1

INTRODUCTION

AEP Texas Inc. (AEP Texas or Company) presents this Energy Efficiency Plan and Report (EEPR) to comply with Public Utility Commission of Texas (Commission) 16 Tex. Admin. Code §§ 25.181, 25.182 and 25.183 (TAC) (EE Rule), which implement the Public Utility Regulatory Act (PURA) § 39.905.

As mandated by PURA § 39.905, the EE Rule requires that each investor-owned electric transmission and distribution utility (TDU) achieve the following demand reduction goals through market-based standard offer programs (SOPs) and targeted market transformation programs (MTPs). 16 TAC § 25.181(e)(1) provides in pertinent part as follows:

- (e)(1) An electric utility shall administer a portfolio of energy efficiency programs to acquire, at a minimum, the following:
 - (A) Beginning with the 2013 program year, until the trigger described in subparagraph
 (B) of this paragraph is reached, the utility shall acquire a 30% reduction of its annual growth in demand of residential and commercial customers.
 - (B) If the demand reduction goal to be acquired by a utility under subparagraph (A) of this paragraph is equivalent to at least four-tenths of 1% of its summer weatheradjusted peak demand for the combined residential and commercial customers for the previous program year, the utility shall meet the energy efficiency goal described in subparagraph (C) of this paragraph for each subsequent program year.
 - (C) Once the trigger described in subparagraph (B) of this paragraph is reached, the utility shall acquire four-tenths of 1% of its summer weather-adjusted peak demand for the combined residential and commercial customers for the previous program year.
 - (D) Except as adjusted in accordance with subsection (u) of this section, a utility's demand reduction goal in any year shall not be lower than its goal for the prior year, unless the commission establishes a goal for a utility pursuant to paragraph (2) of this subsection.

The EE Rule includes specific requirements related to the implementation of SOPs and MTPs that control the manner in which TDUs must administer their portfolio of energy efficiency programs in order to achieve their mandated annual demand reduction goals. AEP Texas' plans enable it to meet its statutory goals through implementation of energy efficiency programs in a manner that complies with PURA § 39.905 and the EE Rule. This EEPR covers the periods of time required in the EE Rule. The following section describes the information that is contained in each of the subsequent sections and appendices.

EEPR ORGANIZATION

This EEPR consists of an Executive Summary, Energy Efficiency Plan, Energy Efficiency Report, a list of acronyms, and three appendices.

Executive Summary

• Summarizes AEP Texas' plans for achieving its goals and projected energy efficiency savings for program years 2023 and 2024 and highlights AEP Texas' achievements for Program Year (PY) 2022.

Energy Efficiency Plan

- Section I describes the program portfolio. It details how programs will be implemented, presents related informational and outreach activities, and provides an introduction to any programs not included in the 2022 EEPR.
- Section II describes the targeted customer classes, the estimated size of each class and the method of determining those class sizes.
- Section III presents the energy and demand goals and projected savings for the prescribed planning period detailed by program for each customer class.
- Section IV describes the proposed energy efficiency budgets for the prescribed planning period detailed by program for each customer class.

Energy Efficiency Report

- Section V documents the demand reduction goal for each of the previous five years (2018-2022) based on its weather-adjusted peak demand and actual savings achieved for those years.
- Section VI compares the projected energy and demand savings to its reported and verified savings by program for PY 2021 and 2022.
- Section VII details the incentive and administration expenditures for each of the previous five years (2018-2022) detailed by program for each customer class.
- Section VIII compares the actual 2022 expenditures with the 2022 budget by program for each customer class. It also explains any cost differences of more than 10% from the overall program budget and from each program budget.
- Section IX describes the results from the MTPs.
- Section X describes Administrative costs and Research and Development activities.
- Section XI documents the 2023 EECRF.
- Section XII documents the 2022 EECRF Summary.
- Section XIII documents the Underserved Counties.

Acronyms

• A list of abbreviations for common terms used within this document.

Appendices

- Appendix A Reported and verified demand and energy reductions by county for each program.
- Appendix B Program templates for any new or significantly modified programs and programs not included in the previous EEPR.
- Appendix C Data, explanations, or documents supporting other sections of the EEPR.

4

EXECUTIVE SUMMARY – ENERGY EFFICIENCY PLAN (PLAN)

AEP Texas plans to achieve its 2023 mandated demand and energy goals of 21.08 MW and 36,932 MWh as shown in Table 1 below through residential and non-residential SOPs and MTPs. AEP Texas will utilize a budget of \$18,797,166 to accomplish these goals.

Calendar Year	Average Peak Demand at Meter (MW)	Goal Metric: 0.4% Peak Demand (MW)	Peak Demand Goal (MW)	Energy Goal (MWh)	Projected Demand Reduction (MW)	Projected Energy Savings (MWh)	Projected Budget (000's)*
2023	5,271	21.08	21.08	36,932	61	76.648	\$18,797
2024	5,387	21.55	21.55	37,756	61	76,758	\$18.928

Table 1: Summary of Goals,Projected Savings (at the Meter), and Budgets 1

* The Projected Budgets include costs associated with Evaluation, Measurement & Verification activities.

EXECUTIVE SUMMARY – ENERGY EFFICIENCY REPORT (REPORT)

AEP Texas achieved demand and energy reductions of 53,404 kW and 83,915,065 kWh in 2022. The total energy efficiency cost for achieving these savings was \$17,220,700 This achievement exceeded the 2022 mandated energy efficiency goals of 20,830 kW and 36,494,000 kWh.

A broad portfolio of residential and non-residential SOPs and MTPs was used to accomplish these savings.

¹ Average Peak Demand figures are from Table 4. Projected Savings from Table 5; Projected Budgets from Tables 6 and 7

ENERGY EFFICIENCY PLAN

I. 2023 Programs

A. 2023 Program Portfolio

AEP Texas has implemented a variety of programs in 2023 to enable it to meet its goals in a manner that complies with PURA § 39.905 and the EE Rule. These programs target broad market segments and specific market sub-segments with significant opportunities for cost-effective energy savings.

Table 2 summarizes the programs and targeted customer class markets for Program Year 2023. The programs listed in Table 2 are described in further detail in Subsection B. AEP Texas maintains a website containing information on participation, forms required for project submission, and program manuals at <u>www.AEPTexasEfficiency.com</u>. This site is the primary method of communication used to provide program updates and information to Retail Electric Providers (REPs), potential Energy Efficiency Service Providers (EESPs), and other interested parties.

Implementation Process

MTPs are implemented by third-party implementers. These implementers design, market and execute the applicable MTPs. Based on the specific MTP, the implementer may perform outreach activities to recruit local contractors and provide participating contractors specialized education, training/certification and tools as necessary. Implementers validate proposed measures/projects, perform quality assurance/quality control, and verify and report savings derived from the program.

SOPs are managed in-house with project sponsors providing eligible program measures. Project sponsors are typically EESPs; however, for commercial projects an AEP Texas end-use customer may serve as its own project sponsor. Eligible project sponsors can submit an application(s) for project(s) meeting the minimum SOP requirements.

AEP Texas monitors projects being submitted so as to not accept duplicate enrollments for the same measures in multiple programs.

6

2023 linergy lifficiency Plan and Report

Outreach Activities

- Promote internet websites with program information including project eligibility, end-use measures, incentives, procedures, application forms, and in some cases a list of participating project sponsors and the available program budget;
- Utilize mass e-mail notifications to inform and update potential project sponsors on AEP Texas energy efficiency program opportunities;
- Conduct workshops as necessary to explain program elements such as responsibilities of the project participants, program requirements, incentive information and the application and reporting process;
- Conduct specific project sponsor/contractor training sessions as necessary based on the energy efficiency programs being implemented;
- Participate in local, regional, state-wide, and industry-related outreach activities as may be necessary; and
- Facilitate earned media opportunities, spotlighting successful projects and/or interesting stories as applicable.

Program	Target Market	Application
Commercial Foodservice Pilot MTP	Commercial	Retrofit & New Construction
Commercial Solutions MTP	Commercial	Retrofit & New Construction
Commercial SOP	Commercial	Retrofit & New Construction
CoolSaver SM A/C Tune-Up MTP	Commercial & Residential	Retrofit
Hard-to-Reach SOP	Residential Hard-to-Reach	Retrofit & New Construction
High-Performance New Homes	Residential	New Construction
Load Management SOP	Commercial	Retrofit
Open MTP	Commercial	Retrofit
Residential SOP	Residential	Retrofit & New Construction
SCORE/CitySmart MTP	Commercial	Retrofit & New Construction
SMART Source ^{8M} Solar PV M1P	Commercial & Residential	Retrofit & New Construction
Targeted Low-Income Energy Efficiency Program	Low-Income Residential	Retrofit
Winter Load Management SOP	Commercial	Retrofit

7

Table 2: 2023 Energy Efficiency Program Portfolio

B. Existing Programs

Commercial Solutions Market Transformation Program (CS MTP)

The CS MTP targets commercial customers (other than governmental and educational entities) that do not have the in-house expertise to: 1) identify, evaluate, and undertake energy efficiency improvements; 2) properly evaluate energy efficiency proposals from vendors; and/or 3) understand how to leverage their energy savings to finance projects. Incentives are paid to customers for eligible energy efficiency measures that are installed in new or retrofit applications that result in verifiable demand and energy savings.

Commercial Standard Offer Program (CSOP)

The CSOP targets commercial customers of all sizes. Variable incentives are available to project sponsors based upon verified demand and energy savings for eligible measures installed in new or retrofit applications.

CoolSaver A/C Tune-Up Market Transformation Program (CoolSaver MTP)

The CoolSaver MTP is designed to overcome market barriers that prevent residential and small commercial customers from receiving high performance air conditioning (A/C) system tune-ups. The program works through local A/C networks to offer key program components, including:

- Training and certifying A/C technicians on the tune-up and air flow correction services and protocols.
- Paying incentives to A/C contactors for the successful implementation of A/C tune-up and air flow correction services.
- Paying incentives to A/C contractors who replace existing residential air conditioners and/or heat pumps with new high efficiency units of 16 SEER or higher. Additional incentives are paid for early retirement of operational equipment and for "right-sizing" replacement units.

Hard-to-Reach Standard Offer Program (HTR SOP)

The HTR SOP targets residential customers with total annual household incomes at or below 200% of current federal poverty guidelines. Incentives are paid to project sponsors for eligible measures installed in new and retrofit applications that result in verifiable demand and energy savings. Project

comprehensiveness is encouraged and customer education materials regarding energy conservation behavior are distributed by project sponsors.

High-Performance New Homes Market Transformation Program (New Homes MTP)

The New Homes MTP targets several market participants, primarily homebuilders and consumers. The program's goal is to create conditions in which consumers demand energy-efficient homes, and homebuilders supply them. Incentives are paid to homebuilders who construct homes to strict energy-efficient building guidelines and that are at least 5% above the Texas Baseline Reference Home and meet all minimum energy code requirements. The program has a tiered design that uses a combination of mandatory, additional elective, and innovative measures to promote market transformation and drive deep energy savings. ENERGY STAR^{*} and complete foam encapsulated homes are offered as alternative pathways to Tiers. Bonus incentives are offered for heat pump water heaters, Level 2 ENERGY STAR EV chargers, ENERGY STAR smart thermostats, affordable/low-income housing, right-sized HVAC and to builders who switch from electric resistance furnaces to heat pumps. Each home results in verifiable demand and energy savings. In addition to homebuilder and consumer outreach, the New Homes MTP targets key market actors in the homebuilding production and sales cycle: home energy raters, homebuilder sales agents, real estate agents, HVAC contractors, mortgage lenders, product manufacturers, homebuilder associations, and media outlets.

Load Management Standard Offer Program (LM SOP)

The LM SOP targets non-residential customers with a peak electric demand of 500 kW or more and able to reduce at least 5 kW demand or more during a curtailment event. Curtailment events occur during the program operating period June 1, 2022 through September 30, 2022, from 1 pm through 7 pm excluding weekends and federal holidays. Program participants include non-residential customers and Market Actors that include national or local energy efficiency service providers, commercial aggregation groups and retail electric providers (REPS). Load curtailment events are dispatched by AEP Texas to the program participants providing a 30-minute advance notification and will have a one-to-four-hour duration. Incentive payments are based on the average measured and verified demand reduction during the program operating period.

\$

Open Market Transformation Program (Open MTP)

The Open MTP targets traditionally underserved small commercial customers who may not employ knowledgeable personnel with a focus on energy efficiency, who are limited in the ability to implement energy efficiency measures, and/or who typically do not actively seek the help of a professional EESP. Small commercial customers with a peak demand not exceeding 150 kW in the previous twelve consecutive billing months may qualify to participate in the program. Available incentives are paid directly to the contractor, thereby reducing a portion of the project cost for the customer.

The program is intended to overcome market barriers for participating contractors by providing technical support and incentives to implement energy efficiency upgrades and produce demand and energy savings.

Residential Standard Offer Program (RSOP)

The RSOP targets all residential customers, paying incentives to project sponsors for eligible measures installed in new and retrofit applications that result in verified demand and energy savings. Project comprehensiveness is encouraged.

SCORE/CitySmart Market Transformation Program (SCORE/CS MTP)

The SCORE/CS MTP provides energy efficiency and demand reduction solutions for public and private educational entities grades K-12 as well as colleges and universities. In addition to educational facilities, SCORE/CS MTP provides these same solutions to local, state, county and federal government customers. This program is designed to help educate and assist these customers in lowering their energy use by facilitating the integration of energy efficiency into their short- and long-term planning, budgeting, and operational practices. Incentives are paid to participating customers for eligible energy efficiency measures that are installed in new or retrofit applications that result in verifiable demand and energy savings.

SMART Source[™] Solar PV Market Transformation Program (PV MTP)

The PV MTP offers incentives to residential and commercial customers for the installation of solar photovoltaic (PV) systems interconnected on the customer's side of the meter. The incentives help offset the initial costs of installing solar PV systems, and encourage service providers to seek more installation opportunities. In addition to demand and energy savings achieved from the installations,

10

the PV MTP aims to transform the solar PV market by increasing the number of qualified technicians and installers and decreasing the average installed cost of PV systems, thereby creating greater market economies of scale.

Targeted Low-Income Energy Efficiency Program (TLIP)

The TLIP is designed to cost-effectively reduce the energy consumption and energy costs for lowincome residential customers in the AEP Texas service territory. Weatherization service providers install eligible weatherization and energy efficiency measures in qualified households that meet the Department of Energy (DOE) income-eligibility guidelines of at or below 200% of the federal poverty guidelines. A Savings-to-Investment Ratio of 1.0 or higher is required of each serviced dwelling unit.

C. New Programs for 2023

Winter Load Management SOP (WLM SOP)

The WLM SOP targets non-residential customers with a peak electric demand of 500 kW or more and able to reduce at least 100 kW demand or more during a curtailment event. Curtailment events occur during the winter program operating period December 1 through February 28, 24 hours a day, seven days a week. Program participants include non-residential customers and Market Actors that include national or local energy efficiency service providers, commercial aggregation groups and retail electric providers (REPS). Load curtailment events are dispatched by AEP Texas to the program participants providing a 30-minute advance notification and will have a one-to-four-hour duration. Incentive payments are based on the average measured and verified demand reduction during the program operating period.

Foodservice Pilot Market Transformation Program (Foodservice MTP)

The Foodservice MTP targets commercial foodservice participants and market actors. This program will feature a point-of-sale rebate at the foodservice equipment dealer and will engage other key market actors to stimulate the adoption of energy efficient equipment.

D. Discontinued Programs

There are no discontinued programs for 2023.

II. Customer Classes

The AEP Texas energy efficiency programs target its Residential and Commercial customer classes. The programs also target customer sub-classes, such as Residential Hard-to-Reach and Low-Income, Schools, Small Businesses, and Local Governments.

The annual projected savings targets are allocated among these customer classes and sub-classes by examining historical program results and by evaluating economic trends, in compliance with 16 TAC § 25.181(e)(3).

Table 3 summarizes the number of customers in each customer class and the Residential Hard-to-Reach sub-class. The numbers listed are the actual number of active electric service accounts by class served for the month of January 2023. These numbers were used to determine goal and budget allocations for each customer class and program. It should be noted, however, that the actual distribution of the annual goal and budget required to achieve the goal must remain flexible based upon the conditions of the marketplace, the potential interest a customer class may have in a specific program, and the overriding objective of meeting the mandated demand and energy reduction goals in total. AEP Texas offers a varied portfolio of SOPs and MTPs such that all eligible customer classes have access to energy efficiency alternatives.

Customer Class	Number of Customers
Commercial	206,642
Residential	990,736
Hard-to-Reach ²	311,091

Table 3: Summary of Customer Classes

* Hard-to-Reach customer count is a sub-set of the Residential total

² According to the U.S. Census Bureau's 2021 Current Population Survey, 31.4% of Texas families fell below 200% of the poverty threshold in 2020. Applying that percentage to AEP Texas' residential customer base of 990,736, the number of HTR customers is estimated to be 311,091.

III. Energy Efficiency Goals and Projected Savings

AEP Texas' 2023 annual demand and energy reduction goals to be achieved are 21.08 MW and 36,932 MWh. AEP Texas' 2024 annual goals are 21.55 MW and 37,756 MWh. These goals have been calculated as prescribed by the EE Rule.

The 2023 goal was calculated by applying four-tenths of 1% (0.004) of the summer weather-adjusted peak demand for its residential and commercial customers to the five year average (2017-2021) peak demand at the meter of 5,271 MW. This resulted in a calculated goal of 21.08 MW.

The 2024 demand goal is calculated by applying four-tenths of 1% (0.004) of the summer weatheradjusted peak demand for its residential and commercial customers to the five year average (2018-2022) peak demand at the meter of 5,387 MW. This results in a calculated goal of 21.55 MW. As stated in 16 TAC § 25.181(e)(4), a utility's energy savings goal is calculated from its demand savings goal, using a 20% conservation load factor.

Table 4 presents historical annual growth in demand data for the previous five years that was used to calculate AEP Texas' goals. Table 5 presents the projected demand and energy savings for Program Years 2023 and 2024 by program, for each customer class with fully-deployed program budgets.

		Peal	k Demand	l (MW) 🧿 So) u foc		Energy Consumption (GWh) @ Meter				Energy Efficiency Goal		
	Total System F			esidential &	Comme	rciał	Tota	System	Reside Comi	ntial & nercíal		Ē	
Cakendar Year	Actual	Weather Adjusted	Actual	Wexther Auljusted	O pt- Out	Peak Demand at Source Net Opt- outs	Actual	Weather Adjusted	Actual	Weathe r Aułjuste d	Pcak Demand at Meter*	5 year Average Peak Demand at Meter	Goal Metrie; 0:4% Peak Demand at Meter
2016	6.412	6,270	5.910	5.768	-75	5,693	31.604	31. 224	25,791	25.411	5,134	NA	NA
2017	6,391	6,234	5,879	5,722	-101	5,621	31,553	31,334	25,072	24,853	5,069	NA	NA
2018	6.339	6,349	5.817	5.827	-109	5,718	32.020	31.680	25,693	25.353	5,265	5.002	NA
2019	6.501	6,364	5.945	5.807	-106	5,701	31.962	31.564	25,675	25.277	5,248	5.043	NA
2020	6,451	6.417	5,875	5,841	-75	5,766	31,746	31,767	25,194	25,214	5,317	5,112	NA
2021	6.451	6,580	5.814	5.943	-25	5,918	32.975	33.004	26,253	26.282	5,457	5.15 2	NA
2022	6.915	6,842	6.244	6.170	-47	6,123	35.714	35,500	28,877	28,663	5,647	5.207	NA
2023	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5,271	21.08
2024	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	5.387	21 55

Table 4: Annual Growth in Demand and Energy Consumption - AEP Texas

*Line losses are derived from the loss factors determined in the most recent line loss studies for AEP Texas (Central Division and North Division).

2

.

Customer Class and	Projecte	ed Savings 2023	Projected Savings 2024		
Program	kW	kWh	kW	kWh	
Commercial	51,311	46,424,144	51,327	46,534,287	
Commercial Foodservice					
Pilot MTP	25	166,479	41	276,622	
Commercial Solutions MTP	1,664	7,458,262	1,664	7,458,262	
Commercial SOP	3,133	16,316,286	3,133	16,316,286	
CoolSaver SM A/C Tune-Up					
MTP	3,466	8,047,475	3,466	8,047,475	
Load Management SOP	26,308	26,308	26,308	26,308	
Open MTP	1,215	5,234,159	1,215	5,234,159	
SCORE/CitySmart MTP	2,463	8,259,385	2,463	8,259,385	
SMART Source ^{8M} Solar PV					
MTP	269	903,022	269	903,022	
Winter Load Management					
SOP	12,768	12,768	12,768	12,768	
Residential	7,353	23,625,695	7,353	23,625,695	
CoolSaver SM A/C Tune-Up				1	
MTP	1,594	6,250,000	1,594	6,250,000	
High-Performance New		[
Homes MTP	2,215	3,703,316	2,215	3,703,316	
Residential SOP	2,785	11,187,718	2,785	11,187,718	
SMART Source SM Solar PV					
MTP	759	2,484,661	759	2,484,661	
Hard-to-Reach	2,248	6,597,665	2,248	6,597,665	
Hard-to-Reach SOP	1,408	5,065,232	1,408	5,065,232	
TLI EE Program	840	1,532,434	840	1,532,434	
Total Annual Projected					
Savings	60,913	76,647,505	60,929	76,757,648	

Table 5: Projected Demand and Energy Savings by Program for Each Customer Class for2023 and 2024 (at the Meter) – AEP Texas

IV. Program Budgets

Tables 6 and 7 present total proposed budget allocations required to meet AEP Texas' projected demand and energy savings to be achieved for Program Year 2023 and 2024. The budget allocations are defined by the overall projected demand and energy savings, the avoided costs of capacity and energy specified in the EE Rule, allocation of demand goals, and the incentive levels by customer class. The budget allocations are detailed by customer class, program, and in the following budget categories: incentives, administration, research and development (R&D), and evaluation, measurement and verification (EM&V).

