distribution
13		Operations and Service Delivery, (5) Major Underground and Distribution
14		Modernization, and (6) Strategic Business Growth and Engagement. The Electric
15		Engineering Division was created in December 2022. It is comprised of five
16		departments: (1) the Transmission Engineering Department, (2) the Policy and
17		Compliance Department, (3) the Major Underground Engineering Department, (4)
18		the Substation Engineering Department, and (5) the Distribution Engineering
19		Department.
20		My testimony identifies the functions of the Electric Engineering Division
21		and describes how the division is structured and staffed to accomplish the goal of
22		providing a reliable power delivery system at a reasonable cost. My testimony
23		supports the reasonableness and necessity of the Electric Engineering Division's
24		O&M expenses and the prudence of its capital investment. My testimony also

demonstrates that the O&M costs associated with the Electric Engineering Division are effectively and carefully managed and maintained through business planning, budget plan review, and ongoing budget plan monitoring. I also provide testimony to support that the assets associated with the Electric Engineering capital investment are used and useful in the provision of electric utility service and the capital investment was prudently incurred. I conclude that the Electric Engineering Divisions' costs are reasonable and necessary and prudently incurred, and therefore should be recovered in the Company's rates.

A.

9 Q. PLEASE DESCRIBE THE INTERACTION OF YOUR TESTIMONY WITH 10 OTHER WITNESSES IN THIS CASE.

My testimony describes the operation of the Electric Engineering Division and the support the division provides to the other divisions within the Electric Business Unit, including providing engineering support to the High Voltage and System Operations, Major Underground and Distribution Modernization, Distribution Operations and Service Delivery, and Grid Transformation and Investment Strategy. I also provide testimony in support of the capital expenses associated with engineering of projects reflected in Schedule M of the Rate Filing Package. Company witnesses Eric Easton and David Mercado support the other portions of the capital investment reflected in Schedule M. I also support the analysis of the reliability performance of the CenterPoint Houston system, along with Company witnesses Eric Easton and Deryl Tumlinson. Finally, I discuss the engineering support provided to the Company for transmission line certificate of convenience and necessity ("CCN") applications.

The following witnesses present testimony on the operations of the

Electric Business Unit:

1

2

3

Overview of CenterPoint Operations Witnesses

Witness, Title	Subjects Addressed
Lynnae Wilson, Senior Vice President, Electric Business Unit	 Overview of CenterPoint Houston and its operations; Company's organizational and management structure and Company's commitment to its core values; Summarize the Company's rate filing package, The Company's efforts related to reliability and resiliency, and the impact of economic and customer growth in the Company's service territory since its last base rate case.
Eric Easton, Vice President, Grid Transformation & Investment Strategy	 How Distribution and Transmission Planning groups identify and develop future capital investment projects; How capital investments are prioritized and optimized; The reliability reporting process and various reporting tools that have been developed; How the addition of a Capital Program Management department will support the efficient execution of capital projects and programs; How the Strategic Coordination and Analysis department aligns strategic initiatives, identifies synergies, and improves interdepartmental coordination on projects; and Supports the reasonableness and necessity of Grid Transformation & Investment Strategy-related Test Year O&M expense and capital investment since 2019 and the related schedules.
David Mercado, Vice President, High Voltage and System Operations	 Overview of the structure and functions of the High Voltage and System Operations Division; Operations in the High Voltage and System Operations Division since 2019; Key programs and initiatives undertaken by the High Voltage and System Operations; Expense planning and cost control measures; and Supports the reasonableness and necessity of High Voltage and System Operations-related Test Year O&M expense and capital investment since 2019 and the related schedules.

Randal M. Pryor, Vice President, Major Underground & Distribution Modernization	 MUG & Distribution Modernization division and the major programs and initiatives; Implications for MUG & Distribution Modernization due to the growth the Company's distribution system has experienced since 2019; Processes used to plan, monitor, and control investments and expenditures; and Supports the reasonableness and necessity of Major Underground & Distribution Modernization-related Test Year O&M expenses and distribution capital investment since 2019 and the related schedules.
Deryl Tumlinson, Vice President, Distribution Operations & Service Delivery	 Distribution Operations and Service Delivery Division; Quotidian activities and major programs and initiatives that drive distribution investment and expense; Impacts and operational responses that occurred as a response to significant weather events; Impact of supply chain disruptions; Long lead-time asset purchases; and Supports the reasonableness and necessity of Distribution Operations & Service Delivery-related Test Year O&M expenses and distribution capital investment since 2019 and the related schedules.
Mandie Shook, Vice President, Electric Engineering	 Creation of the Electric Engineering Division; Operations within the Electric Engineering Division; Major programs and initiatives that drive Electric Engineering investment and expense, including the reliability initiative and resiliency standards; Planning and cost control programs within the Electric Engineering Division; Supports the reasonableness and necessity of Electric Engineering-related O&M expense and capital costs incurred since 2019 and related schedules.
Rina Harris, Vice President, Strategic Business Growth & Engagement	 Functions of the Strategic Business Growth and Engagement Division; Explains how the division is structured and staffed to enhance the customer service provided to large customers; Steps taken to understand future customer needs so as to efficiently support large customer's growth and reliability needs; and Supports the reasonableness and necessity of test year O&M costs.

1

1 II. DESCRIPTION OF THE ELECTRIC ENGINEERING DIVISION

2 Q. PLEASE EXPLAIN THE HISTORY OF THE ELECTRIC ENGINEERING

3 **DIVISION?**

4

5

6

7

8

9

10

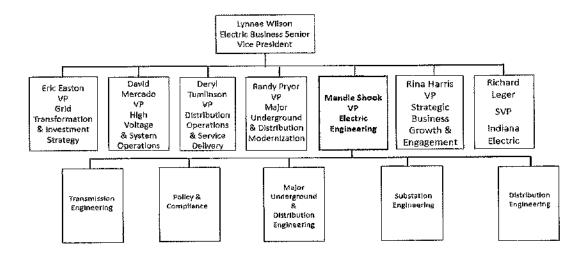
11

12

21

A. The Electric Engineering Division was formed in December of 2022. Prior to its formation, the work performed by the Electric Engineering Division was performed by the Engineering and Asset Optimization organization. The former Engineering and Asset Optimization organization was divided into two divisions to better align functionality and support project execution: the Electric Engineering Division which is covered in this testimony and the Grid Transformation and Investment Strategies Division which will be addressed in Eric Easton's testimony. As further described by Lynnae Wilson, the Company reorganized the Electric Business Unit to more strategically align different operations.

13 Q. WHAT ROLE DOES THE ELECTRIC ENGINEERING DIVISION PLAY


14 WITHIN THE ELECTRIC BUSINESS UNIT?

15 A. Electric Engineering supports the work of the other divisions within the Electric
16 Business Unit by providing engineering, design, and capital budgeting support for
17 the Company's transmission and distribution system. The support provided by the
18 Electric Engineering Division is critical to the work performed by the Electric
19 Business Unit to ensure safe and reliable electric service to CenterPoint Houston's
20 customers.

Q. HOW IS THE ELECTRIC ENGINEERING DIVISION ORGANIZED?

A. In 2023, this division included (1) the Transmission Engineering Department, (2) the Policy and Compliance Department, (3) the Major Underground Engineering Department, (4) the Substation Engineering Department, and (5) the Distribution

- Engineering Department. Please see Figure 1 for the organizational chart for Electric Engineering.
 - Figure MS-1: Electric Business Unit/Electric Engineering Organizational Chart

A. TRANSMISSION ENGINEERING

3

4

5

6

7

8

9

10

11

12

13

14

15

16

À.

Q. PLEASE DESCRIBE THE TRANSMISSION ENGINEERING DEPARTMENT.

The Transmission Engineering Department provides engineering and design services for the construction of new transmission facilities within the CenterPoint Houston system. The department supports the work of the High Voltage & System Operations Division.

This department is responsible for engineering design and construction support services for the installation and modification of the Company's transmission system. Engineering design and construction services include budget development, schedule management, engineering drawings, work orders, and material and equipment review. This group is also responsible for the development

- and engineering support of transmission line clearance, hardening, and resiliency
 efforts. In addition, the Transmission Engineering Department provides civil and
- 3 structural engineering services for the substation and distribution projects groups.

