Control Number: 55421

Item Number: 40

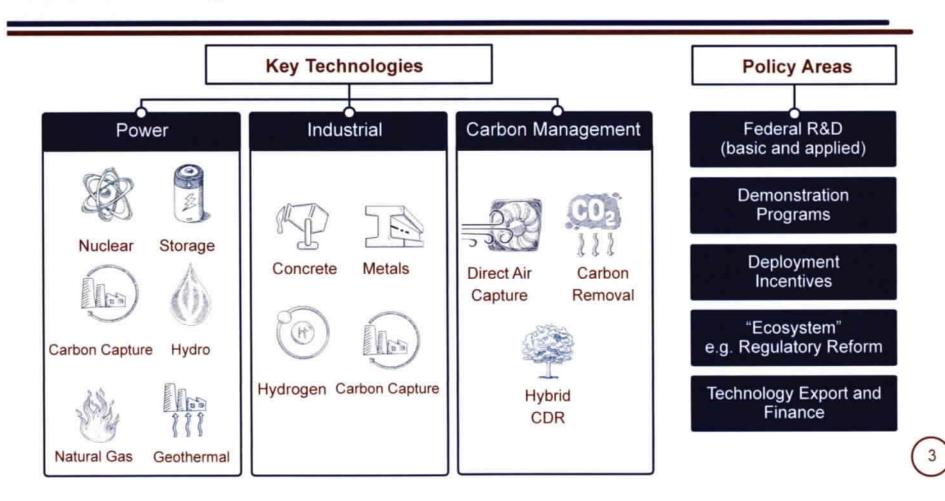
RECEIVED 2021: FED - 1 PM 1: 53 PUBLIC WITH TY COMMISSION

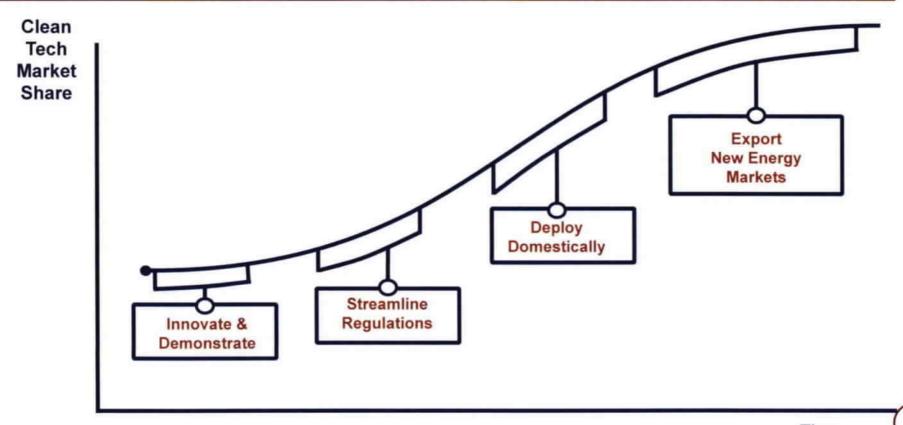
Texas Advanced Nuclear Reactor Working Group

January 31, 2023

CLEARPATH

ClearPath Mission and Vision




Mission: ClearPath's mission is to develop and advance policies that accelerate innovations to reduce and remove global energy emissions.

Vision: America leads the world in addressing climate change by developing innovative, market-competitive clean energy technologies.

CLEARPATH

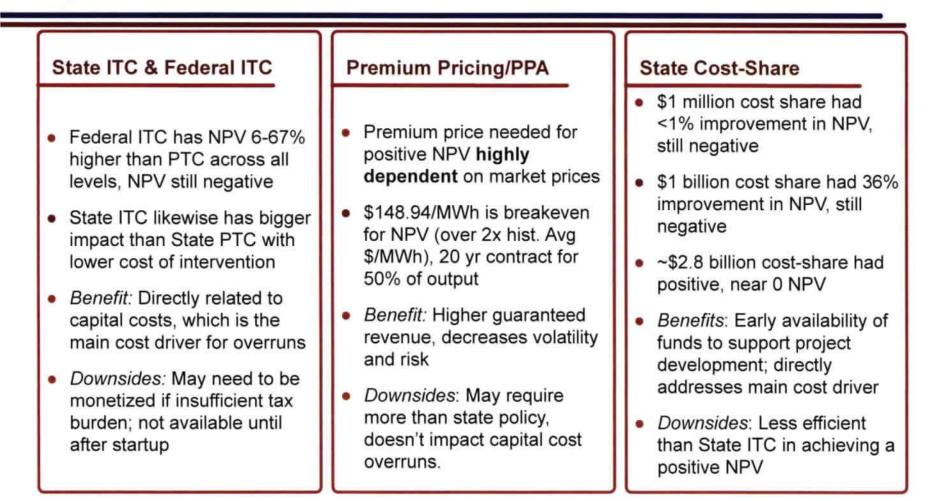
ClearPath Policy Pillars

Policy can push energy technology up the "S-curve"