Table 6: Projected Annual Budget by Program for Each Customer Class for 2023 AEP Texas

2023	Incentives	Admin	R&D	EM&V	Total Budget
Commercial					
Commercial Foodservice Pilot MTP	\$250 ,000	\$25,000			\$275.000
Commercial Solutions MTP	\$903,248	\$111,255			\$1,014,503
Commercial SOP	\$1,875,7 62	\$218,467			\$2,094,229
CoolSaver ^{SNI} A/C Tune-Up MTP	\$796,7 00	\$79,393			\$876,093
Load Management SOP	\$ 737,700	\$83,863			\$821,563
Open MTP	\$1,213,041	\$147,253			\$1,360,294
SCORE/CitySmart MTP	\$1,192,3 00	\$125,165			\$1,317,465
SMART Source SM Solar PV MTP	\$287 ,310	\$32,375			\$319,685
Winter Load Management SOP	\$350,000	\$25,000			\$375,000
Residential					
CoolSaver SM A/C Tune-Up MTP	\$825 <u>,000</u>	\$80,578			\$905,578
High-Performance New Homes MTP	<u>\$965,000</u>	<u>\$107,222</u>			\$1,072,222
Residential SOP	\$3,164,657	\$330,499			\$3,495,156
SMART Source ^{8M} Solar PV MTP	\$67 0,941	\$70,434			\$741,375
Hard-to-Reach					
Hard-to-Reach SOP	\$1,41 2,560	<u>\$143,787</u>			\$1,556,347
Targeted Low-Income Energy Efficiency Program	\$1,799,159	\$187,144			\$1,986,303
Research and Development					
R&D			\$353,646		\$353,646
Evaluation, Measurement & Verification (EM&V)					
EM&V				\$232,708	\$232,708
Total Budget	\$16,443,378	\$1,767,434	\$353,646	\$232,708	\$18,797,16 6

2024	Incentives	Admin	R&D	EM&V	Total Budget
Commercial					
Commercial Foodservice Pilot MTP	\$280,000	\$25,000			\$305,000
Commercial Solutions MTP	\$903,248	\$115,485			\$1.018.733
Commercial SOP	\$1,875,762	\$218,467			\$2,094,229
CoolSaver SM A/C Tune-Up MTP	\$796,700	\$88,522			\$885,222
Load Management SOP	\$737,700	\$85,300			\$823,000
Open MTP	\$1,213,041	\$150,959			\$1,364,000
SCORE/CitySmart MTP	\$1,192,300	\$141,884			\$1,334,184
SMART Source SM Solar PV MTP	\$287,310	\$35,017			\$322,327
Winter Load Management SOP	\$350,000	\$25,000			\$375,000
Residential					
CoolSaver SM A/C Tune-Up MTP	\$825,000	\$91,667			\$916,667
High-Performance New Homes MTP	\$965,000	\$107,222			\$1,072,222
Residential SOP	\$3,164,657	\$359,868			\$3,524,525
SMART Source SM Solar PV MTP	\$670,941	\$79,059			\$750,000
Hard-to-Reach					
Hard-to-Reach SOP	\$1,412,560	\$156,840			\$1,569,400
Targeted Low-Income Energy Efficiency Program	\$1,799,159	\$187,144			\$1,986,303
Research and Development					
R&D			\$353,646		\$353,646
Evaluation, Measurement & Verification (EM&V)					
EM&V				\$233,450	\$233,450
Total Budget	\$16,473,378	\$1,867,434	\$353,646	\$233,450	\$18,927,908

Table 7: Projected Annual Budget by Program for Each Customer Classfor 2024 AEP Texas

ENERGY EFFICIENCY REPORT

V. Historical Demand and Energy Goals and Savings Achieved for the Previous Five Years

Table 8 contains the demand and energy reduction goals and actual savings achieved for the previous five years (2018-2022) calculated in accordance with the EE Rule.

Calendar Year	Actual Weather Adjusted Demand Goal (MW)	Actual Weather Adjusted Energy Goal (MWh)	Savings Achieved (MW)	Savings Achieved (MWh)
AEP Texas				
2022	20.83	36,494	53,4**	83,915
2021	20.60	36,091	45.31	83,701
Central				
2020	16.38	28,698	50.45	59,259
2019	16.14	28,277	39,70	58,398
2018	15.99	28,014	43.81	62,417
North				
2020	4.26	7,464	5,79	12,768
2019	4.26	7,464	6.58	11,968
2018	4,26	7,464	8,95	12,669

 Table 8: Historical Demand and Energy Goals* and Savings Achieved (at the Meter)

* Actual Weather Adjusted MW and MWh Goals as reported in the EEPRs filed in years 2018-2022.

**Central and North divisions are combined. Reported savings achieved at the source are 48.12 MW (48 12 x 1/(1-

7.284%)) = 51.9 MW for Central division and 5.29 MW (5.29 x 1/(1-9.957%)) = 5.87 MW for North division.

VI. Projected, Reported and Verified Demand and Energy Savings

Table 9: Projected versus Reported and Verified Savings for 2022 and 2021 (at the Meter)

2022	Projecto	ed Savings	Reported and Verified Savings		
Customer Class and Program	kW	kWh	k₩	kWh	
Commercial	ſ				
Commercial Solutions MTP	1,664	7,458,262	1,649	7,980,776	
Commercial SOP	2,554	13,452,356	3,131	15,955,810	
CoolSaver SM A/C Tune-Up MTP	3,466	8,047,475	5,711	11,685,066	
Load Management SOP	26,507	24,387	28,968	28,968	
Open MTP	1,215	5,234,159	1,252	4,529,866	
SCORE/City Smart MTP	2,463	8,259,385	2,437	9,927,928	
SMART Source SM Solar PV MTP	278	901,737	320	1,010,922	
Residential					
CoolSaver SM A/C Tune-Up MTP	1,594	6,250,000	1,522	7.753,843	
High-Performance New Homes MTP	2,353	3,917,476	2,657	4,578,039	
Residential SOP	2,191	9,477,974	2,720	10,761,775	
SMART Source ^{s™} Solar PV MTP	615	2,101,421	897	3,223,034	
Hard-to-Reach					
Hard-to-Reach SOP	1,930	3,845,156	1,470	5,247,286	
TLI EE Program	966	1.517,843	671	1,231,753	
Total Annual Savings	47,797	70,487,631	53,404	83,915,065	
2021	Projecte	ed Savings	Reported and	d Verified Savings	
Customer Class and Program	kW	kWh	kW	kWh	
Commercial					
Commercial Solutions MTP	1,433	8,709,280	1,650	7,631,163	
Commercial SOP	3,067	13.639,318	3,184	18,413,777	
CoolSaver SM A/C Tune-Up MTP	1,393	4,376,124	4,497	9,015,723	
Load Management SOP	22.261	20,480	21.647	21,647	
Open MTP	1,184	4,660,806	1,216	5,117,184	
SCORE/City Smart MTP	2,061	9,680,000	2.284	9,645,175	
SMART Source SM Solar PV MTP	380	1,187,409	237	862,214	
Residential					
CoolSaver SM A/C Tune-Up MTP	1,017	3,223,609	1,299	6,540,544	
High-Performance New Homes MTP	3,394	4,366,339	2,266	3,248,011	
Residential Pool Pump Pilot MTP	2,134	3,520,650	2,963	14.095,317	
Residential SOP	173	1,203,872	14	180,186	
SMART Source SM Solar PV MTP	301	925,735	468	1.602,578	
Hard-to-Reach					
Hard-to-Reach SOP	1,551	2,418,835	2,277	4,931,719	
Targeted Low-Income Energy					
Efficiency Program	917	1,392,896	1,309	2,395,875	
Total Annual Savings	41,267	59,325,352	45,311	83,701,112	

VII. Historical Program Expenditures

This section documents AEP Texas' incentive and administration expenditures for the previous five years (2018-2022) detailed by program for each customer class.

	2022 2021		21	202	20	2019		2018		
	Incent.	Admin	Incent.	Admin	Incent.	Admin	Incent.	Admin	Incent.	Admin
Commercial										
Commercial Solutions MTP	\$8 76 53	\$83.8 0	\$ 900.63	\$ 103. 88	\$869.07	\$ 97 15	\$900.31	\$ 107.09	\$946.24	\$8 9.56
Commercial SOP	\$1,84 6 07	\$235.99	\$2,000.12	\$230.86	\$1,798.52	\$2 16 04	\$1.974.48	\$ 232 53	\$2,143 87	\$24 7.80
CoolSaver SM A/C Tune-Up MTP	\$8 76 77	\$61.63	\$595.48	\$49.88	\$595.50	\$ 49.42	\$647.82	\$ 53.34	\$604,06	\$ 45.81
Load Management SOP	\$8 02.17	\$90.38	\$ 573 38	\$ 64.45	\$828.41	\$ 61 74	\$584 63	\$50.03	\$689 19	\$8 6.07
Open MTP	\$1, 055.08	\$111.8 5	\$1 ,199.15	\$12 4.51	\$1.205.48	\$1 34.37	\$1,195.60	\$1 44.59	\$1,211.80	\$108.26
SCORE/CitySmart MTP	\$1,180.23	\$112.44	\$1.127.9 7	\$1 10.45	\$1,121.97	\$1 06.35	\$1 .111.64	\$11 3.42	\$ 1,075. 94	\$108.22
SMART Source SM Solar PV MTP	\$169.78	\$17.76	\$19 7.02	\$19.66	\$2 54.47	\$2 7.80	\$28 4.99	\$22 .66	\$274.76	\$20.29

Table 10: Historical Program Incentive and Administrative Expenditures for 2018 through 2022 (000's) - AEP Texas

(Table continued on next page)

Schedule S Page 20 of 33

	202	22	20:	21	202	20	20	19	2018	
	Incent.	Admin	Incent.	Admin	Incent.	Admin	Incent.	Admin	Incent.	Admin
Residential										
CoolSaver SM A/C Tune-Up MTP	\$819.78	\$74.64	\$677.93	\$56.78	\$673.00	\$ <u>55.85</u>	\$696.41	\$ 57.31	\$667.18	\$50.61
High-Performance New Homes MTP	\$844.09	\$97.17	\$947.26	\$90.06	\$909.56	\$78.92	\$807.36	\$73.92	\$750.25	\$88.73
Residential Pool Pump Pilot MTP	NAP	NAP	\$73.66	\$10.88	\$65.90	\$13.11	\$76.70	\$9.68	NAP	NAP
Residential SOP	\$2,963.58	\$ 279.89	\$3,365,28	\$329.41	\$3,445.80	\$326.30	\$3,260,74	\$363.80	\$3,284.20	\$ 355.40
SMART Source SM Solar PV MTP	\$60 5.9 2	\$59.87	\$307.75	\$32.77	\$293.18	\$31.04	\$300 25	\$24.11	\$316.97	\$23.23
Hard-to-Reach										
Hard-to-Reach SOP	\$1,42 7.56	\$135.03	\$1,412.44	\$176.68	\$1.624.91	\$175.96	\$1,453.44	\$12 7.7 1	\$1.456.26	\$160.66
Targeted Low-Income Energy Efficiency Program	\$1,611,58	\$178.63	\$1,826.49	\$173.45	\$1 ,771.13	\$142.18	\$1,813.52	\$183.16	\$1,596.78	\$141.97
Research and Development (R&D)	NAP	\$391.13	NAP	\$177.82	NAP	\$280.10	NAP	\$386.96	NAP	\$235.76
Evaluation and Measurement Verification (EM&V)	NAP	\$211.36	NAP	\$206.95	NAP	\$215 60	NAP	\$211.99	NAP	\$208.09
Total Expenditures	\$15,079.13	\$2,141.57	\$15,204.57	\$1,958.49	\$15,456.90	S2,011.93	\$15,107.89	S2,162.30	\$15,017.50	\$1,970.46

Table 10: Historical Program Incentive and Administrative Expenditures for 2018 through 2022 (000's) – AEP Texas(Continued)

Scheaule S Page 21 of 33

VIII. Program Funding for Program Year 2022

As shown in Table 11 the total projected budget for AEP Texas in 2022 was \$17,959,017 and the actual total funds expended were \$17,220,700. This is an overall total program expenditure difference of 4% from the amount budgeted.

The following individual program expenditures differed from their respective proposed budgets by more than 10%, as explained below.

The Open Market Transformation Program was under budget by more than 10% because there were new contractors in the program (which takes more time for education and startup), which resulted in fewer program participants and completed projects. Additionally, customers cancelled projects due to budget constraints, and contractors had issues with product shipment delays.

The High Performance New Homes MTP was under budget due to various reasons including a decrease in building permits/starts and the adjustment of incentive funding to higher performing measures, some of which inventory was not readily available.

The SMART SourceSM Solar PV MTP commercial class was under budget due to a large project being delayed by supply chain issues.

The SMART SourceSM Solar PV MTP residential class was under budget due to a smaller volume of projects participating in the program. (due to delays in installers completing interconnection documentation.)

The combined 2022 expenditures for the TLIP and the HTR SOP constituted 18.9% of the energy efficiency budget.

22

Table 11: Program	Funding for Program	n Year 2022- AEP	Texas
-------------------	---------------------	------------------	-------

	Total Projected Budget ^s	Numbers of Customers Participating	Actual Funds Expended (Incentives)	Actual Funds Expended (Admin)	Rescarch and Development (R&D)	Evaluation and Measurement Verification (EM&V)	Total Funds Expended
Commercial							
Commercial Solutions MTP	\$1,018,733	154	\$876,527	\$83,799			\$960.326
Commercial SOP	\$2.094,229	_ 97	\$1,846.073	\$235,986	:		\$2.082,059
CoolSaver ^{an} A/C Tune-Up MTP	\$885.222	853	\$876,772	\$61,632			\$938,403
Load Management SOP	\$823,000	292	\$802,171	\$90,376			\$892,547
Open M1P	\$1,364,000	148	\$1,055,076	\$111.849			\$1 ,166.925
SCORE/CitySmart MTP	\$1,334,184	109	\$1.180,225	\$112,441			\$1,292,666
SMAR1 Source SM Solar PV MTP	\$322,327	6	\$169,780	\$17,762			\$187,543
Residential							
CoolSaver [™] A C Tune-Up MTP	\$916.667	3.050	\$819,778	\$74,643			\$894,421
High-Performance New Homes MTP	\$1,072,222	961	\$844,092	\$97,174			\$941,266
Residential SOP	\$3,257,725	3,294	\$2,963.580	\$279,887			\$3.243,467
SMAR1 Source SM Solar PV MTP	\$750.000	178	\$605,919	\$59,872			\$665,791
Hard-to-Reach							
Hard-to-Reach SOP	\$1.569,400	1.831	<u>\$1,427.558</u>	\$135,030			\$1.562,587
Targeted Low-Income Energy Efficiency	\$1.986,303	388	\$1,611.583	\$178,626			\$1.790,209
Research and Development	\$353.646				\$391 .130		\$391,130
EM&V							
Statewide EM&V Contractor	\$211,359					\$211,359	\$211,359
Total	\$17,959,017	11,361	\$15,079,133	\$1,539,077	\$391,130	\$211,359	\$17 ,220,7 00

^{*} Projected Budget from the revised EEPR filed May 2022 Project No. 53679

IX. Market Transformation Program Results 2022

Commercial Solutions MTP

The Commercial Solutions MTP goal was to acquire 1,644 kW demand savings. A total of 1,649 kW was achieved by participation of 154 customers.

CoolSaverSM MTP

The CoolSaverSM MTP verified and reported 7,233 kW. This included participation by 3,903 residential and commercial customers.

High-Performance New Homes MTP (New Homes)

In 2022, 961 high-performance homes were constructed in the New Homes program with a savings of 2,657 kW. Despite the decrease in building permits and home starts, the number of program homes increased as did customers learning about and benefiting from energy efficient homes. The program provided continuing education courses and other training opportunities for contractors, homebuilders, home energy raters, HVAC contractors and other market actors on the advantages of High-Performance and ENERGY STAR homes and building practices. Training for HVAC market actors focused on Manual J training to re-emphasize the importance of performing load calculations for correctly sizing HVAC systems. AEP Texas continued their partnership with the Environmental Protection Agency's (EPA) ENERGY STAR program and received the ENERGY STAR Partner of the Year Sustained Excellence award.

Open MTP

The Open MTP goal was to acquire 1,215 kW demand savings. A total of 1,252 kW was achieved with 148 small commercial customers and 17 participating contractors.

SCORE/CitySmart MTP

The SCORE/CitySmart MTP was projected to acquire 2,463 kW demand savings A total of 2,437 kW was achieved. This included participation by 109 customers.

SMART SourceSM Solar PV MTP

The PV MTP projected to acquire 893 kW in demand savings and 3,003,158 kWh in energy savings from the residential and non-residential components. A total of 184 residential and non-residential solar PV projects were completed within the program, resulting in a peak demand reduction of 1,217 kW and 4,233,956 kWh of energy savings.

X. Administrative Costs and Research and Development

Administrative Costs

Administrative costs incurred to meet the energy efficiency goals and objectives include, but may not be limited to, energy efficiency employees' payroll, costs associated with regulatory filings, and EM&V costs outside of the actual cost associated with the EM&V contractor. Any portion of these costs that are not directly assignable to a specific program are allocated among the programs in proportion to the program incentive costs.

Program Research and Development

R&D activities are intended to help AEP Texas meet future energy efficiency goals by researching new technologies and program options and developing better, more efficient ways to administer current programs. In 2022 AEP Texas dedicated resources to enhance data collection and management systems for current programs. In addition, AEP Texas participated with Electric Utility Marketing Managers of Texas (EUMMOT) in researching potentially new deemed savings measures for various programs. AEP Texas provided support to the Texas Energy Poverty Research Institute (TEPRI) to study *Elevating Equily in Residential Solar Deployment*. This study explores the feasibility of distributed solar for low income residential electric customers, particularly in rural areas served by AEP Texas.

Informational Activities

AEP Texas continues its best effort to encourage and facilitate the involvement of REPs and EESPs in the delivery of its programs to customers.

XI. 2023 Energy Efficiency Cost Recovery Factor (EECRF)

AEP Texas' 2023 EECRF was approved by the Commission in Docket No. 53679 and includes \$26,029,727 for AEP Texas as shown in Table 12. The adjusted factors are shown in Table 13.

2023 Projected Costs	\$18,024,458
Performance Bonus for 2021 results	\$7,931,405
Over-recovery, returned to customers with interest	(\$197,105)
EECRF proceeding expenses	\$38,262
Projected EM&V costs	\$232,708
Total EECRF	\$26,029,727

Table 12: 2023 EECRF

Table 13: 2023 EECRF Factors

Customer Class	AEP Texas
Residential Service	\$0.001062 per kWh
Secondary Service (less than or equal to 10 kW)	\$0.000852 per kWh
Secondary Service (greater than 10 kW)	\$0.000958 per kWh
Primary Service	\$ 0.000446 per kWh
Transmission Service	\$0.000000 per kW

XII. 2022 EECRF Summary

2022 Collections for Energy Efficiency

AEP Texas collected \$26,462,307 through its 2022 EECRF. A performance bonus of \$8,673,275 for exceeding its 2020 energy efficiency goals and \$351,084 returned to customers are reflected in the total amount collected for energy efficiency in 2022.

Energy Efficiency Program Costs Expended

AEP Texas expended a total of \$17,220,700 for its 2022 energy efficiency programs. The amount expended is \$738,317 less than the 2022 projected budget of \$17,959,017 for energy efficiency programs.

Over-Recovery of Energy Efficiency Costs

AEP Texas' actual 2022 energy efficiency program costs (including EM&V costs) less municipal rate case expenses are \$17,214,162 and actual energy efficiency program revenues are \$17,437,948. These associated 2022 costs and revenues result in a total over-recovery of energy efficiency costs

of \$223,786. Included in that number is a small amount of trailing under-recovery, \$451, from the Transmission Class that has continued since base rate energy efficiency recovery existed for that class. AEP Texas has determined to forego the recovery of this small amount. The adjusted PY 2022 over-recovery is \$224,236. Including interest of \$2,941 the over-recovery is \$227,177. This is the amount that the AEP Texas will request be returned to customers within its 2024 EECRF.