4 B. POLICY AND COMPLIANCE

5 O. PLEASE DESCRIBE THE POLICY AND COMPLIANCE DEPARTMENT.

6 The Policy and Compliance department is responsible for overseeing the Α. 7 Company's NERC Reliability Standards compliance program and supporting the This includes 8 various operational departments in their compliance efforts. 9 understanding the requirements of NERC Reliability Standards and providing support to sufficiently demonstrate compliance with the NERC Reliability 10 11 Standards. Policy and Compliance functions as the point of contact and coordinator 12 for communications with the Federal Energy Regulatory Commission ("FERC"), NERC, and Texas Reliability Entity ("Texas RE") for compliance-related 13 activities. The department also provides support for business planning and 14 regulatory activities including the coordination of the CCN process. 15

C. MAJOR UNDERGROUND ENGINEERING

17 Q. PLEASE DESCRIBE THE MAJOR UNDERGROUND ENGINEERING

18 DEPARTMENT.

16

- 19 A. The Major Underground Engineering department provides engineering and design
- 20 services for the construction of new three phase underground distribution facilities
- 21 within the CenterPoint Houston system. The department supports the work of the
- 22 Major Underground and Distribution Modernization Division.
- 23 This department is responsible for providing engineering design and construction

support services associated with the Company's three phase underground electric distribution facilities. This includes designated underground areas, such as downtown Houston, the Texas Medical Center, and George Bush Intercontinental Airport, as well as individual commercial loads served with three-phase pad mounted transformers, underground getaways from substations, and underground dips under freeways. Engineering design and construction services include budget development, schedule management, engineering drawings, work orders, and material and equipment review. This group is also responsible for the development and engineering support of major underground hardening and resiliency projects and the protection and automation of underground equipment and network systems.

D. SUBSTATION ENGINEERING

ĺ

A.

12 Q. PLEASE DESCRIBE THE SUBSTATION ENGINEERING DEPARTMENT.

The Substation Engineering Department provides engineering and design services for the construction of new substation facilities within the CenterPoint Houston system. The Substation Engineering Department is responsible for engineering design and construction support services for the installation of and modification to the Company's substations, as well as engineering support for the installation and modification of Company-owned equipment that is required in customer-owned substations. Engineering design and construction services includes budget development, schedule management, engineering drawings, work orders, and material and equipment review. This group is also responsible for the development and engineering support associated with substation physical infrastructure security,

1		hardening and resiliency efforts, and the protection and automation of substation and
2		transmission systems.
3		E. <u>DISTRIBUTION ENGINEERING</u>
4	Q.	PLEASE DESCRIBE THE DISTRIBUTION ENGINEERING
5		DEPARTMENT.
6	A.	The Distribution Engineering Department provides engineering and design services
7		for the construction of new distribution facilities within the CenterPoint Houston
8		system. The department supports the work of the Major Underground and
9		Distribution Modernization Division and the Distribution Operations & Service
10		Delivery Division.
11		This department is comprised of three functions: Distribution Standards
12		and Materials, Distribution Protection, and Distribution Power Quality.
13		Distribution Standards and Materials is responsible for construction standards,
14		policies, practices, and materials that are needed to build electric distribution
15		facilities in a consistent, reliable, safe, and cost-effective manner. The Distribution
16		Standards and Materials group reviews and updates these standards as necessary to
17		incorporate new requirements and enable new technologies.
18		Distribution Protection is responsible for the electrical protection of the
19		distribution system by developing and evaluating system protection criteria for the
20		safe and reliable operation of the system at distribution voltage levels. Distribution
21		Protection calculates relay settings for protection and control systems that
22		implement automatic fault detection, isolation, and restoration actions in response
23		to disturbances on the distribution system.

Direct Testimony of Mandie Shook CenterPoint Energy Houston Electric, LLC

24

Distribution Power Quality is responsible for managing and reporting on

1		distribution reliability programs and providing technical support for constructing
2		and operating the distribution system. The Distribution Power Quality group
3		supports overall reliability performance of the distribution system by providing
4		customer level and circuit level technical support to Service Consultants and
5		individual customers, including primary metered and premium rollover services.
6	Ш.	ELECTRIC ENGINEERING OPERATIONS SINCE DOCKET NO. 49421
7	Q.	HAVE THERE BEEN CHANGES IN THE COMPANY'S ENGINEERING
8		OPERATIONS SINCE THE PUBLIC UTILITY COMMISSION OF TEXAS
9		("COMMISSION") LAST CONDUCTED A COMPREHENSIVE BASE
10		RATE REVIEW FOR CENTERPOINT HOUSTON?
11	A.	Yes. The test year in Docket No. 49421 ended December 31, 2018. Since that
12		time, CenterPoint Houston has remained committed to delivering safe and reliable
13		electric delivery service to its customers—this commitment never has and never
14		will change. However, factors such as customer growth, design standard changes,
15		and supply chain disruptions have impacted the way the Electric Engineering
16		Division operates.
17	Q.	PLEASE EXPLAIN HOW CUSTOMER GROWTH HAS IMPACTED
18		ELECTRIC ENGINEERING.
19	A.	The Greater Houston area is the fourth largest metropolitan area in the country and
20		is continuing to grow at a fast pace. As shown on Figure MS-2, CenterPoint
21		Houston serves much of this fast-growing area.
22 23		
24		
25		

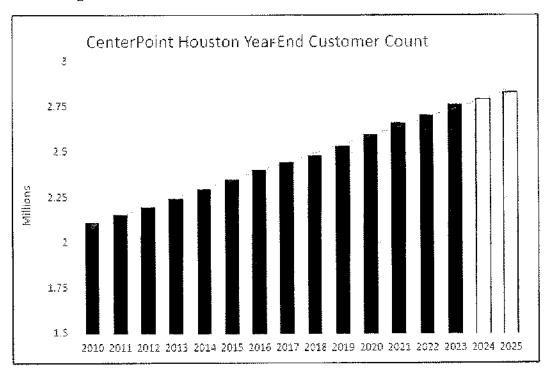


Figure MS-2 CenterPoint Houston Year End Customer Count

1

2

3

4

As further discussed by CenterPoint Houston witness Lynnae Wilson, the extensive growth in the Houston area has resulted in the addition of nearly 300,000 metered customers from January 1, 2019, through December 31, 2023.

5

6

7

This growth has resulted in a substantial uptick in the projects the Company has undertaken to ensure the continued reliable operation of its system and service to customers. In the Electric Engineering Division, this growth has resulted in an increase in volume of engineering projects.

8

9

Q. WHAT DESIGN STANDARDS HAVE CHANGED SINCE 2019?

10 A. There have been several revisions to CenterPoint Houston's distribution 11 construction standards as outlined below:

12 13 14

15

1. Beginning in 2022, all new distribution freeway crossings are built underground where feasible. If underground is not feasible, then overhead crossings are built on concrete poles, which was the prior construction standard for distribution freeway crossings. This design decreases the

occurrence of overhead lines obstructing major throughfares during a major 1 2 storm event. Beginning in 2022, the Company adopted National Electric Safety Code 3 2. Rules 250C (Extreme Wind) and 250D (Extreme Ice with Concurrent Wind 4 5 Loading) to apply to all new and replacement distribution structures regardless of height. This adoption will harden distribution structures to б better withstand extreme weather events. 7 Beginning in 2022, distribution lines in some areas within the Company's 8 3. territory have been identified to be at risk of damage from galloping 9 conductors1. In these designated areas a special tangent pole framing is 10 used for new or replacement construction. This design hardens distribution 11 lines and structures to better withstand ice buildup during cold weather. 12 Beginning in 2022, distribution critical infrastructure such as switching 13 4. devices, large transformer banks, regulator banks, double circuits, junction 14 poles, terminal poles, and structures in the first circuit section outside the 15 substation will utilize poles with an engineered material instead of wood 16 poles that were utilized previously. 17 WHAT IS THE IMPACT OF THE DESIGN STANDARD CHANGES? 18 O. Electric Engineering facilitates the development and maintenance of the 19 A. These standards are utilized by the Major distribution design standards. 20 Underground and Distribution Modernization division. Company witness Randy 21 Pryor discusses the impact of design standard changes to this group in his 22 testimony. 23 WHAT SUPPLY CHAIN ISSUES HAS CENTERPOINT HOUSTON 24 Q. 25 EXPERIENCED SINCE 2019? CenterPoint Houston's supply chain challenges significantly increased due to the 26 A. COVID-19 global pandemic. Many of our trusted vendors were not able to get the 27

^{&#}x27;Galloping conductors refers to a condition where ice build on conductors coupled with wind causes a high-amplitude low-frequency oscillation of the conductor. This can result in faults or mechanical stress.