Time

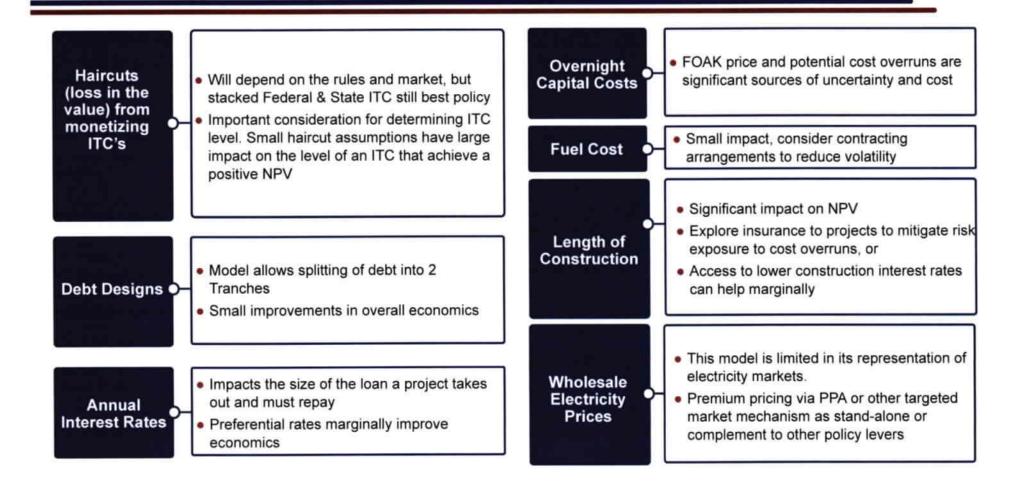
(4

Net Present Value (NPV) Model to Assess Options for Deployment


Why NPV?	 Facilitates decision-making when comparing projects of similar sizes All models are wrong, some are useful
Assumptions	 First-of-a-kind capital costs of a generic project and technology Revenue based on historic ERCOT average annual prices and/or PPAs Analyzes whether NPV of revenue > all capital, O&M, financing costs

Existing Federal	 48E - Clean Energy Investment Tax Credit (PTC)
Existing Federal Support	 Loan Program Office can offer loans or loan guarantees under 1703 or 1706

Policy Options


State ITC or PTC	State PTC or State ITC Stacked with Federal ITC or Federal PTC		
Capital Cost-Sharing 🔿	 State cost-sharing, via grants, on the capital cost of a project Stacked with federal tax credits. If the federal ITC is selected, this is applied after the state's capital cost share 		
Premium Pricing or Power Purchase Agreements (PPA)	 State contracts for a predetermined amount of electricity at a predetermined price or enhanced pricing for firm generation Can be assessed as a stand-alone policy lever on top of federal tax policies AND as another policy on the above levers. 		
Full Monetization of ITC (State and/or Federal)	 A project's tax liability can limit how much ITC they can monetize Assume a Haircut: the percentage of the ITC that a third party takes for monetizing the full credit. 		

Policy Recommendations

.

Model Findings & Additional Considerations

Using the Model: Input Dashboard

	Category of Input	Input Name	User Inputs are Colored Cells	Input Instructions	Additional Information
		Project Capacity (MW)	600	Enter value greater than 1.	On the Nuclear Plant info sheet Cells C54:C62 there is information on the size of reactor scheduled to come online in the next decade
5		Overnight Capital Cost \$/KW	\$8,082	For a generic small modular reactor NREL ATB had overnight capital costs at 8,082 2022USD/kW	Capital expenditures excluding construction period financing. The Nuclear Plant Info Sheet contains data from NREL as well as MIT on new nuclear costs
		Filled Operation and Maintenance Expenses (\$/k.V-yr) ic Variable Operation and Maintenance Expenses (\$/MVh) Fuel Costs (\$/MVh)	\$128	For a generic small modular reactor NREL ATB has Fixed 0&M costs at 128 2022USD/k.V-yr	Annual expenditures to operate and maintain equipment that are not incurred on a per-unit-energy basis. The Nuclear Plant Info Sheet contains data from NREL as well as MIT on new nuclear costs
	Project Characteristic Inputs		\$3	For a generic small modular reactor NREL ATB has Variable 06M costs at 3 2022USD/MWh	Operating and maintenance costs incurred on a per- unit-energy basis. The Nuclear Plant Info Sheet contains data from NIPEL, MIT, and NEI on these costs. For NEI look to cells 166369
			\$7	For a generic small modular reactor NFIEL ATB has Fuel costs at 7 2022USD/MWh	Additional historical data on fuel costs from NEI is in the Nuclear Plant Info sheet cells I66:179
		Project Service Life (years)	60	Maximum Input is 80 years	NRC license timeframe of 40 years. Industry assumption that the plants will get the 20 year license renewal once or twice.
		Construction Length (Years)	7	Select from list. Possible values range from 1 to 20, inclusive. The median construction time for U.S. nuclear power plants is about 7 years	About half of nuclear power plant in the U.S. took 5 to 10 years to reach grid connection. Longer construction time/rames increase construction financing costs while shorter time/rames decrease these costs.