XIII, Underserved Counties

AEP Texas has defined Underserved Counties as any county in the service territory for which no demand or energy savings were reported through any of its 2022 SOPs or MTPs. Per 16 TAC \$25.181(1)(2)(U), a list of the Underserved Counties is shown in Table 14:

Baylor	Briscoe	Brooks	Brown	Caldwell	Childress
Coleman	Collingsworth	Concho	Cottle	Crane	Dickens
Donley	Fisher	Foard	Gillespie	Gonzalez	Guadalupe
Hall	Hardeman	Haskell	Jackson	Karnes	Kenedy
King	Kinney	Mason	McCulloch	McMullen	Motley
Stephens	Throckmorton	Wheeler	Wilbarger	Wilson	

27

Table 14: Underserved Counties

ACRONYMS

COMMISSION	Public Utility Commission of Texas
CSOP	Commercial Standard Offer Program
CS MTP	Commercial Solutions Market Transformation Program
DR	Demand Response
DSM	Demand Side Management
EECRF	Energy Efficiency Cost Recovery Factor
EEPR	Energy Efficiency Plan and Report
EE Rule	Energy Efficiency Rule, 16 TAC §§ 25.181, 25.182 and 25.183
EESP	Energy Efficiency Service Providers
EPA	Environmental Protection Agency
EUMMOT	Electric Utility Marketing Managers of Texas
Foodservice MTP	Foodservice Pilot Market Transformation Program
HTR	Hard-To-Reach
HTR SOP	Hard-to-Reach Standard Offer Program
LM SOP	Load Management Standard Offer Program
МТР	Market Transformation Program
NAP	Not Applicable
New Homes	High-Performance New Home Market Transformation Program
Open MTP	Open Market Transformation Program

ACRONYMS (Continued)

PURA	Public Utility Regulatory Act
PV	Photovoltaic
PV MTP	SMART Source SM Solar PV Market Transformation Program
R&D	Research and Development
REP	Retail Electric Provider
RES	Residential
RSOP	Residential Standard Offer Program
SCORE	Schools Conserving Resources
SCORE/CS MTP	SCORE/CitySmart Market Transformation Program
SOP	Standard Offer Program
TDU	Transmission and Distribution Utility
TLIP	Targeted Low-Income Energy Efficiency Program
TRM	Texas Technical Reference Manual
WLM SOP	Winter Load Management Standard Offer Program

APPENDIX A:

REPORTED AND VERIFIED DEMAND AND ENERGY REDUCTION BY COUNTY: AEP TEXAS

	Reported and Verified Demand and Energy Reduction by County: AEP Texas													
					CoolSave	orSM A/C	CoolSave	erSM A/C						
	Commercia	al Solutions	Comme	rcial SOP	lune-L	JaMIP	lune-L	JD MIP	Hard-to-H	each SOP	Hen Perf	ormance	Load Mar	wernent
County	M	TP			(Comm	nercial)	(Resid	ential)			New Hor	nes MTP	sc	99
	 	LUPL	Lass	Lares	1444	LLEIL		Later -	inter 1	- LANG		- INAPL	اسما	La est.
4 Th Ch 14	20.01	167814	. KW	<u>R</u> YT II	K VY		RW	K of D		RWIT	00 co.	130.961	1 64	1 55
Atomotics	30.94	137,851									80.09	139,082	1.00	1 70
	2.59	13,270	1.04	1/2									<u> </u>	<u></u>
Bernartor	40.3V 7 13	141,030	1.94	2,770	n n r	0	0.02				0.92 n nń	 ^	0.03	0.05
Calbour	/.95	30,149	10.41	200,002		U	0.00				10 2/	16 944	n no	0.00
Callahan	· · · · · ·		2257	97.617	n no	n	0.00	0	1.3/	> 22/	0.00	<u></u>	0.00	0.02
Cameron	84.69	401988	271.69	1 756 718	395.39	#17.318	103.80	538,705	111 48	692 327	8 38	13 289	4,798.00	4,798.00
Coke	8./1	39,052			0.00	0	0.00	0			0 00	0		.,. ==.==
Colorado	5.40	19,297	16.66	41.774		_						-	55 44	55 44
Crockett	24.34	127.024			0.00	0	0.00	0			0.00	0		
Dewitt														
Dimmit	1.30	1.215	2.19	10,846									25.35	25.35
Ouval									1 99	11,151			0 87	0,87
Eastland	27.61	144,062			0.00	D	0.00	0			0.00	0		
Edwards													3 91	3 9 1
fno	13.45	56,079											36 68	36 68
Gollad											0.55	1,595		
Hidalgo	302.33	1,567,090	538.19	2,674,081	4,079 34	8,305,275	438.48	2,175,403	441 10	1,931,435	415 89	681,687	4,862 41	4,862.41
Inion					0.00	0	0.00	0			0.00	0		
Joff Davis	ļi				0.00	٥	0.00	٥			0 00	0		
Jim Hogg					i								1.26	1.26
Jim Wells	22.93	119,262	4 11	20,601					0.89	4,444	11 03	18,011	0.00	0.00
Jones					0.00	0	0.00	0			0.00	0		
Kont					0.00	0	0.00	0			0 00	0		
Kimble					0.00	0	0.00	0			000	a		
Kleberg	13.80	/6,583	2.94	11,439	6.03	6,535	/5.30	390,769	4.69	29,797	0.00		60.98	60.98
KNOX					000	U	0.00	<u> </u>	// 42	102,655			164	164
Le selle									1 16	6.667			2.04	2.04
Matamorte			10.48	44.000					1 10	0,0012			1.258.40	1.258.40
Managorca	77.50	243.212	10.46	••,060			2.09	4 095					10.52	10.52
Madina	17.36	273,213					2.06	-,050			ń cu	2.080	14 /9	14 /0
Monard					n na	0	0.00	0			0 00	2,000	14.12	
Nolan		· · · · ·			n no		0.00	0			0.00	0		
Nueces	134.56	635-207	148.38	598,268	0.00		364.76	1.893.207	208.39	857.205	1.855.65	3.097.170	2.523.03	2.523.03
Prcos					0.00	٥	0.00	0	9 99	17,372	0 0 0	0		
Presidio					0.00	0	0.00	0			0.00	0		
Reagan					0.00	<u> </u>	0.00	0			0 00	0		
Real													1.1/	1.1/
Recies					0.00	0	0.00	0	2 40	4,326	8 00	o		
Refuelo	8.8/	41.975									2.04	3,659	0.00	0.00
Runnels	88.89	542,561			0.00	۵	0.00	0	2 57	2,469	0 00	0	10 74	10 74
San Patricio	27.17	105,663	913.47	5,8/2,884					11 27	35,598	119.51	225,651	6.631./3	6,631./3
Schleicher	3.00	13,426			0 D D		0.00	0			0 00			
Shackelford	L				0.00	٥	0.00	0	2 48	4,169	0 00	0		
Starr	15.55	86,136	15.66	60,944			6.97	36,161	232.6/	968,356			0.94	0.94
Sterling	0.40	1,775			0.00	٥	0.00	0		ļ	0 00	0		
Stonewall	<u> </u>	<u> </u>			0.00	<u> </u>	0.00	0			0.00	0		
Sutton	1.31	6,330			0.00	0	0.00	٥			0.00	0		
l∎ykor ≖ =	245.06	1,159,347	543.03	2010,///	0.00	<u>0</u>	0.00	0	205.01	344,397	0.00	0	11/2.13	11/2.13
forn Green	204.56	1,015,730	67_51	284,981	0.00	0	0.00	<u> </u>	146 44	215,287	0.00	0	76 40	76.40
Upton Uburleta	1.36	6,102				0	0.00	0	ə.89	17,423	0.00	0	03.01	63.01
	3 59	45,863											93 04	93 ()4
Val Vende Mietoria	/2.90	257,933		1 101								24.435	304010	1 064 14
Webb	155.08	904 607	502.57	2,291	1 794 17	7 573 054	401 17	7 5 74 17*	-		5.5Y	357 899	2124.10	2,330,12
Whatten	-222	04,093	504.32	2,203,047	1,429,14	4,523,538	731.81	//در•عديم			743 13	331,069	3,129 /3	0.00
Willary	10.01	70,703			£ 14	31 080	75.75	185 774					1 230 91	1.2.10.81
Zanata					0.10	34,300	1/2	5 401					5 01	5 01
Zavala	··· ··			<u> </u>	<u>}</u>			5,-52		· · ·			0.00	0.00
		·			L									

			Report	ted and Veri	fied Dema	and Ease	rgy Reduc	tion by Cou	nty: AEP '	Техав (Сон	rtinued)			
							SMART S	SourceSM	SMART S	ourceSM	Targete	d Low-		
	Open MTP		Resider	ntial SOP	SCORE/	CitySmart TTD	Solari	PV MTP	Solar F	V MTP	Income	Energy	Т	otal
1 COURS						11 P	(Comr	nercial)	(Resid	ential)	Efficiency	Program		
	kW	kWh	k W	kWh	kW	k Wh	kW.	kWh	kW.	kWh	kW.	kWh	kW	kWh
Aransas			2.72	9,129									115.51	306,863
Atascosa									4.35	15.488			7.99	24,759
Bee			6.63	17,677									35.93	150.691
Brewster			0.78	649					1.12	3,876	67.62	138,618	143.76	433,685
Calhoun													10 37	16,944
Callahan	200	6,327							1 0.61	28,225			36 55	134,406
Cameron	60 92	Z45,972	119.79	523,50Z	17 <u>2</u> .49	570,939	8 26	21,823	47.25	164,640			6,184 13	5,754,018
Coloredo													8./1	39,052
Crockatt													24.24	117 074
Deputt			0.41	2 5 2 2					·· ·				0.41	2 6 1 2
Dimmit			0.41	2,000				· · · · · · · · · · · · · · · · · · ·	\$ 39	12 488	100.17	190.94k	133.00	771 573
Duval		Í	0.48	3.457									3.34	14,609
Eastland													27 61	144,062
Edwards	10,13	36,578											14.04	36,582
Frio													50.13	56,116
Goliad									3.58	12,760			4,13	14,355
Hidalgo	329.90	1,355,228	844.44	4,031,449	459.66	1,739,540	311.71	989,099	244.52	899,008	20.05	56,049	13,288.02	26,410,207
Irion			5.44	10,506					4.82	19,656			10 26	30,162
Jeff Davis									3.14	11,220			3 1 4	11,220
Jim Hogg			0.58	3,188				- · ·		-			1 84	3,189
Jim Wells			1.90	11,293							1 10	3 6 97	40.85	1/3,610
Vones	· · - ··	┝╶╴╶━┿	2.61	2.534	33.10	172.075					1,40	5.007	9.10	3,922
Kimble	4 92	75 774	A 66	8 905	33,10	172,070							898	34.679
Kicherg		13,714	3.82	22,854	11 43	84.599							178.99	622.637
Хлох			6.62	13,045									84.04	115,678
ta Salle 💡											5 1 7	8,967	7.81	8,969
Live Qak			0.72	3,769									1.87	10,431
Malagorda									8.09	28,185			1.276.97	73,523
Mavenck					0.74	5,060			21.85	90,574	7.88	12,691	120.57	355,643
Medina													15.73	2,095
Menard	4,46	18,717											4.46	18,717
Nolan		CO 033	1 70	3,374	010.07	2 207 572			68.07	254 297	70.50	107.110	1.70	3,374
Nueces	12.01	50,027	355.74	2,210,932	926.97	3,897,873			68.97	204,387	39,50	103,119	0,037.97	13,004,410
Precus			14,23	21,333					2 15	11.079	0.78	3 867	24.21	14 947
Reagan			7.14	13,230					5.15	11,077	0.76	3,007	7.14	13,739
Real	0.00	0	0 00	10,205	0.00	0	0 00	0	0.00	0	0.00	ø	1 17	10,200
Reeves			3.33	4,297					5.64	19,294			11.38	27,917
Refugio		· · · · · ·	2 71	9,955									13,62	55,589
Runnels	1.10	4,481	8.00	15,151					4.65	13,198			115.94	577,871
San Patricio	15.59	65,546	27.75	140.271	11.32	62.790							7,757.81	6,515,035
Schleicher													3.00	13 ,426
Shackelford			6.39	12.990					4.91	15.258			13.77	32,416
Starr			396.89	1,948,390					10.95	43,736	2 39	4,678	681 99	3,148,401
Sterling			4.66	8,155							7 67	11 000	5.06	9,930
Sutton	1 9¢	16.369			71.60	450 369					/ 8/	₹1'30A	76,92	21,909
Tavlor	170.90	470 3011	554 83	1.085 797	369.77	1.677 73			198.91	697 896	55.37	107 823	3,537.43	7.551 172
Tom Green	187.28	320,728	320,44	543.660	14.17	69.638			59,98	208.164	55.27	107,023	1.080.78	2.658.265
Upton			1.97	3,633	/								12 22	27,159
Uvalde		f			34 64	183,268			ZD.56	60,528	12 54	24,491	164 36	294,243
Val Verde									3.64	22,245	257 80	414,744	341.08	694,829
Victoria									3,71	13,263			2,982.78	95,876
Webb	440.60	1,913,879			179.51	528,240			155.23	570,429	90.27	136,896	6,508.39	11,564,132
Wharton													18.61	96,765
Willacy			3.08	10,445	153.18	476,979							1,428.98	706,359
Zapata		\vdash											7.64	5,408
Zavala									4.10	12,537	2 75	3,366	6.35	15,903

Reported and Verified Demand and Energy Reduction by County: AEP Texas (Continued)

APPENDIX B:

PROGRAM TEMPLATES

AEP Texas does not have any Program Templates to report this year.

APPENDIX C:

OPTIONAL SUPPORTING DOCUMENTATION

33

The following files are not convertible:

, _, _, _, _, _, _,	AEP Texas 2024 EECRF Sch A-B-J-K-M-N-O-
P-R Final 05302023.x1sx	AEP Texas EE Identification Notice 2023
Final 05252023.xlsx	AED Towns Derformance Bonus Calculator
PY2022.xlsx	ALP lexas religinance bonus catculator
	AEP TX Schedule A Page 2.xlsx
	AEP TX 2023 EEPR Tables v16 (EECRF
Filing).xlsx	
	AEP TX 2023 Sch C-E-G-H-I-Q-WPA-WPC-
WPE-WPG WPH 2024.xlsx	
	AEP TX Schedule B Page 2.xlsx
	Central Division Sch C WP.xlsx
	North Division Sch C WP.xlsx

Please see the ZIP file for this Filing on the PUC Interchange in order to access these files.

Contact centralrecords@puc.texas.gov if you have any questions.

AEP - TEXAS CENTRAL COMPANY

2017 Analysis of System Losses

January 2019

Final

Prepared by:

Management Applications Consulting, Inc. 1103 Rocky Drive – Suite 201 Reading, PA 19609 Phone: (610) 670-9199 / Fax: (610) 670-9190

1103 Rocky Drive • Suite 201 • Reading, PA 19609-1157 • 610/670-9199 • fax 610/670-9190 •www.manapp.com

January 10, 2019

Mr. David M. Roush Director Regulatory Pricing & Analysis American Electric Power I Riverside Plaza Columbus, OH 43215

Mr. Chad Burnett Director Economic Forecasting American Electric Power 212 East 6th Street Tulsa, OK 74119

RE: 2017 LOSS ANALYSIS - TCC

Dear Messrs. Roush and Burnett:

Transmitted herewith are the results of the 2017 Analysis of System Losses for the AEP - Texas Central Company's (TCC) power system. Our analysis develops cumulative expansion factors (loss factors) for both demand (peak/kW) and energy (average/kWh) losses by discrete voltage levels applicable to metered sales data. Our analysis considers only technical losses in arriving at our final recommendations.

On behalf of MAC, we appreciate the opportunity to assist you in performing the loss analysis contained herein. The level of detailed load research and sales data by voltage level, coupled with a summary of power flow data and power system model, forms the foundation for determining reasonable and representative power losses on the TCC system. Our review of these data and calculated loss results support the proposed loss factors as presented herein for your use in various cost of service, rate studies, and demand analyses.

Should you require any additional information, please let us know at your earliest convenience.

Sincerely,

lornal

Paul M. Normand Principal

Enclosure PMN/rjp

AEP - Texas Central Company 2017 Analysis of System Losses

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	. 1
2.0	INTRODUCTION	. 6
2.	Conduct of Study	, 6
2,2	2 Description of Model	. 7
2.2	2 Description of Model	. 8
3.0	METHODOLOGY	. 9
3.	1 Background	. 9
3.2	2 Analysis and Calculations	L1
	3.2.1 Bulk, Transmission and Subtransmission Lines	11
	3.2.2 Transformers	12
	3.2.3 Distribution System	12
4.0	DISCUSSION OF RESULTS	14

Appendix A – Results of 2017 AEP - Texas Central Company Integrated Power System Loss Analysis

Appendix B - Discussion of Hoebel Coefficient

1.0 EXECUTIVE SUMMARY

This report presents AEP - Texas Central Company's (TCC) 2017 Analysis of System Losses for the power systems as performed by Management Applications Consulting, Inc. (MAC). The study developed separate demand (kW) and energy (kWh) loss factors for each voltage level of service in the power system for TCC. The cumulative loss factor results by voltage level, as presented herein, can be used to adjust metered kW and kWh sales data for losses in performing cost of service studies, determining voltage discounts, and other analyses which may require a loss adjustment.

The procedures used in the overall loss study were similar to prior studies and emphasized the use of "in house" resources where possible. To this end, extensive use was made of the Company's peak hour power flow data and transformer plant investments in the model. In addition, measured and estimated load data provided a means of calculating reasonable estimates of losses by using a "top-down" and "bottom-up" procedure. In the "top-down" approach, losses from the high voltage system, through and including distribution substations, were calculated along with power flow data, conductor and transformer loss estimates, and metered poles.

At this point in the analysis, system loads and losses at the input into the distribution substation system are known with reasonable accuracy. However, it is the remaining loads and losses on the distribution substations, primary system, secondary circuits, and services which are generally difficult to estimate. Estimated and actual Company load data provided the starting point for performing a "bottom-up" approach for calculating the remaining distribution losses. Basically, this "bottom-up" approach develops line loadings by first determining loads and losses at each level beginning at a customer's meter service entrance and then going through secondary lines, line transformers, primary lines, and finally distribution substation. These distribution system loads and associated losses are then compared to the initial calculated input into Distribution Substation loadings for reasonableness prior to finalizing the loss factors. An overview of the loss study is shown on Figure 1.

With the emergence of transmission as a stand-alone function throughout various regions of the country, a modification to the historical calculation of the transmission loss factors was required. Historic loss studies recognized the multipath approach to losses from high voltage to low voltage delivery. The current definition of transmission losses recognized in the industry is simply to sum all losses at transmission as an integrated system. This approach will typically increase the resulting composite transmission loss factors but better reflects the topology of the systems with dispersed supply resources and interconnections.

The load research data provided the starting point for performing a "bottom-up" approach for estimating the remaining distribution losses. Basically, this "bottom-up" approach develops line loadings by first determining loads and losses at each level beginning at a customer's meter and service entrance and then going through secondary lines, line transformers, primary lines and finally distribution substation. These distribution system loads and associated losses are then compared to the initial calculated input into Distribution Substation loadings for reasonableness

prior to finalizing the loss factors. An overview of the loss study is shown on Figure 1 on the next page.

Table 1, below, provides the final results from Appendix A for the 2017 calendar year. Exhibits 8 and 9 of Appendix A present a more detailed analysis of the final calculated summary results of losses by voltage segments and delivery service level in the Company's power system. These Table 1 cumulative loss expansion factors are applicable only to metered sales at the point of receipt for adjustment to the power system's input level. A separate combined loss factor was also calculated on Exhibit 10 which combines the loss factors from the TNC and TCC on a load weighted basis.

Voltage Level <u>of Service</u>	Total <u>Retail</u>	Distribution <u>Only</u>	TNC/TCC <u>Composite</u>
Demand (kW)			
Transmission	1.02307	1.00000	1.02353
Primary Lines	1.06395	1.03996	1.06761
Secondary	1.08836	1.06381	1.09223
Energy (kWh)			
Transmission	1.01691	1.00000	1.01745
Primary Lines	1,04662	1,02922	1.05080
Secondary	1.07598	1.05808	1.08014
Losses – Net System	5.70%		
Input ²	MWh		
1	7.25% MW		
Losses – Net System	6.05%		
Output ³	MWh		
	7 82% MW		

TABLE 1 Loss Factors at Sales Level, Calendar Year 2017

The loss factors presented in the Delivery Only column of Table 1 are the Total TCC loss factors divided by the transmission loss factor in order to remove these losses from each service level loss factor. For example, the secondary distribution demand loss factor of 1.06381 includes the recovery of all remaining non-transmission losses from the subtransmission, distribution substation, primary lines, line transformers, secondary conductors and services.

³ Net system output uses losses divided by output or sales data as a reference.

¹ Reflects results for 345 kV, 138 kV, and 69 kV.

² Net system input equals firm sales plus losses. Company use less non-requirement sales and related losses. See Appendix A. Exhibit 1. for their calculations.

The net system input shown in Table 1 is the MWh losses of 5.70% for the total TCC load using calculated losses divided by the total input energy to the system. The 6.05% represents the same losses using system output instead of input as a reference. The net system input reference shown in Table 1 represents MW losses of 7.25% and 7.82% losses at output. These results use the appropriate total losses for each but are divided by system output or sales. These calculations are all based on the data and results shown on Exhibits 1, 7 and 9 of the study.