- 1 materials they needed to build equipment. For example, URD transformers were 2 in short supply during and since the pandemic.
- 3 Q. HOW HAVE THE SUPPLY CHAIN ISSUES IMPACTED ELECTRIC
- 4 ENGINEERING?
- 5 A. Electric Engineering evaluates vendors and materials that will meet our standards
- and operational needs. Due to supply chain issues, Electric Engineering has
- 7 continued to seek out and evaluate additional suppliers. These additional vendors
- 8 provide support during these times, but also allow for competitive pricing.
- 9 Company witness Carla Kneipp provides further details regarding the supply
- challenges faced by CenterPoint Houston and what the Company has done to
- 11 address them.
- 12 IV. ELECTRIC ENGINEERING PROGRAMS AND INITIATIVES
- 13 Q. PLEASE DESCRIBE THE TYPES OF PROGRAMS AND INITIATIVES
- 14 WITHIN THE ELECTRIC ENGINEERING DIVISION.
- 15 A. CenterPoint Houston has implemented a number of programs and initiatives that
- were ongoing during the Test Year. The Electric Engineering Division has a role
- in the Root Cause Analysis Program, and the Infra-red Program which are part of
- the Company's overall reliability initiatives. Other reliability programs are
- 19 discussed by Messrs. Pryor and Tumlinson.
- 20 A. THE ROOT CAUSE ANALYSIS PROGRAM
- 21 Q. WHAT IS THE ROOT CAUSE ANALYSIS PROGRAM?
- 22 A. The Company's Root Cause Analysis Program involves the evaluation and
- 23 reliability reporting on a circuit level. As part of this program, Electric Engineering

is responsible for the 300% circuit analysis, which is based on the Commission's reliability and continuity of service standards contained in 16 Tex. Admin. Code §25.52. The system-wide reliability standard requires that each utility maintain and operate its electric distribution system so that the utility's system average interruption duration index ("SAIDI"), which represents the average number of outage minutes per customer per year, and the system average interruption frequency index ("SAIFI"), which represents average number of times that a customer's service is interrupted, do not exceed the Commission-approved SAIDI and SAIFI for the utility by more than 5% in any given year. In addition, the Commission's rule requires that each utility maintain and operate its electric distribution system such that no distribution feeder with more than ten customers sustains a 12-month SAIDI or SAIFI value that is more than 300% greater than the system average of all feeders for any two consecutive years.

As part of this program, Electric Engineering reviews any circuit that is projected to become a 300% circuit. Electric Engineering reviews distribution development plans, outage information, inspection data, vegetation management schedules, and performs field inspections including infra-red inspections of major equipment. Based on its engineering evaluation, Electric Engineering develops a circuit action plan and provides that plan to Distribution Operations and Service Delivery for execution. Deryl Tumlinson's testimony describes how the Distribution Operations and Service Delivery Division executes the circuit action plan.

Q. WHY IS THIS PROGRAM IMPORTANT?

24 A. The 300% circuit analysis is an important part of the Root Cause Analysis Program

because it creates a proactive response to 300% circuit outages. It is designed to identify and initiate corrective actions on circuits with issues before they become a repeating 300% circuit. In order to accomplish this, a circuit's indices are analyzed against predictive data that indicates operational issues. By addressing issues at their root this program leads to greater reliability and customer satisfaction.

B. INFRA-RED PROGRAM

A.

A.

7 Q. WHAT IS THE INFRA-RED PROGRAM?

Infra-red technology allows the Company to see the heat generated by deteriorating components or components that are overloaded on the distribution system, known as "Hot Spots." These Hot Spots eventually result in equipment failure and loss of service to customers. Infra-red technology is a unique tool used to find potential equipment outages before they occur so that proactive repairs can be made prior to an outage. The Infra-red Program deploys this technology through inspection cycles to reduce the number of equipment failures, thereby improving reliability by decreasing SAIDI and SAIFI.

16 Q. WHAT IS THE INSPECTION CYCLE FOR THE INFRA-RED 17 PROGRAM?

All circuits are inspected on an eight-year cycle. Eighty-three benchmark circuits that are representative of the overall CenterPoint Houston system are inspected every two years to ensure that the eight-year cycle is adequate to achieve the desired reliability results. If a circuit is identified as a 4+ year repeating 10% circuit, meaning it's in the top 10% for SAIDI and SAIFI minutes, or a 300% circuit, meaning its SAIDI and SAIFI minutes are three times higher than the average circuit, then it is advanced on the infra-red schedule to the current year. This Direct Testimony of Mandie Shook

- additional focus on the circuits with the highest SAIDI and SAIFI measurements is
- 2 done to address performance issues. Circuits that meet our heavily loaded criteria
- 3 (greater than 500 amps) are also inspected during the peak loading season, as data
- 4 has proven a higher failure rate of equipment that is subjected to higher load.
- 5 Additional equipment is inspected as needed upon request by Operations.

6 Q. WHAT EQUIPMENT IS INSPECTED?

- 7 A. Infra-red scans are conducted on the terminal poles at the substation and major
- 8 equipment on the circuit, including pole-top switches, reclosers, regulators, and
- 9 capacitors. Scans may also be performed on the fuse cutouts, jumpers, splices, and
- 10 transformers along the circuit backbone. The identified Hot Spots are reported, and
- repairs are made. If the problem is severe enough and there is a danger of imminent
- failure, then procedures are taken to isolate the device and initiate immediate
- 13 repairs.
- 14 O. HOW MANY CIRCUITS WERE INSPECTED USING INFRA-RED
- 15 SCANS?
- 16 A. Since 2019, the Company has conducted infra-red scans on 1,532 distribution
- circuits. As a result of these infra-red scans, the Company identified and took
- corrective action on 1,328 issues before such issues led to equipment failure.
- 19 Q. IS ELECTRIC ENGINEERING THE DEPARTMENT THAT CONDUCTS
- 20 THE CORRECTIVE ACTION IDENTIFIED IN THE INFRA-RED
- 21 INSPECTIONS?
- 22 A. No. The Distribution Operations and Service Delivery department is responsible
- for that work. Mr. Tumlinson describes this work in his direct testimony.
- 24 Q. WHY IS THIS PROGRAM IMPORTANT?

A. The Infra-red program is an important part of our system reliability. It is designed to identify and initiate corrective actions on deteriorating components or components that are overloaded on the distribution system. By addressing these components before failure this program leads to improved reliability and customer satisfaction.

V. CAPITAL AND O&M EXPENSE PLANNING AND COST CONTROL

7 Q. HOW DOES CENTERPOINT HOUSTON ENSURE THAT ITS

NECESSARY CAPITAL INVESTMENTS AND O&M EXPENSES ARE

REASONABLE?

A.

CenterPoint Houston carefully plans capital investments and O&M activities and related expenses and adjusts the programs and costs annually based on system performance. The Company uses several processes to accomplish this oversight. These processes include: (1) the workforce planning process, (2) budgeting and cost control, (3) use of contractors, (4) the distribution planning process, (5) the transmission planning process, and 6) the asset management process. I will discuss the workforce planning process, budgeting and cost control, and the use of contractors within the Electric Engineering Division. The distribution planning process, the transmission planning process, and the asset management process are discussed in the testimony of Company witness Eric Easton. Mr. Tumlinson's testimony discusses the workforce planning process along with budgeting and cost controls for internal crews, while Mr. Pryor's testimony will present budgeting and cost control and the use of contractors. In addition, the testimony of Darren Storey describes the Company's planning and budget processes for services provided to the Company by its affiliates.