Example Input Section

Input Categories

- Project Characteristics (Costs, Service Life, etc.)
- Revenue Inputs (Capacity Factor, Prices)
- Debt Assumptions (Interest rate, Tenor, Tranching)
- Federal Tax Incentives (ITC/PTC and adders)

Using the Model: Input Dashboard

A project's tax liability can limit how much of the ITC they can monetize. It is common practice for project developers to use a third parties tax Enter a value between 0-1005c. This will be liability to access the full value of the ITC with that third party taking some the percentage of an ITC that goes to a third share. For example, a project may qualify for a 10% ITC but only be able to access 2% of the 10% with its tan liability. The developer goes to another Scenarios 2 & 4 ITC Hairout Assumption [%] RICK party with the necessary tax liability and not the project developer entity that can access the other 8% and takes a 'hairout' of 1% for itself. The project gets S12 while the third party gets 152. This scenario enables the user to assess the impact of a state-level PTC State Tax Credit State ITC Select PTC or ITC from the List or ITC on top of a federal PTC or ITC For reference the federal ITC ranges from 6 to 50% depending on whether Scenario 3 ITC Value (%) KO3C Enter value 0-100% the prevailing wage and apprenticeship requirements are met and which adders are attained. For reference the federal PTC ranges from \$5.5#WWh to \$33#WWh depending on whether the prevailing wage and apprenticeship requirements are met and which adders are attained. PTC Value (\$/Mv/h) \$5.00 Enter positive value This scenario enables the user to assess the impact of a Capital Cost Capital Cost Share from Texas (\$) \$1,000,000,000 Enter Value. share between the project developer and the state of Tesas. This cost share is applied before the ITC [federal or state] is applied. Scenario 5 Percent of project overnight capital Output based on cost-share amount and the This value is generated but dividing the cost share amount and the total costs from Base covered by the 15% total project cost cost of the project prior to the cost-share being applied state No will not include a PPA in any scenario and scenario 6 will be empty. All Power Purchase Agreement (PPA) AL Select from list vill include a PPA in Scenarios 2-6. Scenario 6 only vill include a PPA in that case only. Length of PPA (years) 15 Max 20 years PPA lengths are typically 10 or 20 years. Scenario 6 Share of Plant Capacity Covered by 2350 Enter value from 0-100% PPA \$87.00 add something that shows relation to the market price PPA Value (\$/MWh) Enter Positive Value This is an output showing the premium (-/-PPA Premium over Eroot Market Prin 4350 %) of the user-input PPA price and the user input ERCOT Market Price

Color-Coded Scenario Inputs Section

User-input Scenario Assumptions

- ITC Monetization Haircut Assumption
- Optional State ITC or PTC, and values associated
- Capital Cost share in \$
- Premium PPA agreement details

Using the Model: Output Dashboard

Output Metrics

- Is the project profitable Does the net present value (NPV) of all revenues and Federal + State policy support exceed all capital, operating, and financing costs?
- Impact of policy in each scenario How does the return on invested capital change across policy scenarios
- Total Cost of Policy Intervention what is the total value of the avoided state-level taxes, cost-share, and price premium/PPA
- Levelized Cost of Energy (LCOE) metric combines the primary technology cost and performance parameters. It is one useful metric for comparing a technology cost-competitiveness but is imperfect because it does not capture other operating characteristics or attributes that provide value to the electric system broadly.
- Total Cost of Project broken out by CAPEX and OPEX
- **Total Revenue** broken out by wholesale market revenue, PPA/premium price, and state-level production tax credits.

Casey Kelly

Senior Advisor - Research and Electricity Kelly@clearpath.org

(12