Due to the very nature of losses being primarily a function of equipment loading levels for a peak load hour, the loss factor derivations for any voltage level must consider both the load at that level plus the loads from lower voltages and their associated losses. As a result, cumulative losses on losses equates to additional load at higher levels along with future changes (+ or -) in loads throughout the power system. It is therefore important to recognize that losses are multiplicative in nature (future) and not additive (test year only) for all future years to ensure total recovery based on prospective fixed loss factors for each service voltage.

The derivation of the cumulative loss factors shown in Table 1 have been detailed for all electrical facilities in Exhibit 9, page 1 for demand and page 2 for energy. Beginning on line 1 of page 1 (demand) under the secondary column, metered sales are adjusted for service losses on lines 3 and 4. This new total load (with losses) becomes the load amount for the next higher facilities of secondary conductors and their loss calculations. This process is repeated for all the installed facilities until the secondary sales are at the input level (line 45). The final loss factor for all delivery voltages using this same process is shown on line 46 and Table 1 for demand. This procedure is repeated in Exhibit 9, page 2, for the energy loss factors.

The loss factor calculation is simply the input required (line 45) divided by the metered sales (line 43).

An overview of the loss study is shown on Figure 1 on the next page. Figure 2 simply illustrates the major components that must be considered in a loss analysis.

AEP - Texas Central Company 2017 Analysis of System Losses

AEP - Texas Central Company 2017 Analysis of System Losses

Figure 2 Generic Energy Loss Components

2.0 INTRODUCTION

This report of the 2017 Analysis of System Losses for the TCC power system provides a summary of results, conceptual background or methodology, description of the analyses, and input information related to the study.

2.1 Conduct of Study

Typically, between five to ten percent of the total peak hour MW and annual MWH requirements of an electric utility is lost or unaccounted for in the delivery of power to customers. Investments must be made in facilities which support the total load which includes losses or unaccounted for load. Revenue requirements associated with load losses are an important concern to utilities and regulators in that customers must equitably share in all of these cost responsibilities. Loss expansion factors by voltage level are the mechanism by which customers' metered demand and energy data are mathematically adjusted to the generation or input level (point of reference) when performing cost and revenue calculations.

An acceptable accounting of losses can be determined for any given time period using available engineering, system, and customer data along with empirical relationships. This loss analysis for the delivery of demand and energy utilizes such an approach. A microcomputer loss model⁴ is utilized as the vehicle to organize the available data, develop the relationships, calculate the losses, and provide an efficient and timely avenue for future updates and sensitivity analyses. Our procedures and calculations are similar with prior loss studies, and they rely on numerous databases that include customer statistics and power system investments at various voltage levels of service.

Company personnel performed most of the data gathering and data processing efforts and checked for reasonableness. MAC provided assistance as necessary to construct databases, transfer files, perform calculations, and check the reasonableness of results. Efforts in determining the data required to perform the loss analysis centered on information which was available from existing studies or reports within the Company. From an overall perspective, our efforts concentrated on five major areas:

- 1. System information concerning peak demand and annual energy requirements by voltage level,
- 2. High voltage power system power flow data and associated loss calculations,
- 3. Distribution system primary and secondary loss calculations,
- 4. Derivation of fixed and variable losses by voltage level, and
- 5. Development of final cumulative expansion factors at each voltage for peak demand (kW) and annual energy (kWh) requirements at the point of delivery (meter).

¹Copyright by Management Applications Consulting, Inc.

2.2 Electric Power Losses

Losses in power systems consist of primarily technical losses with a much smaller level of non-technical losses.

Technical Losses

Electrical losses result from the transmission of energy over various electrical equipment. The largest component of total losses during peaking conditions is power dissipation as a result of varying loading conditions and are oftentimes called load losses which are mostly related to the square of the current (l^2R) . These peak hour losses can be very high percent of all technical losses during peak loading conditions. The remaining losses are called no-load and represent essentially fixed (constant) energy losses throughout the year. These no-load losses represent energy required to energize various electrical equipment regardless of their loading levels over the entire year. The major portion of these no-load losses consist of core or magnetizing energy related to installed transformers throughout the power system and generates the major component of annual losses on any distribution system.

The following Table 2 summarizes the unadjusted fixed and variable losses by major functional categories from Exhibit 5 of Appendix A:

	DEMAN	D (PEAK HOL) R – MW)	<u>ENERGY (ANNUAL AVERAGE – MW</u>				
	FIXED	VARIABLE	TOTAL	HXED	VARIABLE	TOTAL		
TRANS	12.02	105.68	117.70	106,800	353,926	460,726		
(%)	10.21%	89. 79%	100.00%	23 18%	76.82%	100.00%		
SUBTRANS (%)	NA	NΛ	NA	NΛ	ΝΛ	NΛ		
DIST SUBS	12 64	14. 8 4	27 47	110,694	52,203	162,897		
(%)	45.99%	54.01%	100.00%	67.95%	32.05%	100.00%		
PRIMARY	1 44	140. 2 9	141.73	12.610	439 ,206	451,817		
(%)	1 02%	98.98%	100.00%	2.79%	97,21%	100,00%		
SECONDARY	44.75	42.03	86.78	392,041	111.716	503,757		
(%)	51.57%	48.43%	100.00%	77 82%	22.18%	100 00%		
TOTAL SYS	70.85	302 84	373 69	622,146	957,051	1, 579,196		
(%)	18.96%	81.04%	100.00%	39.40%	60.60%	100.00%		
TOTAL DIST	58.83	197.16	255.99	515,345	603,125	1,1 18,47 0		
(%)	22.98%	77.02%	100.00%	46 08%	53.92%	100.0 0%		

TABLE 2

Non-Technical Losses

These are unaccounted for energy losses that are related to energy theft, metering, non-payment by customers, and accounting errors. Losses related to these areas are generally very small and can be extremely difficult and subjective to quantify. Our efforts generally do not develop any meaningful level because we assume that improving technology and utility practices have minimized these amounts.

2.3 Loss Impacts from Distributed Generation (DG)

The impacts of losses on a power system from the installation of various DG facilities will depend somewhat on the penetration level, type of installations and location on a circuit. Based on the results presented in Table 2 of this loss study, the impacts are significantly different from looking at any single peak load hour versus the potential impacts over all hours of an entire year. Use of a typical uniform loss factor(s) for each voltage level may require additional consideration to recognize that a reduced consumption level could have little or no impact due to the recovery requirements for the high level of fixed losses over the entire hourly electric grid condition for any DG location.

2.4 Description of Model

The loss model is a customized applications model, constructed using the Excel software program. Documentation consists primarily of the model equations at each cell location. A significant advantage of such a model is that the actual formulas and their corresponding computed values at each cell of the model are immediately available to the analyst.

A brief description of the three (3) major categories of effort for the preparation of each loss model is as follows:

- Main sheet which contains calculations for all primary and secondary losses, summaries of all conductor and transformer calculations from other sheets discussed below, output reports and supporting results.
- Transformer sheet which contains data input and loss calculations for each distribution substation and high voltage transformer. Separate iron and winding losses are calculated for each transformer by identified type.
- Conductor sheet containing summary data by major voltage level as to circuit miles, loading assumptions, and kW and kWh loss calculations. Separate loss calculations for each line segment were made using the Company's power flow data by line segment and summarized by voltage level in this model.

3.0 METHODOLOGY

3.1 Background

The objective of a Loss Study is to provide a reasonable set of energy (average) and demand (peak) loss expansion factors which account for system losses associated with the transmission and delivery of power to each voltage level over a designated period of time. The focus of this study is to identify the difference between total energy inputs and the associated sales with the difference being equitably allocated to all delivery levels. Several key elements are important in establishing the methodology for calculating and reporting the Company's losses. These elements are:

- Selection of voltage level of services,
- Recognition of losses associated with conductors, transformations, and other electrical equipment/components within voltage levels,
- Identification of customers and loads at various voltage levels of service,
- Review of generation or net power supply input at each level for the test period studied, and
- Analysis of kW and kWh sales by voltage levels within the test period.

The three major areas of data gathering and calculations in the loss analysis were as follows:

- 1. System Information (monthly and annual)
 - MWH generation and MWH sales.
 - Coincident peak estimates and net power supply input from all sources and voltage levels.
 - Customer load data estimates from available load research information, adjusted MWH sales, and number of customers in the customer groupings and voltage levels identified in the model.
 - System default values, such as power factor, loading factors, and load factors by voltage level.

- 2. High Voltage System
 - Conductor information was summarized from a database by the Company which reflects the transmission system by voltage level. Extensive use was made of the Company's power flow data with the losses calculated and incorporated into the final loss calculations.
 - Transformer information was developed in a database to model transformation at each voltage level. Substation power, step-up, and auto transformers were individually identified along with any operating data related to loads and losses.
 - Power flow data of peak condition was the primary source of equipment loadings and derivation of load losses in the high voltage loss calculations.
- 3. Distribution System
 - Distribution Substations Data was developed for modeling each substation as to its size and loading. Loss calculations were performed from this data to determine load and no load losses separately for each transformer.
 - Primary lines Line loading and loss characteristics for several representative primary circuits were obtained from the Company. These loss results developed kW loss per MW of load and a composite average was calculated to derive the primary loss estimate.
 - Line transformers Losses in line transformers were based on each customer service group's size, as well as the number of customers per transformer. Accounting and load data provided the foundation with which to model the transformer loadings and to calculate load and no load losses.
 - Secondary network Typical secondary networks were estimated for conductor sizes, lengths, loadings, and customer penetration for residential and small general service customers.
 - Services Typical services were estimated for each secondary service class of customers identified in the study with respect to type, length, and loading.

The loss analysis was thus performed by constructing the model in segments and subsequently calculating the composite until the constraints of peak demand and energy were met:

- Information as to the physical characteristics and loading of each transformer and conductor segment was modeled.
- Conductors, transformers, and distribution were grouped by voltage level, and unadjusted losses were calculated.
- The loss factors calculated at each voltage level were determined by "compounding" the per-unit losses. Equivalent sales at the supply point were obtained by dividing sales at a specific level by the compounded loss factor to determine losses by voltage level.
- The resulting demand and energy loss expansion factors were then used to adjust all sales to the generation or input level in order to estimate the difference.
- Reconciliation of kW and kWh sales by voltage level using the reported system kW and kWh was accomplished by adjusting the initial loss factor estimates until the mismatch or difference was eliminated.

3.2 Calculations and Analysis

This section provides a discussion of the input data, assumptions, and calculations performed in the loss analysis. Specific appendices have been included in order to provide documentation of the input data utilized in the model.

3.2.1 Bulk, Transmission and Subtransmission Lines

The transmission and subtransmission line losses were calculated based on a modeling of unique voltage levels identified by the Company's power flow data and configuration for the entire integrated TCC Power System. Specific information as to length of line, type of conductor, voltage level, peak load, maximum load, etc., were provided based on Company records and utilized as data input in the loss model.

Actual MW and MVA line loadings were based on TCC's peak loading conditions. Calculations of line losses were performed for each line segment separately and combined by voltage levels for reporting purposes as shown in the Discussion of Results (Section 4.0) of this report. The loss calculations consisted of determining a circuit current value based on MVA line loadings and evaluating the l²R results for each line segment.

After system coincident peak hour losses were identified for each voltage level, a separate calculation was then made to develop annual average energy losses based on a loss factor approach. Load factors were determined for each voltage level based on system and customer load information. An estimate of the Hoebel coefficient (see Appendix B) was then used to calculate energy losses for the entire period being analyzed. The results are presented in Section 4.0 of this report.

3.2.2 Transformers

The transformer loss analysis required several steps in order to properly consider the characteristics associated with various transformer types; such as, step-up, auto transformers, distribution substations, and line transformers. In addition, further efforts were required to identify both iron and winding losses within each of these transformer types in order to obtain reasonable peak (kW) and average energy (kWh) losses. While iron losses were considered essentially constant for each hour, recognition had to be made for the varying degree of winding losses due to hourly equipment loadings.

Standardized test data tables were used to represent no load information (fixed) and full load (variable) losses for different types and sizes of transformers. This test data was incorporated into the loss model to develop relationships representing winding and iron or core losses for the transformer loss calculation. These results were then totaled by various groups, as identified and discussed in Section 4.0.

The remaining miscellaneous losses considered in the loss study consisted of several areas which do not lend themselves to any reasonable level of modeling for estimating their respective losses and were therefore lumped together into a single loss factor of 0.15%. The typical range of values for these losses is from 0.10% to 0.25%, and we have assumed a lower value to be conservative at this time. The losses associated with this loss factor include bus bars, unmetered station use, grounding transformers, cooling fans, heating and air conditioning requirements, and other remaining station use requirements.

3.2.3 Distribution System

The load data at the substation and customer level, coupled with primary and secondary network information, was sufficient to model the distribution system in adequate detail to calculate losses.

Primary Lines

Primary line loadings take into consideration the available distribution load along with the actual customer loads including losses. Primary line loss estimates were prepared by the Company for use in this loss study. These estimates considered loads per substation, voltage levels, loadings, total circuit miles, wire size, and single- to three-phase investment estimates. All of these factors were considered in calculating the actual demand (kW) and energy (kWh) for the primary system.

Line Transformers

Losses in line transformers were determined based on typical transformer sizes for each secondary customer service group and an estimated or calculated number of customers per transformer. Accounting records and estimates of load data provided the necessary database with which to model the loadings. These calculations also made it possible to determine separate winding and iron losses for distribution line transformers, based on a table of representative losses for various transformer sizes.

Secondary Line Circuits

A calculation of secondary line circuit losses was performed for loads served through these secondary line investments. Estimates of typical conductor sizes, lengths, loadings and customer class penetrations were made to obtain total circuit miles and losses for the secondary network. Customer loads which do not have secondary line requirements were also identified so that a reasonable estimate of losses and circuit miles of these investments could be made.

Service Drops and Meters

Service drops were estimated for each secondary customer reflecting conductor size, length and loadings to obtain demand losses. A separate calculation was also performed using customer maximum demands to obtain kWh losses. Meter loss estimates were also made for each customer and incorporated into the calculations of kW and kWh losses included in the Summary Results.

4.0 **DISCUSSION OF RESULTS**

A brief description of each Exhibit provided in Appendix A follows:

Exhibit 1 - Summary of Company Data

This exhibit reflects system information used to determine percent losses and a detailed summary of kW and kWh losses by voltage level. The loss factors developed in Exhibit 7 are also summarized by voltage level.

Exhibit 2 - Summary of Conductor Information

A summary of MW and MWH load and no load losses for conductors by voltage levels is presented. The sum of all calculated losses by voltage level is based on input data information provided in Appendix A. Percent losses are based on equipment loadings.

Exhibit 3 - Summary of Transformer Information

This exhibit summarizes transformer losses by various types and voltage levels throughout the system. Load losses reflect the winding portion of transformer losses while iron losses reflect the no load or constant losses. MWH losses are estimated using a calculated loss factor for winding and the test year hours times no load losses.

Exhibit 4 - Summary of Losses Diagram (2 Pages)

This loss diagram represents the inputs and output of power at system peak conditions. Page 1 details information from all points of the power system and what is provided to the distribution system for primary loads. This portion of the summary can be viewed as a "top down" summary into the distribution system.

Page 2 represents a summary of the development of primary line loads and distribution substations based on a "bottom up" approach. Basically, loadings are developed from the customer meter through the Company's physical investments based on load research and other metered information by voltage level to arrive at MW and MVA requirements during peak load conditions by voltage levels.

Exhibit 5 - Summary of Sales and Calculated Losses

Summary of Calculated Losses represents a tabular summary of MW and MWH load and no load losses by discrete areas of delivery within each voltage level. Losses have been identified and are derived based on summaries obtained from Exhibits 2 and 3 and losses associated with meters, capacitors and regulators.

ţ.

Exhibit 6 - Development of Loss Factors, Unadjusted

This exhibit calculates demand and energy losses and loss factors by specific voltage levels based on sales level requirements. The actual results reflect loads by level and summary totals of losses at that level, or up to that level, based on the results as shown in Exhibit 5. Finally, the estimated values at generation are developed and compared to actual generation to obtain any difference or mismatch.

Exhibit 7 - Development of Loss Factors, Adjusted

The adjusted loss factors are the results of adjusting Exhibit 6 for any difference. All differences between estimated and actual are prorated to each level based on the ratio of each level's total load plus losses to the system total. These new loss factors reflect an adjustment in losses due only to the kW and kWh mismatch.

Exhibit 8 - Adjusted Losses and Loss Factors by Facility

These calculations present an expanded summary detail of Exhibit 7 for each segment of the power system with respect to the flow of power and associated losses from the receipt of energy at the meter to the generation for the TCC power system.

Exhibit 9 - Summary of Losses by Delivery Voltage

These calculations present a reformatted summary of losses presented in Exhibits 7 and 8 by power system delivery segment as calculated by voltage level of service based on reported metered sales.

Exhibit 10 - Composite Summary of Losses for TNC and TCC

These calculations are based on using the individual loss results from their respective Exhibit 7 on a load weighted basis by voltage level of service.

Appendix A

Results of 2017 AEP – TCC Integrated Power System Loss Analysis

AEP TEXAS CENTRAL

EXHIBIT 1

SUMMARY OF COMPANY DATA

ANNUAL PEAK	5,219 MW
ANNUAL GENERATION	27,704,663 MWH
ANNUAL SALES	26,124,565 MWH
SYSTEM LOSSES @ INPUT SYSTEM LOSSES @ OUTPUT	1.580,098 or 5.70% 1.580,098 or 6.05%
SYSTEM LOAD FACTOR	60.6%

SUMMARY OF LOSSES - OUTPUT RESULTS

SERVICE	кv	N	W	% TOTAL	MV/H	% TOTAL
TRANS	345,115,69	117.7	2.26%	31.09%	460,726 <u>1.66%</u>	29.16%
PRIMARY	33,12,1	172.4	3.30%	45.55%	615,209 2.22%	38.93%
SECONDARY	120/240,to,477	88.4	1 69%	23.36%	504,1 6 3 1 82%	31.91%
TOTAL		378.6	7.25%	100.00%	1,580,098 5.70%	100.00%

SUMMARY OF LOSS FACTORS

SERVICE	KV	CUMMU DEMAN	LATIVE SALES D (Peak)	EXPANSION FACTORS ENERGY (Annual)		
		d	1/d	е	1/e	
TOT TRANS	345,115,69	1. 02307	0.97745	1.01691	0.98337	
PRIMARY	33,12,1	1.06395	0.93989	1.04662	0.95546	
SECONDARY	120/240,to,477	1.08836	0.91882	1.07598	0.92939	

.