1 11 TIGHT CIRCLE A SECTION ASSESSMENT	1 A.	WORKFORCE PLANNING PROCESS
--	------	----------------------------

- 2 Q. HOW DOES CENTERPOINT HOUSTON ENSURE THAT IT MAINTAINS
- 3 PERSONNEL LEVELS SUFFICIENT TO OPERATE AND MAINTAIN ITS
- 4 ELECTRIC ENGINEERING NEEDS?
- 5 A. CenterPoint Houston must have an adequate number of experienced and
- 6 well-trained engineers on staff at all times. This will enable the Company to
- yes support the design needs for service area growth and reliability. As such, the
- 8 Company has processes in place to ensure adequate staffing while, at the same time,
- 9 ensuring that its staffing is efficient and reasonable.
- For instance, the Company regularly and consistently evaluates future
- staffing needs. Succession planning is reviewed and updated for key positions
- within the Electric Engineering Division to address attrition, retirements, and
- 13 promotions.
- 14 B. BUDGETING AND COST CONTROL
- 15 Q. WHAT MEASURES DOES THE COMPANY USE TO BUDGET,
- 16 MONITOR, AND CONTROL COSTS?
- 17 A. CenterPoint Houston develops the Electric Engineering Division's budget as part
- of the Company's business planning process. In developing the Electric
- 19 Engineering Division's budget, CenterPoint Houston uses historical trends for
- 20 service restoration and maintenance and analyzes current trends in development
- activity to anticipate growth that must be addressed through the budget. To be sure
- 22 that planned expenditures remain reasonable, the Company monitors actual
- 23 expenses, compares them against budgeted amounts on a monthly basis, and
- 24 investigates variances. On a monthly basis, CenterPoint Houston makes

- projections and changes to the budget forecast based on this review. These spending evaluations result in continuous system-wide cost control. Please refer to the testimony of Company witnesses Eric Easton and Darren Storey for more detail
- 4 on the Company's planning and budget processes.

5 C. <u>USE OF CONTRACTORS</u>

6 Q. DOES THE COMPANY UTILIZE CONTRACTORS IN ADDITION TO ITS

7 INTERNAL WORKFORCE?

- 8 A. Yes. The Company, including the Electric Engineering Division, utilizes
- 9 contractors, such as consultants for engineering of distribution, substation,
- transmission, and major underground projects, to supplement its workforce to
- 11 handle variations in the workload.

12 Q. WHAT ARE THE BENEFITS OF ELECTRIC ENGINEERING'S

13 ARRANGEMENTS WITH CONTRACTORS?

- 14 A. The Electric Engineering Division utilizes design and engineering consultants, third
- party inspection services and CCN routing consultants. Engaging with these
- contractors allows the Company to use skilled professionals for specific projects or
- works streams that do not require full-time employees or require specialized skill
- 18 sets. This facilitates cost and performance comparisons and provides resource
- 19 flexibility.

20 VI. ELECTRIC ENGINEERING O&M EXPENDITURES

21 Q. WHAT O&M AMOUNT WAS NECESSARY FOR THE ELECTRIC

- 22 ENGINEERING DIVISION DURING THE TEST YEAR?
- 23 A. Electric Engineering expended \$4.035 million in O&M during the Test Year.
- Figure 2 shows the O&M expense by department for the Test Year.

Figure 2. Test-Year O&M Expense by Department for Electric Engineering

Electric Engineering O&M by Department	Test Year Expense (millions)
Distribution Engineering	\$0.970
Major Underground Engineering	\$0.293
Policy and Compliance	\$1.054
Substation Engineering	\$0.681
Transmission Engineering	\$0.344
Administrative and General	\$0.693
TOTAL:	\$4.035

Q. PLEASE DESCRIBE THE ACTIVITIES UNDERTAKEN BY THE DISTRIBUTION ENGINEERING DEPARTMENT AND THE ASSOCIATED O&M COSTS.

A.

For the Test Year, the Distribution Engineering Department O&M-related costs were approximately \$970 thousand. As described earlier in my testimony, this department is comprised of three functions: Distribution Standards and Materials, Distribution Protection, and Distribution Power Quality. Distribution Standards and Materials is responsible for construction standards, policies, practices, and materials that are needed to build electric distribution, facilities in a consistent, reliable, safe, and cost-effective manner. The group reviews and updates these standards as necessary to incorporate new requirements and enable new technologies.

Distribution Protection is responsible for the electrical protection of the distribution systems by developing and evaluating system protection criteria for the safe and reliable operation of the system at distribution voltage levels. Distribution protection calculates relay settings for protection and control systems that implement automatic fault detection, isolation, and restoration actions in response

to disturbances on the distribution system.

Q.

A.

Distribution Power Quality is responsible for managing and reporting on distribution reliability programs and providing technical support for constructing and operating the distribution system. The Power Quality group supports overall reliability performance of the distribution system by providing customer level and circuit level technical support to Service Consultants and individual customers, including primary metered and premium rollover services. The Power Quality group is responsible for administering the Company's infra-red program, and root cause analysis program, analyzing results of these program efforts, and assisting operations departments in determining a course of action.

PLEASE DESCRIBE THE ACTIVITIES PERFORMED BY MAJOR UNDERGROUND ENGINEERING DEPARTMENT AND ASSOCIATED O&M COSTS.

For the Test Year, Major Underground Engineering Department O&M-related costs were approximately \$293 thousand. As described earlier in my testimony, Major Underground Engineering is responsible for providing engineering design and construction support services associated with the Company's three phase underground electric distribution facilities. This includes designated underground areas, such as downtown Houston, the Texas Medical Center, and George Bush Intercontinental Airport, as well as individual commercial loads served with three-phase pad mounted transformers, underground getaways from substations, and underground dips under freeways. O&M-related costs for engineering design and construction services include budget development, schedule management, engineering drawings, work orders, and material and equipment review. This

1	group is also responsible for the development and engineering support of major
2	underground hardening and resiliency projects and the protection and automation
3	of underground equipment and network systems.

4 Q. PLEASE DESCRIBE THE ACTIVITIES PERFORMED BY POLICY AND 5 COMPLIANCE DEPARTMENT AND THE ASSOCIATED O&M COSTS.

6

7

8

9

10

11

12

13

14

15

16

Α.

\$1.054 million. As described earlier in my testimony, the Policy and Compliance O&M-related costs include the oversight of the Company's NERC Reliability Standards compliance program and support of the various operational departments in their compliance efforts. This includes understanding the requirements of NERC Reliability Standards and providing support to sufficiently demonstrate compliance with the NERC Reliability Standards. Additionally, Policy and Compliance functions as the point of contact and coordinator for communications with FERC, NERC, and Texas RE for all compliance-related activities. These costs also include support services for business planning and regulatory activities including the coordination of the CCN process.

17 Q. PLEASE DESCRIBE THE ACTIVITIES PERFORMED BY THE 18 SUBSTATION ENGINEERING DEPARTMENT AND THE ASSOCIATED 19 O&M COSTS.

A. For the Test Year, Substation Engineering Department O&M-related costs were approximately \$681 thousand. As described earlier in my testimony, this department is responsible for engineering design and construction support services for the installation of and modification to the Company's substations, as well as engineering support for the installation and modification of Company-owned

equipment that is required in customer-owned substations. Engineering design and 1 construction services includes budget development, schedule management, 2 3 engineering drawings, work orders, and material and equipment review. This group is also responsible for the development and engineering support associated 4 5 with substation physical infrastructure, security, hardening and resiliency efforts and the protection and automation of substation and transmission systems. 6

7 PLEASE DESCRIBE THE ACTIVITIES PERFORMED BY THE Q. DEPARTMENT AND THE 8 TRANSMISSION **ENGINEERING** 9 ASSOCIATED O&M COSTS.

10

11

For the Test Year, Transmission Engineering Department O&M-related costs were Α. approximately \$344 thousand. As described earlier in my testimony, this department has the responsibility for engineering design and construction support 12 services for the installation and modification of the Company's transmission 13 system. Engineering design and construction services include budget development, 14 schedule management, engineering drawings, work orders, and material and 15 equipment review. These O&M-related costs also include the development and 16 engineering support of transmission line clearance, hardening, and resiliency 17 efforts. In addition, transmission projects provides civil and structural engineering 18 19 services for the substation and distribution projects groups.