AEP TEXAS CENTRAL 2017 LOSS ANALYSIS

SUMMARY OF CONDUCTOR INFORMATION

EXHIBIT 2

0

0

0

0000

451,680

39,851

<u>107.979</u> 107,979

247.893 <u>37.482</u> 285,374

DESCRIPTION			CIRCUIT LOADING		G	- MW LOSSES -				- MWH LOSSES		
		_	MILES	% RATINO	<u> </u>	LOAD	NO LOAD	TOTAL	L	LOAD	NO LOAD	TOTAL
BULK	345 KV	OR GREA	TER						[
TIE LINES BULK TRANS SUBTOT			0.0 <u>601.6</u> 601.6	0.0 <u>0.0</u>	10% 1 <u>0%</u>	0.000 <u>27.400</u> 27 400	0.000 <u>1.805</u> 1.805	0 000 <u>29.205</u> 29 205		0 <u>92.169</u> 92,169	0 <u>15,810</u> 15,810	0 <u>107.979</u> 107,979
TRANS	69 KV	то	345.00	к								
TIE LINES			C	0 00	0%	0 000	0 000	0 000		O	D	C
TRANS1 <u>TRANS2</u> SUBTOT	115 KV 69 KV		2,444.8 <u>1.145.0</u> 3,589 8	0.0 <u>0.0</u>	10% 1 <u>0%</u>	70 510 <u>12.650</u> 83 160	1.226 <u>0.000</u> 1.226	71.736 <u>12.650</u> 84 386		237,184 <u>37,482</u> 274,666	1 0,708 <u>0</u> 10,708	247.893 <u>37.482</u> 285,374
SUBTRANS	34 KV	то	69	ĸv								
TIE LINES SUBTRANS1 SUBTRANS2 SUBTRANS3 SUBTOT	46 KV 44 KV <u>34</u> KV		0.0 0.0 <u>0.0</u> 0.0	0 0 0 0.0 0.0	10% 10% 10% 1 <u>0%</u>	0 000 0.000 0.000 <u>0.000</u> 0 000	0 000 0.000 0.000 <u>0.000</u> 0 000	0 000 0 000 0 000 <u>0 000</u> 0 000		0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PRIMARY LINES			17,197			140.244	1.440	141.684		439,070	12,610	451,680
SECONDARY LINES			11,62 5			13 302	0 000	13 302		39,851	o	39,851
SERVICES			13,944			12 082	1.676	13.758		36,897	14, 684	51, 58 1
TOTAL			46,957			276.188	6.146	282.335		882,653	53,813	936.46

AEP TEXAS CENTRAL 2017 LOSS ANALYSIS

SUMMARY OF TRANSFORMER INFORMATION

EXHIBIT 3

DESCRIPTION		KV CAPA		NUMBER	AVERAGE		MVA		MW LOSSES		N		
BEDOMINI		VOLTAGE	MVA	TRANSFMR	SIZE	%	LOAD	LOAD	NOLOAD	TOTAL	LOAD	NO LOAD	TOTAL
BULK STEP-UP		345	1,154.0	4	288 5	42.83%	494	0.228	0 753	0 981	767	6,593	7,360
BULK - BULK			00	D	0.0	0.00%	D	0.000	0.000	0 000	0	0	0
BULK - TRANS1		115	5,017.0	9	557.4	30.23%	1,517	2,109	3.694	5.804	3,270	32,363	35,633
BULK - TRANS2		69	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS1 STEP-UP		115	153.0	3	51.0	40.05%	61	0.068	0.252	0.320	229	2,210	2,438
TRANS1 - TRANS2		69	4,949.0	40	123.7	30.38%	1,504	2.517	5.405	7.921	10,101	47,346	57,447
TRANS1-SUBTRANS1		46	0.0	0	0. 0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS1-SUBTRANS2		44	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS1-SUBTRANS3		34	0.0	0	0. 0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS2 STEP-UP		69	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS2-SUBTRANS1		45	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS2-SUBTRANS2		44	0.0	0	0.0	0.00%	0	0.000	0 000	0.000	0	0	0
TRANS2-SUBTRANS3		34	0.0	0	0.0	0.00%	0	0.000	0. 000	0.000	0	0	0
SUBTRAN1 STEP-UP		46	0.0	0	0.0	0.00%	0	0.000	0 000	0.000	0	0	0
SUBTRAN2 STEP-UP		44	0.0	0	0.0	0.00%	0	0.000	0.002	0.002	0	0	0
SUBTRAN3 STEP-UP		34	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN1-SUBTRAN2		44	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN1-SUBTRAN3		34	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN2-SUBTRAN3		34	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
						— D	ISTRIBUTION S	SUBSTATIONS					
TRANS1 -	115	33	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS1 -	115	12	4,863.4	188	25.9	61.25%	2,979	9.476	7 748	17.224	33,438	67,868	101,307
TRANS1 -	115	1	6.5	1	6.5	16.31%	1	0.002	0.012	0.014	7	103	110
TRANS2 -	69	33	0.0	0	0.0	0.00%	0	0.000	0.000	0 000	0	0	0
TRAN\$2 -	69	12	2,886.3	180	16.0	54,49%	1,573	5.269	4.758	10 027	18,446	41.676	60,122
TRANS2 -	69	1	59.4	14	4.2	38.9 4%	23	0.091	0.119	0 210	311	1,046	1,357
SUBTRAN1-	46	33	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN1-	46	12	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN1-	46	1	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN2-	44	33	0.0	0	0.0	0.00%	0	0.000	0 000	0.000	0	0	0
SUBTRAN2-	44	12	0.0	0	0.0	0.00%	D	0.000	0.000	0.000	0	0	0
SUBTRAN2-	44	1	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN3-	34	33	0.0	0	0.0	0.00%	0	0.000	0 000	0.000	0	0	0
SUBTRAN3-	34	12	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN3-	34	1	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
PRIMARY - PRIMARY			40.0	1	40.0	59.00%	24	0.046	0.041	0.087	137	361	498
LINE TRANSFRMR			15,017.7	300,898	49.9	28.68%	4,307	16.646	43.077	59.723	34 ,9 68	377.357	412,325
TOTAL		=:		301.338			=	36 452	65 8 60	102 313	101.674	576.925	678.598
			<u> </u>										

SUMMARY OF LOSSES DIAGRAM - DEMAND MODEL - SYSTEM PEAK

AEP TEXAS CENTRAL 2017 LOSS ANALYSIS

FROM HIGH VOLTAGE SYSTEM

AEP TEXAS CENTRAL 2017 LOSS ANALYSIS

SUMMARY of SALES and CALCULATED LOSSES

EXHIBIT 5

LOSS # AND LEVEL	MW LOAD	NO LOAD +	LOAD =	TOT LOSS	EXP	CUM	MWH LOAD	NO LOAD +	LOAD = TO	DT LOSS	EXP	CUM
					FACTOR	EXP FAC					FACTOR	EXP FAC
1 BULK XFMMR	0.0	0.00	0.00	000	0.000000	0 000000	0	D	0	C	0	0
2 BULK LINES	1,077.4	2.56	27.63	30.19	1.028824	1.028824	5,635,800	22,404	92,936	115,340	1.0208931	1.0208931
3 TRANS1 XFMR	1,486.3	3.69	2.11	5.80	1.003920	1.032857	7,811,993	32,363	3,270	35,633	1.0045822	1.0255711
4 TRANS1 LINES	5,984.4	1.48	70,58	72.06	1.012188	1.020448	31,139,081	12,918	237,413	250,331	1.0081043	1.0145714
5 TRANS2TR1 SD	1,473.5	5.40	2.52	7.92	1.005405	1.025963	7,228,254	47,346	10,101	57,447	1.0080113	1.0226994
6 TRANS2BLK SD	0.0	0.00	0.00	0.00	0.000000	0.0000000	0	0	0	0	0.0000000	0.00000000
7 TRANS2 LINES	1,473.5	0.00	12.65	12.65	1.008660	1.034848	7,228,254	0	37,482	37,482	1.0052125	1.0280302
TOTAL TRAN	5,703.5	13.13	115.46	128.62	1.023071	1.023071	29,839,743	1 15,031	381,202	496,233	1.0169112	1.0169112
8 STR1BLK SD												
9 STR1T1 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.0000000	0.00000000
10 SRT1T2 SD	0.0	0.00	0.00	000	0.000000	0.000000	0	0	0	0	0.0000000	0.0000000
11 SUBTRANS1 UNES	0.0	0.00	0.00	0.00	0.000000	0 000000	0	0	0	0	0.0000000	0 0000000
12 STR2T1 SD	0.0	0.00	0.00	000	0.000000	0 000000	0	0	0	0	0.0000000	0 0000000
13 STR2T2 SD	0.0	0 00	0.00	000	0.000000	0.000000	Ó	Ó	Ō	Ō	0.0000000	0 0000000
14 STR2S1 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	Ó	Ō	Ō	Ō	0.0000000	0 0000000
15 SUBTRANS2 LINES	00	0 00	0.00	000	0.000000	0 000000	Ó	Ō	Ō	Ō	0.0000000	0 0000000
16 STR3T1 SD	0.0	0 00	0.00	000 (0.000000	0 000000	O	0	0	0	0.0000000	0 0000000
17 STR3T2 SD	0.0	0 00	0.00	000 (0.000000	0 000000	0	D	0	0	0.0000000	0 0000000
18 STR3S1 SD	0.0	0 00	0.00	000 (0.000000	0 000000	0	0	0	0	0.0000000	0 0000000
19 STR3S2 SD	0.0	0 00	0.00	000	0.000000	0 000000	Q	D	0	0	0.0000000	0 0000000
20 SUBTRANS3 LINES	00	0.00	0.00	000	0.000000		ō	Ō	Ō	Ō	0.0000000	
21 SUBTRANS TOTAL	0.0	0.00	0.00	000	0.000000		D	Ō	Ō	ō	0.0000000	
22 TOT TRANS LOSS FAC	5,219,3	12.02	105.68	117.70	1.023071	1.023071	27.704.663	106.800.10	353.926	460.726	1.0169112	1.0169112
DISTRIBUTION SUBST	-,									,		
TRANS1	2 920 4	7 76	9 48	17 24	1.005937	1 029145	14 114 006	67 972	33 445	101 417	1 0072376	1 0242711
TRANS2	1,563.9	4 88	5.36	10 24	1,006589	1 029612	7 558 095	42 722	18 757	61 479	1 0082009	1 0252508
SUBTR1	00	000	0.00	000	0 000000	0 000000	0	·_,·	0	0	0.0000000	0.0000000
SUBTR2	0.0	0.00	0.00	000	0.000000	0 000000	Ō	ō	ŏ	ñ	0.0000000	0.0000000
SUBTR3	0.0	0.00	0.00	000	0 000000	0 000000	0	Ő	õ	ñ	0.0000000	0,0000000
WEIGHTED AVERAGE	4 484 3	12 64	14.84	27 47	1 006165	1 029378	21 672 101	110 694	52 203	162 897	1.0075733	1 0246126
PRIMARY INTRCHINGE	00	12 04			0.000000	- GEBOITO	0	10,001	02,000	102,007	0.0000000	
PRIMARY LINES	4 456 9	1 44	140.25	141 73	1 032844	1.063187	21 508 982	12 610	439.206	451 B17	1 0214567	1 0465973
	3 930 0	43.09	16.65	59,70	1 015392	1 079551	18 478 097	377 357	34 969	A12 325	1 0228296	1 0704R44
SECONDARY	3,830.2		13.30	13.30	1 003440	1 083265	18.065.762	0,7,007	39,951	30,951	1 0022107	1 0728510
SERVICES	3,866.0	168	12.00	11.76	1.003571	1 097199	18.025.911	14 694	36,807	51 591	1 0022 07	1 0759208
	3,000 3	1.00	12.00	, 1370	1.0000/11	1 907 130	10,020,011	14,004	30,001		1.0020001	14736280
TOTAL SYSTEM		70.85	302.84	373.69				622,146	957.051	1,579,196		

DEVELOPMENT of LOSS FACTORS UNADJUSTED DEMAND

LOSS FACTOR LEVEL	CUSTOMER SALES MW	CALC LOSS TO LEVEL	SALES MW @ GEN	CUM PEAK EX FACTORS	PANSION
	а	b	č	d	1/d
BULK LINES	0.0	0.0	0.0	0.00000	0.00000
TRANS SUBS	0.0	0.0	0.0	0.00000	0.00000
TRANS LINES	0.0	0.0	0.0	0.00000	0.00000
SUBTRANS SUBS	0.0	0.0	0.0	0.00000	0.00000
TOTAL TRANS	612.3	14.1	626.4	1.02307	0.97745
PRIM SUBS	0.0	0.0	0.0	0.00000	0.00000
PRIM LINES	375.3	23.7	399.0	1.06319	0.94057
SECONDARY	<u>3,853.1</u>	<u>335.7</u>	<u>4,188.9</u>	1.08713	0.91985
TOTALS	4,840.7	373.6	5,214.3		

DEVELOPMENT of LOSS FACTORS UNADJUSTED ENERGY

LOSS FACTOR LEVEL	CUSTOMER SALES MWH	CALC LOSS TO LEVEL	SALES MWH @ GEN	CUM ANNUAL FACTORS	EXPANSION
·	a	b	C	d	1/d
BULK LINES	0	0	0	0.00000	0.00000
TRANS SUBS	0	0	0	0.00000	0.00000
TRANS LINES	0	0	0	0.00000	0.00000
SUBTRANS SUBS	0	0	0	0.00000	0.00000
TOTAL TRANS	5,571,157	94,215	5,665,372	1.01691	0.98337
PRIM SUBS	0	0	0	0.00000	0.00000
PRIM LINES	2,579,078	120,178	2,699,256	1.04660	0.95548
SECONDARY	<u>17.974.330</u>	1,364,787	<u>19,339,117</u>	1.07593	0.92943
TOTALS	26,124,565	1,579,180	27,703.745		

ESTIMATED VALUES AT GENERATION

LOSS FACTOR AT		
VOLTAGE LEVEL	MW	MWH
BULK LINES	0.00	0
TRANS SUBS	0.00	0
TRANS LINES	0.00	0
SUBTRANS SUBS	0.00	0
TOTAL TRANS	626.43	5,665,372
PRIM SUBS	0.00	0
PRIM LINES	399.01	2,699,256
SECONDARY	4,188.86	<u>19,339,117</u>
SUBTOTAL	5,214.30	27,703,745
ACTUAL ENERGY	5,219.30	27,704,663
MISSMATCH	(5.00)	(918)
% MISSMATCH	-0.10%	0.00%

AEP TEXAS CENTRAL 2017 LOSS ANALYSIS

DEVELOPMENT of LOSS FACTORS

ADJUSTED DEMAND

LOSS FACTOR	CUSTOMER SALES MW			SALES MW	CUM PEAK EX	PANSION
	8	<u>b</u>	C	d	e	f=1/e
	0.0	0.0	0.0	0.0	0 00000	0 0000
TRANS SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
TRANS LINES	0.0	0.0	0.0	0.0	0.00000	0.00000
SUBTRANS SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
TOTAL TRANS	612.3	0.0	14.1	626.4	1.02307	0.97745
PRIM SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
PRIM LINES	375.3	0.0	24.0	399.3	1.06395	0.93989
SECONDARY	3,853.1	0.0	340.4	<u>4,193.6</u>	1.08836	0.91882
			378.6			
TOTALS	4,840.7	0.0	378.6	5,219.3	1.07821	<composite< td=""></composite<>

DEVELOPMENT of LOSS FACTORS ADJUSTED ENERGY

LOSS FACTOR		SALES		SALES MWH	CUM ANNUAL EXPANSION	
	<u>a</u>	b	C	d	e	f=1/e
BULK LINES	0	C	0	0	0.00000	0.00000
TRANS SUBS	0	C	0	0	0.00000	0.00000
TRANS LINES	0	0	0	0	0.00000	0.00000
SUBTRANS SUBS	0	C	0	0	0.00000	0.00000
TOTAL TRANS	5,571,157	0	94,215	5,665,372	1.01691	0.98337
PRIM SUBS	0	C	0	0	0.00000	0.00000
PRIM LINES	2,579,078	0	120,240	2,699,318	1.04662	0.95546
SECONDARY	<u>17,974,330</u>	Q	1,365,643	<u>19,339,973</u>	1.07598	0.92939
TOTALS	26,124,565	0	1,580,098	27,704,663	1.06048	<composite< td=""></composite<>

ESTIMATED VALUES AT GENERATION

LOSS FACTOR AT		
VOLTAGE LEVEL	MW	MWH
BULK LINES	0.00	0
TRANS SUBS	0.00	0
TRANS LINES	0.00	0
SUBTRANS SUBS	0.00	0
TOTAL TRANS	626.43	5,665,372
PRIM SUBS	0.00	0
PRIM LINES	399.30	2,699,318
SECONDARY	4,193.57	19,339,973
	5,219.30	27,704,663
ACTUAL ENERGY	5,219.30	27,704,663
MISSMATCH	0.00	0
% MISSMATCH	0.00%	0.00%

Adjusted Losses and Loss Factors by Facility

EXHIBIT 8

Una	adjusted Losses	by Segment	t		
	-	MW	Unadjusted	MWH	Unadjusted
Service Drop Losses		13 76	13 75	51,581	51,580
Secondary Losses		13.30	13.30	39,851	39,850
Line Transformer Losses		59.72	59.70	412,325	412,319
Primary Line Losses		141 73	141.67	451,817	451,810
Distribution Substation Losses		27 47	27 46	162,897	162,894
Transmission System Losses		<u>117.70</u>	117 70	<u>460,726</u>	460,726
lotal		373.69	373.57	1,579,196	1,579,180
Mis	match Allocation	n by Segmen	t		
		MVV		MWH	
Service Drop Losses		-0 27		-42	
Secondary Losses		-0 26		-33	
Line Transformer Losses		-1.17		-339	
Primary Line Losses		-2.77		-371	
Usindution Substation Losses		-0.54		-134	
Total	U	-5.00		-918	
•		•			
A	ujusted Losses l	by segment	etoT to 49	MAA-	96 of Total
Service Dron Losses		14 07	20 ULIU(8) 21 704	51.623	אסטרוטנצו קוקומע
Secondary Losses		13.56	3.6%	39,883	2.5%
Line Transformer Losses		60.86	16 1%	412 657	26.1%
Primary Line Losses		144.44	38.2%	452,181	28.6%
Distribution Substation Losses		28.00	7.4%	163,028	10.3%
Transmission System Losses		117 70	31.1%	460,726	29.2%
Total		378 57	100 0%	1,580,098	100 0%
	Loss Factors by	Seament			
Retail Sales from Service Drops	,	3853.13		17,974,330	
Adjusted Service Drop Losses		14.02		51.623	
Input to Service Drops		3867.15		18,025,953	
Service Drop Loss Factor		1.00364		1.00287	
Output from Secondary		3867.15		18.025.953	
Adjusted Secondary Losses		<u>13 56</u>		<u>39,883</u>	
Input to Secondary		3880.70		18,065,835	
Secondary Conductor Loss Fac	tor	1.00351		1.00221	
Output from Line Transformers		3880.70		18,065,835	
Adjusted Line Transformer Losses	È	<u>60.86</u>		<u>412.657</u>	
Input to Line Transformers		3941.57		18,478,493	
Line Transformer Loss Factor		1.01568		1.02284	
Retail Sales from Primary		375.30		2,579,078	
Req Whis Sales from Primary		0 00		0	
Input to Line Transformers		<u>3941.57</u>		<u>18.478.493</u>	
Output from Primary Lines		4316.87		21,057,571	
Adjusted Primary Line Losses		<u>144,44</u>		452.181	
Input to Primary Lines Drimary Line Loce Eactor		4401.30		21,009,702	
Findly Line Loss Factor		1.03340		1.44 141	
Output from Distribution Substation	ns	4461.30		21,509,752	
Req. Whis Sales from Substations	l i	0 00		0	
Retail Sales from Substations		0.00		0	
Adjusted Distribution Substation Li	05565	28.00		<u>163.028</u>	
Input to Distribution Substations	ctor	4489.30		21,6/2,/80	
Distribution Substation Loss Fa	ctor	1.00020		1.007.00	
Retail Sales at from Transmission		612 30		5,571,157	
Req. Whis Sales AT SubTransmis	sion	0 00		0	
Non-Req. Whis Sales AT SubTran	ISMISSION	0.00		0	
Third Party Wheeling Losses		0.00		0	
Input to Distribution Substations		<u>4489.30</u>		21,672,780	
Adusted SubTransmission	ntopped	5101.60		21,243,931	
novit to Transmission System	II LOSSES	5210.20		<u>400.720</u> 27.704.662	
TotTransmission System Loss	Factor	1 02307		1 61864	
				1.01001	

DEMAND MW

SUMMARY OF LOSSES AND LOSS FACTORS BY DELIVERY VOLTAGE

SERVICE SALES LOSSES SECONDARY PRIMARY SUBSTATION SUBTRANS TRANSMISSION LEVEL MW SERVICES 1 SALES LOSSES 2 3,653 1 3,853 1 14.0 14 D 3 867 1 з INPUT EXPANSION FACTOR 4 1.00364 5 SECONDARY đ SALES 7 LOSSES 136 13.6 3.880.7 8 2 EXPANSION FACTOR 1.00351 10 LINE TRANSFORMER 11 12 13 SALES LOSSES 60.9 60.9 INPUT EXPANSION FACTOR 14 39418 1.01568 18 16 PRIMARY SECONDARY 3,941.6 17 375 3 375 3 18 19 LOSSES 144 4 131 8 126 20 21 INPUT EXPANSION FACTOR 1.03346 22 SUBSTATION 4 073 4 387.9 23 24 PRIMARY ٥٥ 00 25 LOSSES **28** D 25 6 24 00 INPUT EXPANSION FACTOR 4 099 0 380.3 00 28 1 00628 27 25 SUB-TRANSMISSION 29 30 31 DISTRIBUTION SUBS LOSSES INPUT EXPANSION FACTOR 32 33 34 TRANSMISSION SUBTRANSMISSION 35 DISTRIBUTION SUBS 4 099 0 390 3 00 36 37 SALES 6123 612.3 00 00 38 LOSSES 117.7 94.6 90 14 1 626 4 300 3 4 193 6 34 40 INPUT EXPANSION FACTOR 1.02307 378 6 340 5 240 00 14.1 TOTALS LOSSES 41 % OF TOTAL 100% 89 93% 6 34% 0 00% 3 73% 42 375.3 8123 43 44 SALES 4,8407 3.853 1 00 % OF TOTAL 100 00% 79 60% 7 75% 0.00% 12 65% INPUT 5 219 3 4 193 8 300 3 00 626.4 45 1.02307 CUMMULATIVE EXPANSION LOSS FACTORS 1.06836 1.06394 NA 46

(from meter to system input)

EXHIBIT 9 PAGE 1 of 2 ENERGY MWH

SUMMARY OF LOSSES AND LOSS FACTORS BY DELIVERY VOLTAGE

									PAGE 2 of
	SERVICE LEVEL	SALES	LOSSES \$	SECONDARY	PRIMARY	SUBSTATION	SUBTRANS	TRANSMISSION	
	SED\/ICES								
	SALES	17 074 330		17 074 330					
â	105955	11.674,000	51 622	51 623					
	INPLIT		01,020	10,025,053					
7	EXPANSION EACTOR	4 00287		10 023,955					
5	EXPANSION PACTOR	1.00207							
A	SECONDARY								
ž	SALES								
	108958		70 883	30 663					
õ	INPLIT		00,000	18 085 835					
10	EXPANSION FACTOR	1.00221		10 000,000					
11	LINE TRANSFORMER								
12	SALES								
13	LOSSES		412,657	412.657					
14	INPUT			18 478 493					
15	EXPANSION FACTOR	1 02264		10 110,400					
16	PRIMARY								
17	SECONDARY			18 478 493					
1.	SALES	2 579 078 000		10 410,400	3 670 079				
10	105965	2 3/3,3/8 000	452 181	306 700	2,073,073				
-	NDUT		402,101	360,788	00.002				
21	EVPANSION FACTOR	1 02147							
~ 1	Est Angion Froton	1.44141							
22	SUBSTATION								
23	PRIMARY			18 875 292	2 634 460				
24	SALES	0		10010,202	2,00,100		1		
25	LOSSES	÷	163 028	142 853	20 175		, ,		
28	INPLIT		100,020	19 018 145	2 854 835		, 1		
77	EXPANSION FACTOR	1.00758		18 010,140	2,004,000		•		
	Bill And Bill	1.000							
28	SUB-TRANSMISSION								
29	DISTRIBUTION SUBS								
30	SALES								
31	LOSSES								
32	INPUT								
33	EXPANSION FACTOR								
34	TRANSMISSION								
35	SUBTRANSMISSION								
36	DISTRIBUTION SUBS			19 018 145	2,654 635	i t	נ		
37	SALES	5,571 157			_,			5 571.15	7
38	LOSSES		460,726	321,619	44 893		נ	84.21	5
39	INPUT			19 339,764	2.699.528		5	5.665.37	2
40	EXPANSION FACTOR	1.01691					-		-
41	TOTALS LOSSES		1 580,098	1 365,434	120 450	, (נ	94,21	5
42	% OF TOTAL		100%	66 41%	7 62%	0 009	6	5 66*	%
43	SALES	26,124,565		17 974,330	2,579 078	. (נ	5,571 15	7
44	% OF TOTAL	100 00%		68 80%	9 87%	0.00%	6	21 33*	*
45	INPUT	27,704,663		19 339,764	2,699 528	. (כ	5,665 37	2
46		N LOSS FACIORS		1.07597	1.04670	NA		1.0159	n
	(from meter to syst	em input)							

EXHIBIT 9 PAGE 2 of 2

TCC and TNC	DEVELOPMENT	of LOSS FACTORS	EXHIBIT 10
COMPOSITE	ADJUSTED	EXHIBIT 7	PAGE 1 OF 2
LOSS FACTORS	DEMAND		

LOSS FACTOR	CUSTOMER	SALES	C/	ALC LOSS	SALES MW	CUM PEAK	EXPANTION
LEVEL	SALES MW	ADJUST	π) LEVEL	🙋 GEN	FACTORS	
	_a	b	c		d	e	f=1/e
BULK LINES	00)	0.0	0.0	0.0	0.00000	0
TRANS SUBS	00)	0.0	00	00	0.00000	0
TRANS LINES	0.0)	0.0	0.0	0.0	0.00000	٥
SUBTRANS SUBS	00)	0.0	0.0	0.0	0.00000	D
TOTAL TRANS	527 1		0.0	14.8	641.9	1.02353	0 97824
PRIM SUBS	0.0)	0.0	0.0	0.0	0.00000	0
PRIM LINES	571.3	3	0.0	38.6	609.9	1.06761	0.94061
SECONDARY	4,683 8	J	0.0	432.0	5,115.7	1.09223	0 91849
TOTALS	5,882 2	2	0.0	485.3	6,367.5	1.08251	<composite< th=""></composite<>

DEVELOPMENT of LOSS FACTORS ADJUSTED

		ENERGY					
LOSS FACTOR	CUSTOMER	SALES	c	ALC LOSS	SALES MWH	CUM ANNU	EXPANTION
LEVEL	SALES MWH	ADJUST	T	o level	🥏 GEN	FACTORS	
	3	Ь	ε		d	e	⊨1/e
BULK LINES	0		0	0	0	0.00000	0 00000
TRANS SUBS	0		0	0	0	0.00000	0 00000
TRANS LINES	0		0	0	0	0.00000	0.00000
SUBTRANS SUBS	0		Ô	0	0	0.00000	0.00000
TOTAL TRANS	5,751,071		۵	100,343	5,851,414	1 01745	0 98285
PRIM SUBS	0 ¹ 0		٥	0	0	0.00000	0 00000
PRIM LINES	4,268,133		0	216,821	4,484,954	1.05080	0.95166
SECONDARY	21,719,495		٥	1,740,690	23,460,185	1.08014	0.92580
TOTAL	31,738,699		0	2,057,854	33,796,553	1.06484	<composite< td=""></composite<>

тсс

DEVELOPMENT of LOSS FACTORS ADJUSTED EXHIBIT 7 DEMAND EXHIBIT 10 PAGE 2 OF 2

LOSS FACTOR	CUSTOMER	SALES	CAL	C LOSS	SALES MW	CUM PEAK	EXPANTION
LEVEL	SALES MW	ADJUST	10	LEVEL	(2P GEN	FACTORS	
	a	b	¢		q	e	f=1/e
BULK LINES	00)	0	0	0.0	0.00000	0
TRANS SUBS	00)	0	0	0.0	0.00000	0
TRANS LINES	0.0)	0	0	0.0	0.00000	0
SUBTRANS SUBS	00)	0.0	0.0	0.0	0.00000	0
TOTAL TRANS	612 3	1	0.0	14.1	525.4	1.02307	0 97824
PRIM SUBS	0.0)	0.0	0.0	0.0	0.00000	0
PRIM LINES	375.3	,	0.0	24.0	399.3	1.06395	0.94061
SECONDARY	3,853 1		0.0	340.4	4,193.6	1.08836	0 91849
TOTALS	4,840 7	,	0.0	378.6	5,219.3	1.07821	<composite< td=""></composite<>

DEVELOPMENT of LOSS FACTORS ADJUSTED ENERGY

;	Electron (
LOSS FACTOR	CUSTOMER SALES	C	ALC LOSS	SALES MWH	CUM ANNU	EXPANTION
LEVEL	SALES MWH ADJUST	T	o level	🔁 GEN	FACTORS	
	a b	c		d	e	f=1/e
BULK LINES	0	0	0	Ō	0.00000	0.00000
TRANS SUBS	0	Q	0	Ó	0.00000	0.00000
TRANS LINES	O	0	Ð	0	0.00000	0 DOOCO
SUBTRANS SUBS	0	0	0	D	0.00008	0 00000
TOTAL TRANS	5,571,157	٥	94,215	5,665,372	1.01691	0.98337
PRIM SUBS	0	O	0	Q	0.00000	0.00000
PRIM LINES	2,579,078	0	120,240	2,699,318	1 04652	0 95546
SECONDARY	17,974,330	0	1,365,643	19,339,973	1 07598	0 9 2939
TOTAL	2ő,124,565	O	1,580,098	27,704,663	1 05048	<composite< td=""></composite<>

TNC

DEVELOPMENT of LOSS FACTORS ADJUSTED EXHIBIT 7 DEMAND

LOSS FACTOR	CUSTOMER	SALES	CA		SALES MW	CUM PEAK	EXPANTION
LEVEL	SALES MW	ADJUST	TO	LEVEL	😰 GEN	FACTORS	
		b	c		d	e	f=1/e
BULK LINES	0.0)	0	0	0.0	0.00000	0.00000
TRANS SUBS	00)	0	0	0.0	0.00000	0 D OOCO
TRANS LINES	0.0)	0	0	0.0	0.00000	0.00000
SUBTRANS SUBS	00)	0	0	0.0	0.00000	0.00000
TOTAL TRANS	14 8	ł	0.0	0.5	15.4	1.04250	0 95924
PRIM SUBS	00)	0.0	0.0	0.0	0.00000	0 00000
PRIM LINES	196.0)	0.0	14.6	210.6	1.07461	0.93057
SECONDARY	830.6	;	0.0	91.5	922.1	1.11018	0.90075
TOTALS	1,041.4	Ļ	0.0	106.8	1,148.2	1.10252	<composite< th=""></composite<>

DEVELOPMENT of LOSS FACTORS ADJUSTED ENERGY

LOSS FACTOR	CUSTOMER 54	ALES S		SALES MWH	CUM ANNU	EXPANTION
LEVEL	SALES MWH A	DJUST	to level	@ GEN	FACTORS	
	a b		c	d	e	f=1/e
BULK LINES	0	0	Û	0	0.00000	0.00000
TRANS SUBS	0	0	٥	0	0.00000	0 00000
TRANS LINES	0	0	٥	0	0.00000	0 00000
SUBTRANS SUBS	0	Q	σ	0	0.00000	0.00000
TOTAL TRANS	179,914	0	6,128	186,042	1.03406	0 96706
PRIM SUBS	0	0	0	0	0.00000	0 00000
PRIM LINES	1,689,055	0	96,581	1,785,636	1 05718	0 94591
SECONDARY	3,745,165	0	375,047	4,120,212	1.10014	0 9 08 97
TOTAL	5,614,134	0	477,756	6,091,890	1.08510	<composite< td=""></composite<>

Appendix B

Discussion of Hoebel Coefficient

AEP - Texas Central Company 2017 Analysis of System Losses

COMMENTS ON THE HOEBEL COEFFICIENT

The Hoebel coefficient represents an established industry standard relationship between peak losses and average losses and is used in a loss study to estimate energy losses from peak demand losses. H. F. Hoebel described this relationship in his article, "Cost of Electric Distribution Losses," <u>Electric Light and Power</u>, March 15, 1959. A copy of this article is attached.

Within any loss evaluation study, peak demand losses can readily be calculated given equipment resistance and approximate loading. Energy losses, however, are much more difficult to determine given their time-varying nature. This difficulty can be reduced by the use of an equation which relates peak load losses (demand) to average losses (energy). Once the relationship between peak and average losses is known, average losses can be estimated from the known peak load losses.

Within the electric utility industry, the relationship between peak and average losses is known as the loss factor. For definitional purposes, loss factor is the ratio of the average power loss to the peak load power loss, during a specified period of time. This relationship is expressed mathematically as follows:

(1)
$$F_{LS} \cong A_{LS} \div P_{LS}$$

where: $F_{LS} = Loss Factor$
 $A_{LS} = Average Losses$
 $P_{LS} = Peak Losses$

The loss factor provides an estimate of the degree to which the load loss is maintained throughout the period in which the loss is being considered. In other words, loss factor is the ratio of the actual kWh losses incurred to the kWh losses which would have occurred if full load had continued throughout the period under study.

Examining the loss factor expression in light of a similar expression for load factor indicates a high degree of similarity. The mathematical expression for load factor is as follows:

(2) $F_{\rm LD} \cong A_{\rm LD} \div P_{\rm LD}$	where:	F _{LD}	=	Load Factor
		AID	=	Average Load
		\mathbf{P}_{ID}	=	Peak Load

This load factor result provides an estimate of the degree to which the load loss is maintained throughout the period in which the load is being considered. Because of the similarities in definition, the loss factor is sometimes called the "load factor of losses." While the definitions are similar, a strict equating of the two factors cannot be made. There does exist, however, a relationship between these two factors which is dependent upon the shape of the load duration curve. Since resistive losses vary as the square of the load, it can be shown mathematically that the loss factor can vary between the extreme limits of load factor and load factor squared. The

relationship between load factor and loss factor has become an industry standard and is as follows:

(3) $F_{LS} \cong H^* F_{LD}^2 + (1-H)^* F_{LD}$	where:	F _{ls} F _{ld} H	=	Loss Factor Load Factor Hoebel Coefficient
		Н	=	Hoebel Coefficient

As noted in the attached article, the suggested value for H (the Hoebel coefficient) is 0.7. The exact value of H will vary as a function of the shape of the utility's load duration curve. In recent years, values of H have been computed directly for a number of utilities based on EEI load data. It appears on this basis, the suggested value of 0.7 should be considered a lower bound and that values approaching unity may be considered a reasonable upper bound. Based on experience, values of H have ranged from approximately 0.85 to 0.95. The standard default value of 0.9 is generally used.

Inserting the Hoebel coefficient estimate gives the following loss factor relationship using Equation (3):

(4) $F_{LS} \cong 0.90 * F_{LD}^2 + 0.10 * F_{LD}$

Once the Hoebel constant has been estimated and the load factor and peak losses associated with a piece of equipment have been estimated, one can calculate the average, or energy losses as follows:

(5)
$$A_{LS} \cong P_{LS} * [H*F_{LD}^2 + (I-H)*F_{LD}]$$
 where: $A_{LS} = Average Losses$
 $P_{LS} = Peak Losses$
 $H = Hoebel Coefficient$
 $F_{1,D} = Load Factor$

Loss studies use this equation to calculate energy losses at each major voltage level in the analysis.

AEP - TEXAS NORTH COMPANY

2017 Analysis of System Losses

January 2019

Final

Prepared by:

Management Applications Consulting, Inc. 1103 Rocky Drive – Suite 201 Reading, PA 19609 Phone: (610) 670-9199 / Fax: (610) 670-9190

1103 Rocky Drive • Suite 201 • Reading, PA 19609-1157 • 610/670-9199 • fax 610/670-9190 •www.manapp.com

January 10, 2019

Mr. David M. Roush Director Regulatory Pricing & Analysis American Electric Power I Riverside Plaza Columbus, OH 43215

Mr. Chad Burnett Director Economic Forecasting American Electric Power 212 East 6th Street Tulsa, OK 74119

RE: 2017 LOSS ANALYSIS - TNC

Dear Messrs. Roush and Burnett:

Transmitted herewith are the results of the 2017 Analysis of System Losses for the AEP - Texas North Company's (TNC) power system. Our analysis develops cumulative expansion factors (loss factors) for both demand (peak/kW) and energy (average/kWh) losses by discrete voltage levels applicable to metered sales data. Our analysis considers only technical losses in arriving at our final recommendations.

On behalf of MAC, we appreciate the opportunity to assist you in performing the loss analysis contained herein. The level of detailed load research and sales data by voltage level, coupled with a summary of power flow data and power system model, forms the foundation for determining reasonable and representative power losses on the TNC system. Our review of these data and calculated loss results support the proposed loss factors as presented herein for your use in various retail cost of service, rate studies, and demand analyses.

Should you require any additional information, please let us know at your earliest convenience.

Sincerely,

Paul M. Normand Principal

Enclosure PMN

AEP - Texas North Company 2017 Analysis of System Losses

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	6
2.	Conduct of Study	6
2.2	2 Description of Model	7
2.2	2 Description of Model	8
3.0	METHODOLOGY	9
3.	l Background	9
3,2	2 Analysis and Calculations	11
	3.2.1 Bulk, Transmission and Subtransmission Lines	11
	3.2.2 Transformers	12
	3.2.3 Distribution System	13
4.0	DISCUSSION OF RESULTS	14

Appendix A – Results of 2017 AEP - Texas North Company Power System Integrated System Loss Analysis

Appendix B - Discussion of Hoebel Coefficient

1.0 EXECUTIVE SUMMARY

This report presents AEP - Texas North Company's (TNC) 2017 Analysis of System Losses for the power systems as performed by Management Applications Consulting, Inc. (MAC). The study developed separate demand (kW) and energy (kWh) loss factors for each voltage level of service in the power system for TNC. The cumulative loss factor results by voltage level, as presented herein, can be used to adjust metered kW and kWh sales data for losses in performing cost of service studies, determining voltage discounts, and other analyses which may require a loss adjustment.

The procedures used in the overall loss study were similar to prior studies and emphasized the use of "in house" resources where possible. To this end, extensive use was made of the Company's peak hour power flow data and transformer plant investments in the model. In addition, measured and estimated load data provided a means of calculating reasonable estimates of losses by using a "top-down" and "bottom-up" procedure. In the "top-down" approach, losses from the high voltage system, through and including distribution substations, were calculated along with power flow data, conductor and transformer loss estimates, and metered poles.

At this point in the analysis, system loads and losses at the input into the distribution substation system are known with reasonable accuracy. However, it is the remaining loads and losses on the distribution substations, primary system, secondary circuits, and services which are generally difficult to estimate. Estimated and actual Company load data provided the starting point for performing a "bottom-up" approach for calculating the remaining distribution losses. Basically, this "bottom-up" approach develops line loadings by first determining loads and losses at each level beginning at a customer's meter service entrance and then going through secondary lines, line transformers, primary lines, and finally distribution substation. These distribution system loads and associated losses are then compared to the initial calculated input into Distribution Substation loadings for reasonableness prior to finalizing the loss factors. An overview of the loss study is shown on Figure 1.

With the emergence of transmission as a stand-alone function throughout various regions of the country, a modification to the historical calculation of the transmission loss factors was required. Historic loss studies recognized the multipath approach to losses from high voltage to low voltage delivery. The current definition of transmission losses recognized in the industry is simply to sum all losses at transmission as an integrated system. This approach will typically increase the resulting composite transmission loss factors but better reflects the topology of the systems with dispersed supply resources and interconnections.

The load research data provided the starting point for performing a "bottom-up" approach for estimating the remaining distribution losses. Basically, this "bottom-up" approach develops line loadings by first determining loads and losses at each level beginning at a customer's meter and service entrance and then going through secondary lines, line transformers, primary lines and finally distribution substation. These distribution system loads and associated losses are then compared to the initial calculated input into Distribution Substation loadings for reasonableness

prior to finalizing the loss factors. An overview of the loss study is shown on Figure 1 on the next page.

Table 1, below, provides the final results from Appendix A for the 2017 calendar year. Exhibits 8 and 9 of Appendix A present a more detailed analysis of the final calculated summary results of losses by voltage segments and delivery service level in the Company's power system. These Table 1 cumulative loss expansion factors are applicable only to metered sales at the point of receipt for adjustment to the power system's input level. A separate combined loss factor was also calculated on Exhibit 10 which combines the loss factors from TNC and TCC on a load weighted basis.

Voltage Level <u>of Service</u>	Total <u>Retail</u>	Distribution <u>Only</u>	TNC/TCC <u>Composite</u>		
Demand (kW)					
Transmission ¹	1.04250	1.00000	1.02353		
Primary Substation					
Primary Lines	1.07461	1.03081	1.06761		
Secondary	1.11018	1.06492	1.09223		
Energy (kWh)					
Transmission ¹	1.03406	1.00000	1.01745		
Primary Substation					
Primary Lines	1.05718	1.02236	1.05080		
Secondary	1.10014	1.06391	1.08014		
Losses – Net System $Input^2$	7.84% MWH				
	9.30% MW				
Losses – Net System Output ³	8.51% MWF	4			
	10.25% MW	-			

TABLE 1 Loss Factors at Metered Sales Level, Calendar Year 2017

The loss factors presented in the Delivery Only column of Table 1 are the Total TNC loss factors divided by the transmission loss factor in order to remove these losses from each service level loss factor. For example, the secondary distribution demand loss factor of 1.06492 includes the recovery of all remaining non-transmission losses from the subtransmission, distribution substation, primary lines, line transformers, secondary conductors and services.

Net system output uses losses divided by output or sales data as a reference.

¹ Reflects service at 345 kV, 138 kV and 69 kV.

² Net system input equals firm sales plus losses. Company use less non-requirement sales and related losses. See Appendix A. Exhibit 1, for their calculations.
The net system input shown in Table 1 represents the MWh losses of 7.84% for the total TNC load using calculated losses divided by the associated input energy to the system. The 9.30% represents the same losses using system output instead of input as a reference. The net system output reference shown in Table 1 represents MWh losses of 8.51% and MW losses of 10.25%. These results use the appropriate total losses for each but are divided by system output or sales. These calculations are all based on the data and results shown on Exhibits 1, 7 and 9 of the study.

Due to the very nature of losses being primarily a function of equipment loading levels for a peak load hour, the loss factor derivations for any voltage level must consider both the load at that level plus the loads from lower voltages and their associated losses. As a result, cumulative losses on losses equates to additional load at higher levels along with future changes (+ or -) in loads throughout the power system. It is therefore important to recognize that losses are multiplicative in nature (future) and not additive (test year only) for all future years to ensure total recovery based on prospective fixed loss factors for each service voltage.

The derivation of the cumulative loss factors shown in Table 1 have been detailed for all electrical facilities in Exhibit 9, page 1 for demand and page 2 for energy. Beginning on line 1 of page 1 (demand) under the secondary column, metered sales are adjusted for service losses on lines 3 and 4. This new total load (with losses) becomes the load amount for the next higher facilities of secondary conductors and their loss calculations. This process is repeated for all the installed facilities until the secondary sales are at the input level (line 45). The final loss factor for all delivery voltages using this same process is shown on line 46 and Table 1 for demand. This procedure is repeated in Exhibit 9, page 2, for the energy loss factors.

The loss factor calculation is simply the input required (line 45) divided by the metered sales (line 2).

An overview of the loss study is shown on Figure 1 on the next page. Figure 2 simply illustrates the major components that must be considered in a loss analysis.

2.0 INTRODUCTION

This report of the 2017 Analysis of System Losses for the TNC power system provides a summary of results, conceptual background or methodology, description of the analyses, and input information related to the study.

2.1 Conduct of Study

Typically, between five to ten percent of the total peak hour MW and annual MWH requirements of an electric utility is lost or unaccounted for in the delivery of power to customers. Investments must be made in facilities which support the total load which includes losses or unaccounted for load. Revenue requirements associated with load losses are an important concern to utilities and regulators in that customers must equitably share in all of these cost responsibilities. Loss expansion factors by voltage level are the mechanism by which customers' metered demand and energy data are mathematically adjusted to the generation or input level (point of reference) when performing cost and revenue calculations.

An acceptable accounting of losses can be determined for any given time period using available engineering, system, and customer data along with empirical relationships. This loss analysis for the delivery of demand and energy utilizes such an approach. A microcomputer loss model⁴ is utilized as the vehicle to organize the available data, develop the relationships, calculate the losses, and provide an efficient and timely avenue for future updates and sensitivity analyses. Our procedures and calculations are similar with prior loss studies, and they rely on numerous databases that include customer statistics and power system investments at various voltage levels of service.