20 WHAT O&M COSTS ARE ASSOCIATED WITH THE ADMINISTRATIVE Q. AND GENERAL CATEGORY FOR ELECTRIC ENGINEERING? 21

For the Test Year, Electric Engineering O&M costs were approximately 22 A. \$4.035 million. Of that amount, \$693 thousand are attributable to administrative 23 and general costs for the Electric Engineering Division. These expenses include 24

1		managerial labor, administrative support and miscellaneous general expenses for
2		the Electric Engineering Division.
3	Q.	ARE ALL OF THESE O&M EXPENDITURES REASONABLE AND
4		NECESSARY?
5	A.	Yes. The Test Year O&M expenses for Electric Engineering were related to
6		necessary functions that directly impact the reliability and operation of the electric
7		system to serve both existing and new customers.
8		VII. <u>ELECTRIC ENGINEERING CAPITAL ADDITIONS</u>
9	Q.	WHAT CAPITAL INVESTMENT IN ELECTRIC ENGINEERING
10		PROJECTS DOES CENTERPOINT HOUSTON SEEK TO INCLUDE IN
11		RATE BASE IN THIS PROCEEDING?
12	A.	The Company spent approximately \$300 thousand on electric engineering plant
13		additions between January 1, 2019 and December 31, 2023. These capital
14		investments were prudently incurred and reasonable and necessary to satisfy
15		service area growth, reliability improvements, service restoration, and operations
16		& support activities.
17		Electric Engineering capital expenditures in support of the design and
18		operation of the CenterPoint Houston electric system include the purchase of
19		infrared cameras, power monitor equipment, mounting enclosures, battery
20		controllers, engineering & technical services and the Distribution Design Studio
21		software utilized by consultants and designers to design distribution facility
22		additions and modifications.
23	Q.	WHY WERE ELECTRIC ENGINEERING CAPITAL INVESTMENTS
24		NECESSARY?

1	A.	Engineering and technical services along with Distribution Design Studio are
2		necessary for the safe and efficient engineering design of electric facility additions
3		and modifications to support safety, growth, reliability, and resiliency. Power
4		quality monitoring equipment and infra-red cameras are utilized in reliability
5		investigations both at the customer and circuit level. As such they are essential
6		tools for investigating and remediating reliability issues.
7	Q.	IS ALL OF THE ELECTRIC ENGINEERING CAPITAL INVESTMENT
8		THAT THE COMPANY SEEKS TO RECOVER IN RATES USED AND
9		USEFUL IN THE PROVISION OF ELECTRIC SERVICE AND WAS THIS
10		INVESTMENT PRUDENTLY INCURRED?
11	A.	Yes. The \$300 thousand for electric engineering plant additions that the Company
12		added between January 1, 2019 and December 31, 2023 were prudently incurred
13		and are used and useful in the operation of the electric system that serves both
14		existing and new customers.
15	Q.	DO YOU SUPPORT ANY OF THE CAPITAL ADDITIONS REFLECTED
16		ON SCHEDULE M OF THE RATE FILING PACKAGE?
17	A.	Yes. Along with Messrs. Mercado and Easton I sponsor portions of the "M"
18		Schedules which relate to certain plant additions. Specifically, Mr. Mercado and I
19		co-sponsor Schedules VI-M-1 and VI-M-3 (which includes VI-M-3.1 and
20		VI-M-3.2); I support portions of the costs shown on Schedule M related to the

Direct Testimony of Mandie Shook CenterPoint Energy Houston Electric, LLC

Schedule M can be found in Mr. Mercado's testimony.

design and engineering of the projects. Mr. Easton sponsors Schedule VI-M-2

(which includes VI-M-2.1 and VI-M-2.2). Additional information regarding

21

22

23

- 1 VIII. <u>CONCLUSION</u>
- 2 Q. DOES THIS CONCLUDE YOUR TESTIMONY?
- 3 A. Yes.

STATE OF TOXAS COUNTY OF Hamis

AFFIDAVIT OF MANDIE W. SHOOK

BEFORE ME, the undersigned authority, on this day personally appeared Mandie W. Shook who having been placed under oath by me did depose as follows:

- "My name is Mandie W. Shook. I am of sound mind and capable of making this affidavit. 1. The facts stated herein are true and correct based upon my personal knowledge.
- I have prepared the foregoing Direct Testimony and the information contained in this 2. document is true and correct to the best of my knowledge."

Further affiant sayeth not.

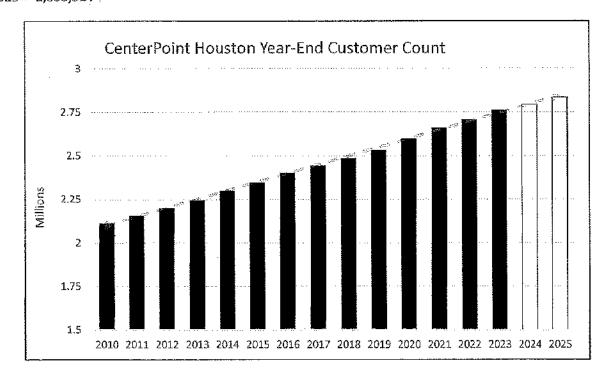
MandieW.Shook
Mandie W. Shook

SUBSCRIBED AND SWORN TO BEFORE ME on this 12 day of February

2024.

SONIA VELA My Commission Expires
August 30, 2027

Notary Public in and for the State of TX


My commission expires: <u>D8-30-20</u>27

THERE ARE NO EXHIBITS TO THE DIRECT TESTIMONY OF MANDIE SHOOK

MANDIE SHOOK WORKPAPERS

WP MS-1 Customer Count by year

Year end Customer Count 2010 2,110,582 2011 2,155,645 2012 2,199,721 2013 2,244,249 2014 2,299,211 2015 2,348,552 2016 2,403,433 2017 2,444,332 2018 2,485,413 2019 2,534,286 2020 2,599,827 2021 2,660,938 2022 2,706,598 2023 2,763,535 2024 2,794,003 2025 2,833,514

PAGE INTENTIONALLY LEFT BLANK

PUC DOCKET NO. 56211

APPLICATION OF CENTERPOINT \$ PUBLIC UTILITY COMMISSION ENERGY HOUSTON ELECTRIC, LLC \$ FOR AUTHORITY TO CHANGE RATES \$ OF TEXAS

DIRECT TESTIMONY

OF

RINA H. HARRIS

ON BEHALF OF

CENTERPOINT ENERGY HOUSTON ELECTRIC, LLC

MARCH 2024

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	ES-1
I.	Introduction	1
II.	Description of the Strategic Business Growth & Engagement Division	6
	A. Key Accounts Department B. Transportation Electrification Department C. Economic Development Department D. Telecom Business Development Department	8 10
III.	Operations since Docket No. 49421	14
IV.	Programs and STRATEGIC INITIATIVES	20
V.	Cost Controls	21
VI.	O&M Expenses	21
VII.	Conclusion	23

LIST OF EXHIBITS

<u>EXHIBIT</u>	<u>DESCRIPTION</u>
Exhibit RHH-1	Letters of Support
Exhibit RHH-2	AEDO Reaccreditation Letter

GLOSSARY OF ACRONYMS AND DEFINED TERMS

Acronym	Definition
AEDO	Accredited Economic Development Organization
CAT	Clean Air Technologies
CenterPoint Houston or the Company	CenterPoint Energy Houston Electric, LLC
CNP	CenterPoint Energy, Inc.
Commission	Public Utility Commission of Texas
DSM	Demand-Side Management
EDO	Economic Development Organization
EE -	Energy Efficiency
EVSE.	Electric Vehicle Supply Equipment
KA	Key Accounts
O&M	Operations and Maintenance
RFI	Request for Information
SBG&E	Strategic Business Growth & Engagement
Test Year	Calendar year ending December 31, 2023

EXECUTIVE SUMMARY - STRATEGIC BUSINESS GROWTH AND ENGAGEMENT

3 (RINA H. HARRIS)

1 2

The Strategic Business Growth & Engagement ("SBG&E") Division of CenterPoint 4 Energy Houston Electric, LLC ("CenterPoint Houston" or the "Company") is responsible 5 for overseeing large distribution key accounts, economic development, and the 6 electrification strategy team designed to enhance support for strategic load growth across 7 8 CenterPoint Houston's service area. Lynnae Wilson, Senior Vice President, Electric Business, explains in her testimony that the Company's investment strategy is driven by 9 10 the four pillars of system growth, reliability, modernization, and clean energy enablement. 11 The SBG&E division was newly created during the Test Year to allow CenterPoint Houston to provide intentional focus on supporting growth in our communities and provide 12 a higher level of customer engagement to better understand customers' business objectives 13 and, in turn, to better support customers' growth and reliability needs. My Testimony 14 supports the SBG&E Divisions operations and maintenance ("O&M") expenses and capital 15 Additionally, my testimony explains how CenterPoint Houston has 16 investments. responded to changes in large customer demand since the Company's 2019 rate case. 17

1		I. <u>INTRODUCTION</u>
2	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
3	Α.	My name is Rina H. Harris. My business address is 1111 Louisiana Street, Houston,
4		Texas 77002.
5	Q.	BY WHOM ARE YOU EMPLOYED?
6	A.	I am employed by CenterPoint Energy Houston Electric, LLC ("CenterPoint
7		Houston" or the "Company"), as Vice President of Strategic Business Growth and
8		Engagement.
9	Q.	ON WHOSE BEHALF ARE YOU SUBMITTING THIS DIRECT
10		TESTIMONY?
11	A.	I am submitting testimony on behalf of CenterPoint Houston.
12	Q.	PLEASE DESCRIBE YOUR EDUCATIONAL AND PROFESSIONAL
13		EXPERIENCE.
14	A.	I received a Bachelor of Science degree in Public Affairs from Indiana University
15		in 2005. I also received a Master of Science degree in Public Affairs from Indiana
16		University in 2007.
17		Prior to my current position, I was the Director of Energy Solutions -
18		Midwest. I was responsible for managing all aspects of large account management,
19		economic development, and gas and electric energy efficiency ("EE") and DSM
20		programs for CenterPoint Energy, Inc.'s Indiana and Ohio regulated utilities. Prior
21		to that, I was the Manager of Gas Conservation and Demand-Side Management
22		("DSM"), and I had responsibility for the management of all aspects of the gas

1		conservation portfolio for CenterPoint Energy, Inc.'s ("CNP") regulated gas
2		utilities in Indiana and Ohio and oversight over all evaluation and planning
3		activities. Before that, I was the Supervisor of DSM evaluation and planning
4.		responsible for managing all electric and gas evaluation activities, program
5		planning, and conservation-related market research. I have also worked in market
6		research with a focus on conservation initiatives related to demographic analysis,
7		segmentation, targeted marketing, and other special projects.
8	Q.	HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE PUBLIC UTILITY
9		COMMISSION OF TEXAS ("COMMISSION") OR OTHER
10		REGULATORY AUTHORITIES?
L 1	A.	Yes. I have testified in other jurisdictions, most recently in Cause No. 45564 before
12		the Indiana Utility Regulatory Commission on behalf of CNP's Indiana electric
13		utility that was seeking regulatory approval for two proposed natural gas
14		combustion turbines. I have also testified in several other proceedings before the
15		Indiana Utility Regulatory Commission on behalf of CNP's Indiana electric utility
16		and Indiana gas utility.
1.7	Q.	WHAT IS THE PURPOSE OF YOUR DIRECT TESTIMONY IN THIS
18		PROCEEDING?
19	A.	At the end of the calendar year ending December 31, 2023 ("Test Year"), the
20		electric organization consisted of six divisions: (1) Distribution Operations and
21		Service Delivery, (2) Major Underground and Distribution Modernization, (3)
22		Electric Engineering, (4) High Voltage and Systems Operations, (5) Grid
23		Transformation and Investment Strategy, and (6) Strategic Business Growth and
		Direct Testimony of Rina H. Harris CenterPoint Energy Houston Electric, LLC

Engagement. My testimony identifies the functions of the Strategic Business Growth and Engagement Division and describes how the division is structured and staffed to enhance the customer service provided to large customers while maintaining a high level of support for community priorities through our continued engagement of local economic development organizations. The Company has seen a tremendous increase in interconnection requests as large customers seek to electrify their existing operations that have traditionally been powered by internal combustion engines as well as the rapid expansion of new industries such as hydrogen production. I explain the steps the Company has taken to efficiently and transparently interconnect these customers, while still working with customers of all sizes to ensure they receive reliable and resilient service. My testimony also supports the \$2.625 million in O&M expense associated with activities performed by the SBG&E Division.

14 Q. ARE YOU SPONSORING ANY EXHIBITS IN THIS PROCEEDING?

- 15 A. Yes, I am sponsoring the following exhibits:
- Exhibit RHH-1: Letters of Support

ı

2

3

4

5

6

7

8

9

10

11

[2

13

• Exhibit RHH-2: AEDO Reaccreditation Letter

18 O. HOW DOES YOUR TESTIMONY RELATE TO OTHER WITNESSES?

My organization is now part of the Customer Experience Unit, but was part of the operations group during the Test Year, so I am one of several witnesses who present testimony on the operations of the Electric Business Unit. The following witnesses present testimony on the operations of the Electric Business Unit:

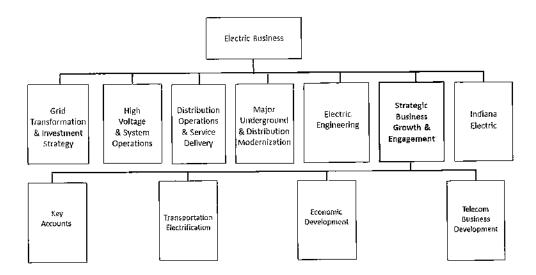
OVERVIEW OF CENTERPOINT OPERATIONS WITNESSES

Witness, Title	Subjects Addressed
Lynnae Wilson, Senior Vice President, Electric Business Unit	 Overview of CenterPoint Houston and its operations; Company's organizational and management structure and Company's commitment to its core values; Summarize the Company's rate filing package, The Company's efforts related to reliability and resiliency, and the impact of economic and customer growth in the Company's service territory since its last base rate case.
Eric Easton, Vice President, Grid Transformation & Investment Strategy	 How Distribution and Transmission Planning groups identify and develop future capital investment projects; How capital investments are prioritized and optimized; The reliability reporting process and various reporting tools that have been developed; How the addition of a Capital Program Management department will support the efficient execution of capital projects and programs; How the Strategic Coordination and Analysis department aligns strategic initiatives, identifies synergies, and improves interdepartmental coordination on projects; and Supports the reasonableness and necessity of Grid Transformation & Investment Strategy-related Test Year O&M expense and capital investment since 2019 and the related schedules.
David Mercado, Vice President, High Voltage and System Operations	 Overview of the structure and functions of the High Voltage and System Operations Division; Operations in the High Voltage and System Operations Division since 2019; Key programs and initiatives undertaken by the High Voltage and System Operations; Expense planning and cost control measures; and Supports the reasonableness and necessity of High Voltage and System Operations-related Test Year O&M expense and capital investment since 2019 and the related schedules.

Randal M. Pryor,	MUG & Distribution Modernization division and the major
Vice President,	programs and initiatives;
Major Underground & Distribution	 Implications for MUG & Distribution Modernization due to the growth the Company's distribution system has experienced since 2019;
Modernization	 Processes used to plan, monitor, and control investments and expenditures; and
	 Supports the reasonableness and necessity of Major Underground & Distribution Modernization-related Test Year O&M expenses and distribution capital investment since 2019 and the related schedules.
Deryl Tumlinson,	Distribution Operations and Service Delivery Division;
Vice President, Distribution	 Quotidian activities and major programs and initiatives that drive distribution investment and expense;
Operations & Service Delivery	• Impacts and operational responses that occurred as a response to significant weather events;
	• Impact of supply chain disruptions;
	The state of Distribution
	Operations & Service Delivery-related Test Year O&M expenses and distribution capital investment since 2019 and the related schedules.
Mandie Shook,	Creation of the Electric Engineering Division;
Vice President,	Operations within the Electric Engineering Division;
Electric Engineering	 Major programs and initiatives that drive Electric Engineering investment and expense, including the reliability initiative and resiliency standards;
	Planning and cost control programs within the Electric Engineering Division;
	 Supports the reasonableness and necessity of Electric Engineering-related O&M expense and capital costs incurred since 2019 and related schedules.
Rina Harris,	• Functions of the Strategic Business Growth and Engagement
Vice President,	Division;
Strategic Business	• Explains how the division is structured and staffed to enhance
Growth &	the customer service provided to large customers;
Engagement	• Steps taken to understand future customer needs so as to efficiently support large customer's growth and reliability needs; and
	Supports the reasonableness and necessity of test year O&M costs.