Company personnel performed most of the data gathering and data processing efforts and checked for reasonableness. MAC provided assistance as necessary to construct databases, transfer files, perform calculations, and check the reasonableness of results. Efforts in determining the data required to perform the loss analysis centered on information which was available from existing studies or reports within the Company. From an overall perspective, our efforts concentrated on five major areas:

- 1. System information concerning peak demand and annual energy requirements by voltage level,
- 2. High voltage power system power flow data and associated loss calculations,
- 3. Distribution system primary and secondary loss calculations,
- 4. Derivation of fixed and variable losses by voltage level, and
- 5. Development of final cumulative expansion factors at each voltage for peak demand (kW) and annual energy (kWh) requirements at the point of delivery (meter).

¹Copyright by Management Applications Consulting, Inc.

2.2 Electric Power Losses

Losses in power systems consist of primarily technical losses with a much smaller level of non-technical losses.

Technical Losses

Electrical losses result from the transmission of energy over various electrical equipment. The largest component of total losses during peaking conditions is power dissipation as a result of varying loading conditions and are oftentimes called load losses which are mostly related to the square of the current (I^2R) . These peak hour losses can be a really high percentage of all technical losses during peak loading conditions. The remaining losses are called no-load and represent essentially fixed (constant) energy losses throughout the year. These no-load losses represent energy required to energize various electrical equipment regardless of their loading levels over the entire year. The major portion of these no-load losses consists of core or magnetizing energy related to installed transformers throughout the power system and generates the major component of annual losses on any distribution system.

The following Table 2 summarizes the unadjusted fixed and variable losses by major functional categories from Exhibit 5 of Appendix A:

	<u>DEN</u>	<u>IAND (PEAK H</u>	IOUR)	ENERGY	Y (ANNUAL A	VERAGE)
	HXED	VARIABLE	TOTAL	HXED	VARIABLE	TOTAL
TRANS	7.44	55.72	63.16	65,149	212,435	277,583
(%)	11.78%	88.22%	100.00%	23 4 7%	76 53%	100.00%
SUBTRANS (%)	N/A	N/A	N/A	Ν/Λ	N/A	N/A
DIST SUBS	4 10	2 82	6 92	35,934	10,5 89	46,523
(%)	59.28%	40.72%	100.00%	77 2 4%	22.76%	100.00%
PRIMARY	0 48	24.24	24.72	4,242	75.882	80,12 4
(%)	1 96%	98.04%	100.00%	5.29%	94 71%	100 00%
SECONDARY	12.79	14.03	26.82	112,055	42.160	15 4,21 5
(%)	47.69%	52 31%	100.00%	72 66%	27 34%	100.00%
TOTAL SYS	24.82	96 81	121.62	217,380	341.066	558,446
(%)	20.40%	79.60%	100.00%	38.93%	61.07%	100.00%
TOTAL DIS1	17.38	41.09	58 46	152,231	128,631	280,862
(%)	29.72%	70 .28%	100.00%	54 20%	45.89%	100.00%

TABLE 2

Non-Technical Losses

These are unaccounted for energy losses that are related to energy theft, metering, non-payment by customers, and accounting errors. Losses related to these areas are generally very small and can be extremely difficult and subjective to quantify. Our efforts generally do not develop any meaningful level because we assume that improving technology and utility practices have minimized these amounts.

2.3 Loss Impacts from Distributed Generation (DG)

The impacts of losses on a power system from the installation of various DG facilities will depend somewhat on the penetration level, type of installations and location on a circuit. Based on the results presented in Table 2 of this loss study, the impacts are significantly different from looking at any single peak load hour versus the potential impacts over all hours of an entire year. Use of a typical uniform loss factor(s) for each voltage level may require additional consideration to recognize that a reduced consumption level could have little or no impact due to the recovery requirements for the high level of fixed losses over the entire hourly electric grid condition for any DG location.

2.4 Description of Model

The loss model is a customized applications model, constructed using the Excel software program. Documentation consists primarily of the model equations at each cell location. A significant advantage of such a model is that the actual formulas and their corresponding computed values at each cell of the model are immediately available to the analyst.

A brief description of the three (3) major categories of effort for the preparation of each loss model is as follows:

- Main sheet which contains calculations for all primary and secondary losses, summaries of all conductor and transformer calculations from other sheets discussed below, output reports and supporting results.
- Transformer sheet which contains data input and loss calculations for each distribution substation and high voltage transformer. Separate iron and winding losses are calculated for each transformer by identified type.
- Conductor sheet containing summary data by major voltage level as to circuit miles, loading assumptions, and kW and kWh loss calculations. Separate loss calculations for each line segment were made using the Company's power flow data by line segment and summarized by voltage level in this model.

3.0 METHODOLOGY

3.1 Background

The objective of a Loss Study is to provide a reasonable set of energy (average) and demand (peak) loss expansion factors which account for system losses associated with the transmission and delivery of power to each voltage level over a designated period of time. The focus of this study is to identify the difference between total energy inputs and the associated sales with the difference being equitably allocated to all delivery levels. Several key elements are important in establishing the methodology for calculating and reporting the Company's losses. These elements are:

- Selection of voltage level of services,
- Recognition of losses associated with conductors, transformations, and other electrical equipment/components within voltage levels,
- Identification of customers and loads at various voltage levels of service,
- Review of generation or net power supply input at each level for the test period studied, and
- Analysis of kW and kWh sales by voltage levels within the test period.

The three major areas of data gathering and calculations in the loss analysis were as follows:

- I. System Information (monthly and annual)
 - MWH generation and MWH sales.
 - Coincident peak estimates and net power supply input from all sources and voltage levels.
 - Customer load data estimates from available load research information, adjusted MWH sales, and number of customers in the customer groupings and voltage levels identified in the model.
 - System default values, such as power factor, loading factors, and load factors by voltage level.

- 2. High Voltage System
 - Conductor information was summarized from a database by the Company which reflects the transmission system by voltage level. Extensive use was made of the Company's power flow data with the losses calculated and incorporated into the final loss calculations.
 - Transformer information was developed in a database to model transformation at each voltage level. Substation power, step-up, and auto transformers were individually identified along with any operating data related to loads and losses.
 - Power flow data of peak condition was the primary source of equipment loadings and derivation of load losses in the high voltage loss calculations.
- 3. Distribution System
 - Distribution Substations Data was developed for modeling each substation as to its size and loading. Loss calculations were performed from this data to determine load and no load losses separately for each transformer.
 - Primary lines Line loading and loss characteristics for several representative primary circuits were obtained from the Company. These loss results developed kW loss per MW of load and a composite average was calculated to derive the primary loss estimate.
 - Line transformers Losses in line transformers were based on each customer service group's size, as well as the number of customers per transformer. Accounting and load data provided the foundation with which to model the transformer loadings and to calculate load and no load losses.
 - Secondary network Typical secondary networks were estimated for conductor sizes, lengths, loadings, and customer penetration for residential and small general service customers.
 - Services Typical services were estimated for each secondary service class of customers identified in the study with respect to type, length, and loading.

The loss analysis was thus performed by constructing the model in segments and subsequently calculating the composite until the constraints of peak demand and energy were met:

- Information as to the physical characteristics and loading of each transformer and conductor segment was modeled.
- Conductors, transformers, and distribution were grouped by voltage level, and unadjusted losses were calculated.
- The loss factors calculated at each voltage level were determined by "compounding" the per-unit losses. Equivalent sales at the supply point were obtained by dividing sales at a specific level by the compounded loss factor to determine losses by voltage level.
- The resulting demand and energy loss expansion factors were then used to adjust all sales to the generation or input level in order to estimate the difference.
- Reconciliation of kW and kWh sales by voltage level using the reported system kW and kWh was accomplished by adjusting the initial loss factor estimates until the mismatch or difference was eliminated.

3.2 Calculations and Analysis

This section provides a discussion of the input data, assumptions, and calculations performed in the loss analysis. Specific appendices have been included in order to provide documentation of the input data utilized in the model.

3.2.1 Bulk, Transmission and Subtransmission Lines

The transmission and subtransmission line losses were calculated based on a modeling of unique voltage levels identified by the Company's power flow data and configuration for the entire integrated TNC Power System. Specific information as to length of line, type of conductor, voltage level, peak load, maximum load, etc., were provided based on Company records and utilized as data input in the loss model.

Actual MW and MVA line loadings were based on TNC's peak loading conditions. Calculations of line losses were performed for each line segment separately and combined by voltage levels for reporting purposes as shown in the Discussion of Results (Section 4.0) of this report. The loss calculations consisted of determining a circuit current value based on MVA line loadings and evaluating the 1²R results for each line segment.

After system coincident peak hour losses were identified for each voltage level, a separate calculation was then made to develop annual average energy losses based on a loss factor approach. Load factors were determined for each voltage level based on system and customer load information. An estimate of the Hoebel coefficient (see Appendix B) was then used to calculate energy losses for the entire period being analyzed. The results are presented in Section 4.0 of this report.

3.2.2 Transformers

The transformer loss analysis required several steps in order to properly consider the characteristics associated with various transformer types; such as, step-up, auto transformers, distribution substations, and line transformers. In addition, further efforts were required to identify both iron and winding losses within each of these transformer types in order to obtain reasonable peak (kW) and average energy (kWh) losses. While iron losses were considered essentially constant for each hour, recognition had to be made for the varying degree of winding losses due to hourly equipment loadings.

Standardized test data tables were used to represent no load information (fixed) and full load (variable) losses for different types and sizes of transformers. This test data was incorporated into the loss model to develop relationships representing winding and iron or core losses for the transformer loss calculation. These results were then totaled by various groups, as identified and discussed in Section 4.0.

The remaining miscellaneous losses considered in the loss study consisted of several areas which do not lend themselves to any reasonable level of modeling for estimating their respective losses and were therefore lumped together into a single loss factor of 0.10%. The typical range of values for these losses is from 0.10% to 0.25%, and we have assumed the lower value to be conservative at this time. The losses associated with this loss factor include bus bars, unmetered station use, grounding transformers, cooling fans, heating and air conditioning requirements, and other remaining station use requirements.

3.2.3 Distribution System

The load data at the substation and customer level, coupled with primary and secondary network information, was sufficient to model the distribution system in adequate detail to calculate losses.

Primary Lines

Primary line loadings take into consideration the available distribution load along with the actual customer loads including losses. Primary line loss estimates were prepared by the Company for use in this loss study. These estimates considered loads per substation, voltage levels, loadings, total circuit miles, wire size, and single- to three-phase investment estimates. All of these factors were considered in calculating the actual demand (kW) and energy (kWh) for the primary system.

Line Transformers

Losses in line transformers were determined based on typical transformer sizes for each secondary customer service group and an estimated or calculated number of customers per transformer. Accounting records and estimates of load data provided the necessary database with which to model the loadings. These calculations also made it possible to determine separate winding and iron losses for distribution line transformers, based on a table of representative losses for various transformer sizes.

Secondary Line Circuits

A calculation of secondary line circuit losses was performed for loads served through these secondary line investments. Estimates of typical conductor sizes, lengths, loadings and customer class penetrations were made to obtain total circuit miles and losses for the secondary network. Customer loads which do not have secondary line requirements were also identified so that a reasonable estimate of losses and circuit miles of these investments could be made.

Service Drops and Meters

Service drops were estimated for each secondary customer reflecting conductor size, length and loadings to obtain demand losses. A separate calculation was also performed using customer maximum demands to obtain kWh losses. Meter loss estimates were also made for each customer and incorporated into the calculations of kW and kWh losses included in the Summary Results.

4.0 DISCUSSION OF RESULTS

A brief description of each Exhibit provided in Appendix A follows:

Exhibit 1 - Summary of Company Data

This exhibit reflects system information used to determine percent losses and a detailed summary of kW and kWh losses by voltage level. The loss factors developed in Exhibit 7 are also summarized by voltage level.

Exhibit 2 - Summary of Conductor Information

A summary of MW and MWH load and no load losses for conductors by voltage levels is presented. The sum of all calculated losses by voltage level is based on input data information provided in Appendix A. Percent losses are based on equipment loadings.

Exhibit 3 - Summary of Transformer Information

This exhibit summarizes transformer losses by various types and voltage levels throughout the system. Load losses reflect the winding portion of transformer losses while iron losses reflect the no load or constant losses. MWH losses are estimated using a calculated loss factor for winding and the test year hours times no load losses.

Exhibit 4 - Summary of Losses Diagram (2 Pages)

This loss diagram represents the inputs and output of power at system peak conditions. Page 1 details information from all points of the power system and what is provided to the distribution system for primary loads. This portion of the summary can be viewed as a "top down" summary into the distribution system.

Page 2 represents a summary of the development of primary line loads and distribution substations based on a "bottom up" approach. Basically, loadings are developed from the customer meter through the Company's physical investments based on load research and other metered information by voltage level to arrive at MW and MVA requirements during peak load conditions by voltage levels.

Exhibit 5 - Summary of Sales and Calculated Losses

Summary of Calculated Losses represents a tabular summary of MW and MWH load and no load losses by discrete areas of delivery within each voltage level. Losses have been identified and are derived based on summaries obtained from Exhibits 2 and 3 and losses associated with meters, capacitors and regulators.

Exhibit 6 - Development of Loss Factors, Unadjusted

This exhibit calculates demand and energy losses and loss factors by specific voltage levels based on sales level requirements. The actual results reflect loads by level and summary totals of losses at that level, or up to that level, based on the results as shown in Exhibit 5. Finally, the estimated values at generation are developed and compared to actual generation to obtain any difference or mismatch.

Exhibit 7 - Development of Loss Factors, Adjusted

The adjusted loss factors are the results of adjusting Exhibit 6 for any difference. All differences between estimated and actual are prorated to each level based on the ratio of each level's total load plus losses to the system total. These new loss factors reflect an adjustment in losses due only to the kW and kWh mismatch.

Exhibit 8 - Adjusted Losses and Loss Factors by Facility

These calculations present an expanded summary detail of Exhibit 7 for each segment of the power system with respect to the flow of power and associated losses from the receipt of energy at the meter to the generation for the TNC power system.

Exhibit 9 - Summary of Losses by Delivery Voltage

These calculations present a reformatted summary of losses presented in Exhibits 7 and 8 by power system delivery segment as calculated by voltage level of service based on reported metered sales.

Exhibit 10 - Composite Summary of Losses for TNC and TCC

These calculations are based on using the individual loss results from their respective Exhibit 7 on a load weighted basis by voltage level of service.

Appendix A

Results of 2017 AEP – TNC Integrated Power System Loss Analysis

AEP TEXAS NORTH

EXHIBIT 1

SUMMARY OF COMPANY DATA

ANNUAL PEAK	1,148	MW	
ANNUAL GENERATION	6,091,890	MWH	
ANNUAL SALES	5,614,134	ммн	
SYSTEM LOSSES @ INPUT SYSTEM LOSSES @ OUTPUT	477,756 477,756	or 7.84% or 8.51%	
SYSTEM LOAD FACTOR	60.6%		

SUMMARY OF LOSSES - OUTPUT RESULTS

SERVICE	ĸv	N	IW Input	% TOTAL	MWH Input	% TOTAL
TRANS	345,161,115 66,46,20	49.9	4.35%	46.77%	220,266 3.62%	46 .10%
PRIMARY	12,4,1	30.8	2.68%	28.81%	116,108 1.91%	24.30%
SECONDARY	120/240,to,477	26 .1	2.27%	24. 42%	141,382 2.32%	29.59%
TOTAL		106.8	9.30%	100.00%	477,756 7.84%	100.00%

SUMMARY OF LOSS FACTORS

SERVICE	κv	CUMMU DEMAN	LATIVE SALES D (Peak)	EXPANSION FACTORS ENERGY (Annual)		
		d	1/d	е	1/e	
TOT TRANS	345,161,115 66 46 20	1.04250	0.95924	1.03406	0.96706	
PRIM SUBS	12,4	0.00000	0.00000	0.00000	0.00000	
PRIMARY	12,4,1	1.07461	0.93057	1.05718	0.94591	
SECONDARY	120/240,to,477	1.11018	0.90075	1.10014	0.90897	

AEP TEXAS NORTH 2017 LOSS ANALYSIS

SUMMARY OF CONDUCTOR INFORMATION

EXHIBIT 2

0

0

0

0

0

<u>12</u> 57,234

57,222

80.083

24,216

16.221

319,872

<u>118.918</u> 118,918

<u>23,199</u> 23,199

DESCRIPTION				CIRCUIT LOADING		M	MW LOSSES]	
			MILES	% R	ATING	LOAD	NO LOAD	TOTAL	L	LOAD
	345 KV (R GREA							E	
TIE LINES			0.0)	0.00%	0.000	0.000	0.000		0
<u>BULK TRANS</u> SUBTOT			<u>279.7</u> 279.7	,		<u>4.570</u> 4 570	<u>0.839</u> 0.839	<u>5.409</u> 5.409		<u>15,849</u> 15,849
TRANS	115 KV	то	345.00	кv						
				D	0 00%	0 000	0 000	0 000		0
TRANS1	161 KV		0.0	1	0.00%	0.000	0.000	0.000		٥
TRANS2	<u>115 KV</u>		<u>1.417.4</u>			32.500	0.709	33,209		112,710
SUBTOT			1,417.4	Ļ		32 500	0 709	33 209		112,710
- SUBTRANS	20 KV	то	115	ĸv	_					
TIE LINES			i	D	0.00%	0 000	0 00 0	0 000		٥
SUBTRANS1	66 KV		2,201.2	!	0.00%	16.500	0.000	16.500		57,222
SUBTRANS2	4 6 KV		0.0	:	0.00%	0.000	0.000	0.000	4	0
SUBTRANS3	<u>20 KV</u>		<u>0.0</u>		<u>0.00%</u>	0.000	<u>0.001</u>	<u>0.001</u>		<u>0</u>
SUBTOT			2,201.2			16 500	0 001	16 501	1	57,222
PRIMARY LINES			9,018	ł		24,229	0.484	24.714		75,84 1
SECONDARY LINES			3,607			7 326	0 000	7 326		24,216
SERVICES			3,971			4.277	0.379	4.656		12,899
TOTAL						89,402	2.413	91,815	F	298 736

	MWH LOSSES	
LOAD	NO LOAD	TOTAL

0

0

0

0

0

<u>12</u> 12

0

4,242

3,322

21,135

<u>6.208</u> 6,208

7.351 7,351

AEP TEXAS NORTH 2017 LOSS ANALYSIS

SUMMARY OF TRANSFORMER INFORMATION

EXHIBIT 3

DESCRIPTION		KV CAPA	CITY	NUMBER	AVERAGE	LOADING	MVA		MW LOSSES			MWH LOSSES	
		VOLTAGE	MVA	TRANSFMR	SIZE	%	LOAD	LOAD	NO LOAD	TOTAL	LOAD	NO LOAD	TOTAL
BULK STEP-UP		345	0.0	0	0.0	0.00%	D	0.000	0 000	0 000	0	0	٥
BULK - BULK			00	0	0.0	0.00%	D	0.000	0 0 0 0	0 000	0	Û	0
BULK - TRANS1		161	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
BULK - TRANS2		115	3,037.0	11	276.1	30.38%	923	0.608	2.895	3.503	509	25,356	25,865
TRANS1 STEP-UP		161	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	٥
TRANS1 - TRANS2		115	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS1-SUBTRAN	\$1	66	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
TRANS1-SUBTRAN	S2	46	0.0	Ó	0.0	0.00%	Ō	0.000	0.000	0.000	Ō	Ō	Ō
TRANS1-SUBTRAN	53	20	0.0	0	0.0	0.00%	Ŷ	0.000	0.000	0.000	Ō	0	Q
TRANS2 STEP-UP		115	215.0	3	71.7	14.92%	32	0.050	0.192	0.242	173	1.679	1,852
TRANS2-SUBTRAN	S1	66	2,530,9	44	57.5	36.35%	920	1,475	2.778	4.253	5,959	24.337	30,295
TRANS2-SUBTRAN	S2	46	0.0	Ó	0.0	0.00%	0	0.000	0.000	0.000	Ó	0	0
TRANS2-SUBTRAN	\$3	20	0.0	Ô	0.0	0.00%	Ó	0.000	0.000	0.000	0	Ō	0
SUBTRAN1 STEP-U	IP	66	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	c
SUBTRAN2 STEP-U	JP	46	0.0	Ď	G.O	0.00%	Ċ	0.000	0.001	0.001	õ	õ	Ō
SUBTRAN3 STEP-U	JP	20	0.0	0	0.0	0.00%	Ō	0.000	0.000	0.000	0	Ō	Ő
SUBTRAN1-SUBTR	AN2	46	0,0	0	0.0	0.00%	0	0.000	0 000	0.000	0	0	C
SUBTRAN1-SUBTR	AN3	20	13.7	2	6.9	41.71%	6	0.016	0.024	0.040	55	206	262
SUBTRAN2-SUBTR	AN3	20	0.0	ō	0.0	0.00%	Ď	0.000	0.000	0.000	0	0	0
	_					D	ISTRIBUTION S	UBSTATIONS	s —				
TRANS1 -	16 1	12	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	٥
TRANS1 -	161	4	0.0	õ	0.0	0.00%	ň	0,000	0,000	0.000	ก้	õ	Ő
TRANS1 -	161	1	0.0	õ	0.0	0.00%	õ	0.000	0.000	0.000	Õ	õ	Õ
TRANS2 -	115	12	950.0	39	24.4	39.98%	380	0 805	1.300	2 105	3 080	11,389	14 469
TRANS2 -	115	4	0.0	ົ້		0.00%	~~~	0,000	0.000	0.000	0,000	0	0
TRANS2 -	115	1	0.0	õ	0.0	0.00%	õ	0.000	0.000	0.000	õ	õ	õ
SUBTRAN1-	66	12	1.658.5	157	10.6	41 41%	687	1 886	2 576	4 462	7 056	22 565	29 621
SUBTRAN1-	66	4	80.5	16	50	31 40%	25	0.078	0.139	0.218	289	1 222	1 510
SUBTRAN1-	66	1	44.9	18	2.5	33.75%	15	0.049	0.087	0.136	164	758	922
SUBTRAN2.	46	12	00	0	0.0	0.00%	n	0.000	0.000	0.000	0	n	ń
SUBTRAN2.	46	4	0.0	ň	0.0	0.00%	ň	0,000	0.000	0.000	ñ	ň	n n
SUBTRAN2-	46	1	0.0	0	0.0	0.00%	õ	0.000	0.000	0.000	õ	õ	0
SUBTRANS	20	12	0.0	0	00	0.00%	n	0.000	0.000	0.000	n	n	'n
SUBTRANS.	20	4	0.0	õ	0.0	0.00%	ň	0.000	0.000	0,000	ñ	ň	0
SUBTRAN3-	20	1	0.0	õ	0.0	0.00%	õ	0.000	0.000	0.000	õ	õ	Ő
PRIMARY - PRIMAR	RY		12 4	9	1.4	21.89%	3	0.009	0.024	0.033	41	213	254
LINE TRANSFRMR			4,063.5	98,377	41.3	23.00%	935	2.428	12.412	14.840	5,046	108, 73 3	113,778
τοται		=	12 606	98 676			-	7 404			22222222222	108 458	