1

1 II. <u>DESCRIPTION OF THE STRATEGIC BUSINESS GROWTH & ENGAGEMENT DIVISION</u>


- Q. PLEASE EXPLAIN THE ROLE OF THE STRATEGIC BUSINESS
 GROWTH & ENGAGEMENT ("SBG&E") DIVISION WITHIN
 CENTERPOINT HOUSTON.
- The SBG&E Division was newly formed in 2023 to better support the Company's 6 A. large customer class, their business objectives, and their short- and long-term power 7 needs. In today's economy, the way customers think about and use power is 8 changing. Given the onset of emerging technologies, electrification, and customers' 9 focus on cleaner energy, customer expectations of CenterPoint Houston, its 10 reliability, service, and support, is also changing. For these reasons, it is vitally 11 important that CenterPoint Houston clearly communicates our priorities for 12 customer engagement, provides solutions, and helps our customers better 13 understand what the Company is doing how they can play a productive role in these 14 efforts. CenterPoint Energy is constantly working to develop a more intentional 15 focus that will allow us to better support all of our customers and prepare our grid 16 17 for the future.

18 Q. WHAT IS THE BASIC STRUCTURE OF THE SBG&E DIVISION?

23

The SBG&E division comprises four departments: the large distribution key accounts department, the transportation electrification strategy department, the economic development department, and the telecom business development department. An organizational chart of the division is shown in Figure 1.

Figure 1: Organization Chart of Strategic Business Growth and Engagement

1

2

5

6

7

8

9

10

11

Α.

A. Key Accounts Department

Q. PLEASE DESCRIBE THE DISTRIBUTION KEY ACCOUNTS ("KA")
DEPARTMENT.

The Key Accounts department serves as a main point of contact for the approximately 450 large commercial, industrial, and municipal customers served by CenterPoint Houston, including critical facilities such as airports, hospitals, emergency call centers, natural gas infrastructure, and municipal utilities. This team proactively engages with key customers to resolve impediments and provide solutions on new construction projects, as well as assist in resolutions related to reliability concerns and providing day-to-day operations support.

12 Q. PLEASE DESCRIBE AN INSTANCE WHERE THE KEY ACCOUNTS
13 DEPARTMENT HAS PROACTIVELY SUPPORTED AN EXISTING
14 CUSTOMER.

A. The Key Accounts department has been well received by the customers it serves.

A specific example is the effort to support Texas Medical Center, the Houston region's largest employment centers and one of the leading medical centers in the world. They have expressed appreciation for how their status as a Key Account has resulted in increased responsiveness and a level of predictability that helps them move vital infrastructure projects ahead. Documentation of this can be found in a Letter of support in Exhibit RHH-1.

B. Transportation Electrification Department

8

11

12

13

14

15

16

17

18

19

Α.

9 Q. PLEASE DESCRIBE THE TRANSPORTATION ELECTRIFICATION DEPARTMENT.

The Transportation Electrification department coordinates service and support for large electric vehicle charging projects, including public charging stations, commercial fleet charging stations, and charging stations at large-multifamily residential developments. The team intakes a customer's initial plans for deploying electric vehicle supply equipment ("EVSE") and serves as the single point of contact for the customer until they begin the service upgrade or new service process. The team also gathers market intelligence that enables the Company to plan for the increased use and penetration of electric vehicle charging and electrification in CenterPoint Houston's service area.

1 Q. HOW DOES CENTERPOINT SUPPORT ELECTRIC TRANSPORTATION 2 INITIATIVES SOUGHT BY ITS CUSTOMERS?

3

4

5

6

7.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

A.

The Electrification group works closely with commercial customers that have displayed interest in electrifying their fleet. The team intakes a customer's initial plans for deploying EVSE and provides site feasibility analysis for sites within the Company's service area considered by the customer. The site feasibility analysis entails a thorough review of the site to evaluate existing electrical utility infrastructure, as well as potential land rights impediments and/or State, City, or County permit jurisdictional impediments that could result in delays for electric Distribution Accounts discusses these site-specific service acquisition. circumstances with the customer so that they can make an informed decision on moving forward with EV Charging deployed at the site. In this role the team serves as the single point of contact for the customer until they begin the service upgrade or new service process. Providing this single point of contact has served the Company well as we have received feedback from customers who have sited their projects in CenterPoint territory specifically due to the team's engagement and follow through. Utilizing a single point of contact to leverage a broad team of CenterPoint expertise, entities developing public EV charging stations have benefited from a consistent customer service experience and predictable timeline to plan for infrastructure improvements. A recent example is the way that Shell utilized the single point of contact to begin initial conversation of their charging deployment plans. They have recognized how CenterPoint's "innovative approach"

to developing E-Mobility infrastructure has positively impacted their efforts. Consultation with CenterPoint Energy via one contact assists the customer with making site commitment decisions quickly, saving time and additional expense. In addition, CenterPoint worked closely with Sysco, whose Global Support Center is located within our service territory, on their electrification efforts. They have noted how the "synergistic relationship" fostered by the Electrification group has helped their company respond to complex issues and identify "creative resolutions...to an everchanging industry in electrification." Letters of support from Shell and Sysco are included in Exhibit RHH-1.

A.

10 Q. WHAT ARE THE CHALLENGES THAT CENTERPOINT IS 11 EXPERIENCING IN THIS SPACE?

Deployment of publicly available, fast EV charging locations has expanded in the last couple of years, and CenterPoint has worked with public and private sector customers across our region to identify their electrical equipment needs and to understand how much circuit capacity they may utilize. As the charging infrastructure continues to grow and, in some cases, begins to cluster in certain areas, the Company may begin to realize grid constraints that make it costly to upgrade service to the customers. For this reason, the proactive engagement employed by the electrification team to understand customer charging needs and timelines is of the utmost importance.

C. Economic Development Department

22 Q. PLEASE DESCRIBE THE ECONOMIC DEVELOPMENT DEPARTMENT.

A. The Economic Development department is charged with gathering market intelligence that enables the Company to anticipate and plan for load growth across CenterPoint Houston's service area. The Economic Development department supports approximately 55 economic development organizations by serving as a trusted energy advisor and by supporting their efforts to attract new businesses. Additionally, to support future growth through the delivery of needed infrastructure serving the greater Houston region, the Economic Development department actively participates on several economic development boards and committees across the region.

Α.

O. WHAT IS THE ROLE OF ECONOMIC DEVELOPMENT WITHIN CEHE?

By engaging directly and daily with approximately 55 economic development organizations ("EDOs") across the Company's service area, the economic development team facilitates a two-way flow of information that benefits both the Company and the communities we serve. This team gathers ground-level intelligence directly from the EDOs they interact with, leveraging that information to make better decisions inside our organization. Additionally, the economic development team members are able to inform the EDOs and the various stakeholders brought-into those organizations about the CenterPoint processes that are necessary in order for those EDOs to attract jobs and investment. While the strategies across the Company's service area vary due to the unique nature and scale of each community and customer we serve, many include revitalization and redevelopment projects, road infrastructure initiatives, workforce development

programs and business retention and expansion activities targeting industries that align with either the existing offerings or the vision for growth in each individual community. Economic incentives in Texas are offered by the local economic development organizations, as a result, economic development in the state is lead with a bottom-up approach through these strategies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

In September 2023, CenterPoint's Economic Development department was recertified as an Accredited Economic Development Organization ("AEDO") by the International Economic Development Council; the recertification letter is included in Exhibit RHH-2. As an AEDO, CenterPoint Houston plays an essential role in supporting local and regional responses to the many Requests for Information ("RFIs") issued by the Governor's Office of Economic Development and Tourism to economic development organizations across the state of Texas. Within each RFI, a prospective business will provide the energy needs and desired timeline to receive electric and gas service for their given project. The economic development team receives project inquiries directly from the state but, because of the bottom-up approach long-championed by the State of Texas, provides responses to the state's RFIs in collaboration with local economic development organizations. The importance of this team's longstanding relationship with the local EDOs is evidenced by the trust these organizations place in CenterPoint to deliver accurate and timely information in support of their locally driven initiatives. The economic development team coordinates with the Company's substation planning, service area managers, and transmission accounts teams to deliver quality and reliable

information to EDOs in support of their RFI responses, and to attend site visits with prospective customers when a site within the Company's service area is short-listed.

4 Q. HOW DOES THE ECONOMIC DEVELOPMENT TEAM ENABLE AND SUPPORT CUSTOMER GROWTH?

A.

Local EDOs engage the economic development team on a regular basis to support their efforts in responding to RFIs issued by the state of Texas as well as other leads that they identify. The landing of a prospective business or the retention of businesses that experience operational growth results in growing energy needs. Customer growth, if communicated and planned-for appropriately, provides opportunities to enhance reliability and service. The economic development team facilitates conversations between CEHE operations and community and business leaders to identify solutions that will enable the retention and expansion of businesses of all sizes within CEHE service territories. Additionally, the information brought back to the Company through the relationships with local EDOs about the status of active prospective business leads, often early in the prospect's decision-making timeline, allow CEHE operations to adequately plan for future customer growth.

The economic development team educates customers on the process and timeline to deliver electric service which enables local EDOs to respond strategically to the state RFI's in the furtherance of their local economic development priorities. This allows the EDOs to target businesses which fit the

l		existing infrastructure and to develop long-term plans for larger electric load-using
2		prospects where additional infrastructure must be built-out.
3		Letters of support are written by the economic development team to support
4		grant applications for various projects and initiatives that align with the economic
5		development strategies of the communities. Service on the various EDO boards
6.		and committees across the CenterPoint service territory also brings our subject
7		matter expertise to the table when these organizations are making decisions about
8	how best to pursue their local economic development priorities.	
9		D. Telecom Business Development Department
10	Q.	PLEASE DESCRIBE THE TELECOM BUSINESS DEVELOPMENT
11		DEPARTMENT.
12	A.	The Company created the telecom business development department in early 2023
13		to proactively identify opportunities for partnership with telecommunication
14		organizations, enabling faster deployment of wireless and wireline technologies
15		that promote economic development for the greater Houston region.
16		Telecommunication organizations using the Company's assets pay substantial lease
17		payments each year, which ultimately reduce electric rates.
10		III. OPERATIONS SINCE DOCKET NO. 49421
18		III. OF EXATIONS SINCE DOCKET NO. 43421
19	Q.	HOW HAS CENTERPOINT HOUSTON'S APPROACH TO LARGE
20		CUSTOMER GROWTH AND ENGAGEMENT CHANGED SINCE
21		DOCKET NO. 49421?

CenterPoint Houston has always been dedicated to providing safe, reliable and cost-effective services to all of its customers. As further discussed by Company witness Shonda Royston-Johnson, the Company strives to provide exceptional customer service to every customer, large or small. Recent changes, however, in large customer load profiles have required the company to retool its approach to serving these customers. To this end, the Company created the SBG&E division in 2023, bringing together three departments with a focus on supporting large load customers and emerging sectors to emphasize the Company's commitment to customer service. The Key Accounts Group was previously a part of the Power Delivery Solutions organization, both Economic Development and the Transportation Electrification team, previously named Clean Air Technologies, were housed in the Customer Operations group, and staff that formed the Telecom Business Development Department were housed in including the Engineering and Asset Optimization group.

[4

Α.

Α.

15 Q. PLEASE SUMMARIZE HOW LARGE CUSTOMERS' LOAD PROFILES 16 ARE CHANGING.

Within the Company's service area, dozens of large customers have begun shifting towards electrifying processes traditionally powered by internal combustion engines and steam. This includes electrifying transportation fleets. Internally, the Company calls this shift "electrification." The Company expects this process to continue accelerating as electric vehicle technology advances and becomes less expensive. Outside of the electrification trend, the prospective loads communicated

to CenterPoint during the site selection process have grown at incredible rates over the past five years. Looking at the subset of projects that have utilized the RFI process through the State of Texas, prospective loads have grown significantly as have the number of prospective projects that our team is being asked to support. One industry where we have seen substantial prospective load growth over the past two years is around hydrogen production. Prospective hydrogen producers have communicated to our team that the tax credits created under the Inflation Reduction Act are making the CenterPoint service territory very attractive for hydrogen production projects. Our team is currently engaged with prospective developments that could add more than 3.7 Gigawatts of load to our network if built out. OF ADOPTION **EXPLAIN** HOW CUSTOMERS' Q. PLEASE ELECTRIFICATION IMPACTS THE WAY THE COMPANY PROVIDES SERVICE. As a result of increased electrification, the Company has needed to modify and Α. upgrade certain parts of its transmission and distribution system to accommodate additional load. Because the Company expects electrification to continue, the Company must continue to modify and upgrade its transmission and distribution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Direct Testimony of Rina H. Harris CenterPoint Energy Houston Electric, LLC

system to serve new loads from large customers in a reliable and timely manner.

Additionally, new electrification load is more difficult to predict than other forms

of load growth, which requires CenterPoint Houston to work more closely with

customers to timely serve new loads.

- Q. PLEASE DESCRIBE HOW THE COMPANY HAS IMPROVED ITS
 RELATIONSHIP, COMMUNICATIONS, AND SERVICE WITH
 CUSTOMERS SINCE THE LAST RATE CASE.
- The Company understands that service and reliability are more than just poles and 4 A. wires service for customers, as it represents growth, profitability, and good 5 reputation. As a steward of economic development and community vitality, we 6 continue to support increased employment opportunities, the quality of place, and 7 quality of life within our service territory. To this end, the Company has taken 8 intentional efforts in building and improving its relationship and communications 9 with large customers, resulting in meaningful customer experiences and improved 10 service. The Company now proactively engages with its largest and fastest growing 11 customers to better understand their growth plans and challenges so that it can 12 determine ways it can plan for future service needs and provide better support. The 13 Company has worked to increase the timeliness and transparency of its 14 communications, which has helped to ameliorate historical points of frustration. 15
- 16 Q. PLEASE PROVIDE EXAMPLES OF HOW THE COMPANY HAS
 17 DEMONSTRATED ENHANCED FOCUS ON CUSTOMER
 18 COMMUNICATIONS, COLLABORATION, AND SERVICE.
- A. Since Docket No. 49421, the Company facilitated seven Customer Advisory
 Council Meetings that were comprised of influential large customers, businesses,
 and community leaders. The meetings provided a forum for the Company to
 highlight the strategy for improved resiliency and reliability within its communities
 and how the Company plans to support the continued growth within its service area.

The forum also allowed customers to provide feedback on how the Company could better support their business objectives and identify customer challenges for remediation. As a result of the feedback we've received, the SBG&E team refined the Company's large customer strategy to ensure proactive and frequent communications within its processes. The 2023 Customer Advisory Council Meetings were focused on distribution-served and large industrial customers.

Furthermore, the Company has incorporated frequent project status meetings with Customers to ensure projects remain on track. The SBG&E leadership and team hold regular customer meetings to discuss long-term growth to ensure projects are submitted to the Company as early as possible. Due to lead times for material or interconnections of load, it is important for the Company to have information early and often.

Finally, to help facilitate proactive conversations with large distribution customers, the Company has developed a reliability dashboard that enables better engagement and proactive solutioning. The dashboard highlights the past several years of reliability data by distribution customer and provides insights into reliability performance and causes for service interruption. The dashboard will support the Company with performance management, providing line of sight to the customer experience and proactively allowing the Company to solve problems. The dashboard is a tool that allows the Company to have a perspective of customer experiences and enables the Company to drive better customer experiences.

O. HAS THE COMPANY ENGAGED WITH H-E-B AS PART OF THE

1	COMPANY'S IMPROVEMENTS IN CUSTOMER COMMUNICATIONS
2	AND COLLABORATION?

3 A. Yes.

A.

[]

4 Q. HOW HAS THE COMPANY ENGAGED WITH H-E-B SINCE THE 2019 5. RATE CASE?

The Company's refined customer strategy has significantly improved its relationship with H-E-B. Over the past 18 months, the Company received opportunities to visit and tour several H-E-B plants to fully appreciate and understand H-E-B's manufacturing and production processes and the impact that electric service reliability has on H-E-B's business. The Company and H-E-B have worked together to develop trust, a result of proactive, frequent, and timely communications. In 2023, H-E-B initiated multiple new store/warehouse construction projects in the Company's service area. As a result of proactive, frequent, and timely communication and coordination between the Company and H-E-B, the construction projects were completed within H-E-B's timelines. While meeting timelines is an expectation, several projects were complex in nature, requiring the Company to quickly react to issues and challenges identified along the way. The Company worked to coordinate large internal teams to remediate issues, quickly and timely, to meet H-E-B's need dates.

Furthermore, the continued dialogue and collaboration allowed the Company the opportunity to procure appropriately sized transformers for the H-E-B projects quicker than prior procurements for H-E-B projects. Given the proactive, frequent, and timely communications, the Company is pleased with the Direct Testimony of Rina H. Harris

CenterPoint Energy Houston Electric, LLC