SUMMARY OF LOSSES DIAGRAM - DEMAND MODEL - SYSTEM PEAK

1148 2 MW

AEP TEXAS NORTH 2017 LOSS ANALYSIS

AEP TEXAS NORTH 2017 LOSS ANALYSIS

SUMMARY of SALES and CALCULATED LOSSES

EXHIBIT 5

LOSS # AND LEVEL	MW LOAD	NO LOAD +	LOAD =	TOT LOSS	EXP	CUM	MWH LOAD	NO LOAD +	LOAD = TO	OT LOSS	EXP	CUM
			. –		FACTOR	EXP FAC					FACTOR	EXP FAC
1 BULK XFMMR	0.0	0.00	0.00	0.00	0.000000	0 000000	0	0	D	0	0	0
2 BULK LINES	1,000.0	0 84	4.57	5.41	1.005439	1.005439	5,065,928	7,351	35,806	43,156	1.0085921	1.0085921
3 TRANS1 XFMR	0.0	0 00	0.00	0.00	0.000000	0.000000	Q	0	0	0	0.0000000	0.0000000
4 TRANS1 LINES	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.0000000	0 0000000
5 TRANS2TR1 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.00000000	0.00000000
6 TRANS2BLK SD	904.2	2.89	0.61	3.50	1.003889	1.009349	4,831,517	25,356	509	25,885	1.0053822	1.0140206
7 TRANS2 LINES	1,285.6	0.90	32.55	33.45	1.026714	1.033465	7,733,504	7,888	112,883	120,770	1.0158643	1 0247626
TOTAL TRAN	1,285.6	4.63	37.73	42.36	1.034074	1.034074	7,733,504	40,594	149,198	189,792	1.0251590	1.0251590
8 STR1BLK SD												
9 STR1T1 SD	0.0	0.00	0.00	0.00	0.000000	0 000000	0	0	0	0	0.00000000	0.0000000
10 SRT1T2 SD	901 .6	2.78	1.47	4.25	1.004739	1.038362	4,818.030	24,337	5,959	30,296	1.0063278	1 0312472
11 SUBTRANS1 LINES	9 01.6	0.00	16.50	16.50	1.018641	1.057719	4,818,030	0	57,222	57,222	1.0120194	1 0436421
12 STR2T1 SD	0.0	0.00	0.00	0.00	0.0000000	0 000000	0	0	0	0	0.0000000	0.0000000
13 STR2T2 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.0000000	0 0000000
14 STR2S1 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.00000000	0 0000000
15 SUBTRANS2 LINES	00	0 00 0	0.00	000	0.000000	0 000000	0	0	0	0	0.0000000	0 0000000
16 STR3T1 SD	0.0	0 00	0.00	000	0.000000	0 000000	0	0	0	0	0.0000000	0 0000000
17 STR3T2 SD	0.0	0 00	0.00	000	0.000000	0 000000	0	0	0	0	0.0000000	0 0000000
18 STR3S1 SD	5.6	D 02	0.02	0.04	1.007173	1 065305	27,511	206	55	262	1.0095971	1 0536581
19 STR3S2 SD	0.0	0.00	0.00	0.00	0.000000	0 000000	0	D	0	0	0.0000000	0 0000000
20 SUBTRANS3 LINES	56	0 00	0.00	0.00	1.000246		27,511	12	0	12	1 0004396	
21 SUBTRANS TOTAL	907 3	280	17.99	20.80	1.023459		4,845,541	24,555	63,237	87,792	1.0184523	
22 TOT TRANS LOSS FAC	1,549.3	7.44	55.72	63.16	1.042497	1.042497	8,427,416	65,149	212,435	277,583	1.0340600	1.0340600
DISTRIBUTION SUBST	,											
TRANS1	0.0	000	0.00	0.00	0 000000	0 000000	0	0	0	D	0.0000000	0 0000000
TRANS2	372.2	1 30	0.80	2 10	1 005688	1 048427	1,958,190	11,389	3,080	14,469	1.0074440	1 0323910
SUBTR1	712.7	280	2.01	4 81	1.006802	1 049589	3,756,591	24,545	7,509	32,054	1.0086062	1 0526239
SUBTR2	0.0	000	0.00	0.00	0.000000	0 000000	0	· 0	í o	່ວ	0.0000000	0 0000000
SUBTR3	00	000	0.00	0.00	0.000000	0 000000	0	a	0	o	0.0000000	0 0000000
WEIGHTED AVERAGE	1.064 9	4 1D	2.82	692	1 006420	1 049190	5,714,781	35,934	10,589	46,523	1.0082077	1 0425472
PRIMARY INTRCHINGE	0.0				0.000000		0	,	,		0 0000000	
PRIMARY LINES	1.078.2	0.48	24.24	24 72	1 023468	1 073812	5 668 559	4.242	75.882	80.124	1.0143374	1 0574947
LINE TRANSE	857 5	12 41	2 43	14.84	1.017613	1 092724	3,899,380	108,733	5,046	113,778	1.0300555	1 0892783
SECONDARY	842.6	ana	7 33	733	1.008771	1 102308	3,785,602	0	24,216	24,216	1.0064380	1 0962911
SERVICES	835.3	038	4.28	466	1.005606	1 106488	3,761,386	3,322	12,899	16,221	1.0043312	1 1010394
							-1	_,				
TOTAL SYSTEM		24.82	96.81	121 62				217,380	341,066	558. <u>446</u>		

EXHIBIT 6

DEVELOPMENT of LOSS FACTORS UNADJUSTED

DEMAND

LOSS FACTOR	CUSTOMER SALES MW	CALC LOSS TO LEVEL	SALES MW @ GEN	CUM PEAK EX FACTORS	PANSION
	8	b	°,	d	1/d
BULK LINES	0.0	0.0	0.0	0.00000	0.00000
TRANS SUBS	0.0	0.0	0.0	0.00000	0.00000
TRANS LINES	0.0	0.0	0.0	0.00000	0.00000
SUBTRANS SUBS	0.0	0.0	0.0	0.00000	0.00000
TOTAL TRANS	14.8	0.6	15.4	1.04250	0.95924
PRIM SUBS	0.0	0.0	0.0	0.00000	0.00000
PRIM LINES	196.0	14.5	210.5	1.07381	0.93126
SECONDARY	<u>830.6</u>	<u>90.1</u>	<u>920.7</u>	1.10849	0.90213
TOTALS	1,041.4	105.2	1,146.6		

DEVELOPMENT of LOSS FACTORS UNADJUSTED ENERGY

LOSS FACTOR LEVEL	CUSTOMER SALES MWH	CALC LOSS TO LEVEL	SALES MWH @ GEN	CUM ANNUAL FACTORS	EXPANSION
	a	b	c	d	1/d
BULK LINES	0	0	0	0.0000	0.00000
TRANS SUBS	0	0	0	0.00000	0.00000
TRANS LINES	0	0	0	0.00000	0.00000
SUBTRANS SUBS	0	0	0	0.00000	0.00000
TOTAL TRANS	179,914	6,128	186,042	1.03406	0.96706
PRIM SUBS	0	0	0	0.00000	0.00000
PRIM LINES	1,689,055	97,112	1,786,167	1.05749	0.94563
SECONDARY	3,745,165	378,409	4,123,574	1.10104	0.90823
TOTALS	5,614,134	481,649	6,095,783		-

ESTIMATED VALUES AT GENERATION

LOSS FACTOR AT		
VOLTAGE LEVEL	MW	MWH
BULK LINES	0.00	0
TRANS SUBS	0.00	0
TRANS LINES	0.00	0
SUBTRANS SUBS	0.00	0
TOTAL TRANS	15.43	186,0 42
PRIM SUBS	0.00	0
PRIM LINES	210.47	1,786,1 67
SECONDARY	920.74	4,123,574
SUBTOTAL	1,1 46.64	6,095,783
ACTUAL ENERGY	1,1 48.20	6,091,890
MISSMATCH	(1.56)	3,893
% MISSMATCH	-0.1 4%	0.06%

ı.

AEP TEXAS NORTH 2017 LOSS ANALYSIS

DEVELOPMENT of LOSS FACTORS ADJUSTED DEMAND

LOSS FACTOR	CUSTOMER SALES MW	SALES		SALES MW	CUM PEAK EXI	PANSION
	8	b	C	d	e	f=1/e
	0.0	0.0		0.0	0.0000	0 0000
TRANS SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
TRANS LINES	0.0	0.0	0.0	0.0	0.00000	0.00000
SUBTRANS SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
TOTAL TRANS	14.8	0.0	0.6	15.4	1.04250	0.95924
PRIM SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
PRIM LINES	196.0	0.0	14.6	210.6	1.07461	0.93057
SECONDARY	<u>830.6</u>	0.0	91.5	<u>922.1</u>	1.11018	0.90075
			106.8			
TOTALS	1,041.4	0.0	106.8	1,148.2	1.10252	<composite< td=""></composite<>

DEVELOPMENT of LOSS FACTORS ADJUSTED ENERGY

LOSS FACTOR	CUSTOMER	SALES	. (CALC LOSS	SALES MWH	CUM ANNUAL E	XPANSION
LEVEL	SALES MWH	ADJUST		TO LEVEL	@ GEN	FACTORS	
	8	<u>b</u>		c	d	e	f=1/e
			•	•			
BULKLINES	0		0	Q	0	0.00000	0.00000
TRANS SUBS	0		0	0	0	0.00000	0.00000
TRANS LINES	0		0	0	0	0.00000	0.00000
SUBTRANS SUBS	0		0	0	0	0.00000	0.00000
TOTAL TRANS	179,914		0	6,128	186,042	1.03406	0.96706
PRIM SUBS	0		0	0	0	0.00000	0.00000
PRIM LINES	1,689,055		0	96,581	1,785,636	1.05718	0.94591
SECONDARY	<u>3,745,165</u>		0	375,047	<u>4,120,212</u>	1.10014	0.90897
				477,756			
TOTALS	5,614,134		0	477,756	6,091,890	1.08510 -	COMPOSITE

ESTIMATED VALUES AT GENERATION

LOSS FACTOR AT		
VOLTAGE LEVEL	MW	MWH
BULK LINES	0.00	0
TRANS SUBS	0.00	0
TRANS LINES	0.00	0
SUBTRANS SUBS	0.00	0
TOTAL TRANS	15.43	186,042
PRIM SUBS	0.00	0
PRIM LINES	210.62	1,785,636
SECONDARY	922.15	4,120,212
	1,148.20	6,091,890
ACTUAL ENERGY	1,148.20	6,091,890
MISSMATCH	0.00	0
% MISSMATCH	0.00%	0.00%

EXHIBIT 7

.

Adjusted Losses and Loss Factors by Facility

EXHIBIT 8

Unadiusted Losse	s by Seament	t		
-	MW	Unadjusted	MWH	Unadjusted
Service Drop Losses	466	4 40	16,221	15,096
Secondary Losses	7.33	6.93	24,216	22,536
Line Transformer Losses	14.84	14.03	113,778	105,887
Primary Line Losses	24 72	23 37	80,124	74,567
Distribution Substation Losses	6 92	6 54	46,523	43,296
Transmission System Losses	<u>49.94</u>	49.94	220.266	220,266
Total	108.40	105.21	501,129	481,649
Mismatch Allocatio	on by Segmen	t		
	MW -		MWH	
Service Drop Losses	-0 12		225	
Secondary Losses	-0 20		336	
Line Transformer Losses	-0.40		1,577	
Primary Line Losses	-0.66		1.110	
Distribution Substation Losses	-019		645	
Total U	-1.56		<u>y</u> 3,893	
• • • • • • • • • • • • • • • • • • • •	h			
Adjusted Losses	by Segment	% of Total	MMH	% of Total
Service Drop Losses	4.53	4.2%	14.871	3.1%
Secondary Losses	7 12	6.7%	22,201	4.6%
Line Transformer Losses	14 43	13.5%	104,310	21.8%
Primary Line Losses	24.03	22.5%	73,456	15.4%
Distribution Substation Losses	6.73	6.3%	42,652	8.9%
Transmission System Losses	49 94	45.8%	220,266	46.1%
Total	106 77	100.0%	477,756	100.0%
Loss Factors b	y Segment			
Retall Sales from Service Drops	830.63		3,745,165	
Adjusted Service Drop Losses	4.53		<u>14.871</u>	
Input to Service Drops	835 15		3,760,036	
Service Drop Loss Factor	1.00545		1.00397	
Output from Secondary	835.15		3,760,036	
Adjusted Secondary Losses	<u>7 12</u>		<u>22,201</u>	
Input to Secondary	842 28		3, 782,237	
Secondary Conductor Loss Factor	1.00863		1.00590	
Output from Une Transformers	842 28		3,782,237	
<u>Adjusted Line Transformer Losses</u>	<u>14.43</u>		<u>104,310</u>	
Input to Line Transformers	856.70		3,886,547	
Line Transformer Loss Factor	1.01713		1.02758	
Retail Sales from Primary	196.00		1,689,055	
Req Whis Sales from Primary	0 00		0	
Input to Line Transformers	<u>856.70</u>		<u>3.886.547</u>	
Output from Primary Lines	1052.70		5,575,602	
Adjusted Primary Line Losses	<u>24.03</u>		<u>/3.456</u>	
Input to Primary Lines	10/6 /3		5,649,056	
Primary Line Loss Pactor	1.02200		1.0 19 11	
Output from Distribution Substations	1076.73		5, 649,05 8	
Req. Whis Sales from Substations	0 00		0	
Retail Sales from Substations	0.00		0	
Adjusted Distribution Substation Losses	<u>0.73</u>		<u>42.002</u> 5.601.710	
Distribution Substation Loss Factor	1.005.40 1.00525		1 .00755	
			470.04	
Retail Sales at from SUD Fransmission	14 80		1/9,914	
req vvnis Sales from Sub Fransmission	0.00		0	
Third Party Wheeling Losses	0.00		0	
Input to Distribution Substations	1083 46		5.691 710	
Output from SubTransmission	1098.26		5.871.624	
Adjusted SubTransmission System Losses	49.94		220.266	
Input to Transmission	1148.20		6,091,890	
TotTransmission System Loss Factor	1.04260		1.03406	

5.871.624 220.266 6.091.890 1 03751

DEMAND MW SUM				SUMMARY OF LOSSES AND LOSS FACTORS BY DELIVERY VOLTAGE						
	Service Level		SALES MW	LOSSES	SECONDARY	PRIMARY	SUBSTATION	PRIMASUES COMPOSITE	TRANSMISSION	
1 2 3 4 5	SERVICES SALES LOSSES INPUT EXPANSION FACTOR	1.00545	830 6	45	830 6 4 5 835 2					
6 7 8 9 10	SECONDARY SALES LOSSES INPUT EXPANSION FACTOR	1.00553		71	7 1 842 3					
11 12 13 14 15	LINE TRANSFORMER SALES LOSSES INPUT EXPANSION FACTOR	1.01713		14.4	14 4 858 7					
16 17 18 20 21	PRIMARY SECONDARY SALES LOSSES INPUT EXPANSION FACTOR	1.02253	196 0	24 0	656 7 19 6	198 D 4 5				
22 23 24 25 26 27	SUBSTATION PRIMARY SALES LOSSES INPUT EXPANSION FACTOR	1.00625	00	67	8763 55 6617	200 5 1 3 201 7	0 0 0 0			
28 29 30 31 32 33	SUB-TRANSMISSION DISTRIBUTION SUBS SALES LOSSES INPUT EXPANSION FACTOR									
34 35 36 37 38 39	TRANSMISSION SUBTRANSMISSION DISTRIBUTION SUBS SALES LOSSES INPUT		148	49 9	861 7 37 5 919 2	201 7 8 6 210 3	0 0 0 0 0 0		144 01 15-	3 5 4
40 41 42	EXPANSION FACTOR TOTALS LOSSES % OF TOTAL	1.04250		106.8 100%	88 6 82 96%	14 3 13 39%	00 000%		0 (0 599	5
43 44	SALES % OF TOTAL		1,041 4 100 00%		830 8 79 76%	196 0 18 52%	0 D 0 DO%		14 (1 42 9	3 6
45	INPUT		1,144 9		919 2	210 3	00		15 -	4
46	CUMMULATIVE EXPANSION (from meter to system)	N LOSS FA(am input)	CTORS		1.10554	1.07295	NA		1.0425)

SALES SALES LOSSES SECONDARY PRIMARY SUBSTATION PRIMASURS TRANSMISSION 1 SERVOCES 3,745 105 1,4871 3,765 105 1,4871 3,760 005 1,4871 </th <th colspan="3">ENERGY MWH</th> <th></th> <th colspan="8">SUMMARY OF LOSSES AND LOSS FACTORS BY DELIVERY VOLTAGE</th>	ENERGY MWH				SUMMARY OF LOSSES AND LOSS FACTORS BY DELIVERY VOLTAGE							
1 SENDES 3,745 105 14.871 3,745 105 1 NRUT 10.0057 10.0057 3,765 05 2 SECONDARY 22 201 3,765 207 3 EXPANSION FACTOR 1.0050 3,765 207 1 LINEUT 1.0050 3,765 207 1 LINEUT 1.0050 3,765 207 1 LINEUT 1.0050 3,886 547 1 EXPANSION FACTOR 1.0050 3,886 547 1 EXPANSION FACTOR 1.01217 3,886 547 2 SECONARY 3,886 547 1.052,025 1 EXPANSION FACTOR 1.01217 3,886 547 2 SECONARY 3,887,150 3,897,751 1.711,008 1 EXPANSION FACTOR 1.01217 3,897,751 1.724,226 0 2 SECONARY 3,897,751 1.724,226 0 1.01217 2 SECONARY 1.0255 3,897,452 1.724,226 0 1.01217 3 <t< th=""><th></th><th>Service Level</th><th></th><th></th><th>SALES</th><th>LOSSES</th><th>SECONDARY</th><th>PRIMARY</th><th>SUBSTATION</th><th>PRIMESU95 COMPOSITE</th><th>TRANSMISSION</th><th>FRACEOR</th></t<>		Service Level			SALES	LOSSES	SECONDARY	PRIMARY	SUBSTATION	PRIMESU95 COMPOSITE	TRANSMISSION	FRACEOR
s SECONDARY 7 SALES 1000000000000000000000000000000000000	1 2 3 4 5	SERVICES SALES LOSSES INPUT EXPANSION	N FACTOR	1.00 357	3,745 165	14 871	3,745 165 14,871 3,760,036	5 				
11 LINE TRANSFORMER 3ALES 104 310 104 310 10 LOSSES 1.02738 11 NPUT 3,886 547 12 SALES 1.02738 13 LOSSES 1.880,055 14 NPUT 3,886 547 15 SECMORAY 3.886 547 16 NPUT 1.02738 11 LOSSES 1.680,055 11 1.01317 22.253 11 NPUT 0 11 LOSSES 179 914 11 LOSSES 179 914 11 LOSSES 179 914	8 7 8 9 10	SECONDAR SALES LOSSES INPUT EXPANSION	NY N FACTOR	1.00590		22 201	22 201 3,782 237					
9 PRIMARY 3.890 55 1.890,055 9 LOSSES 1.980,055 73,456 51 204 22.253 1 INPUT 1.01317 1.01317 0 22 SUBSTATION 3.997,751 1.711,308 0 23 INPUT 1.01317 0 0 24 EXPANSION FACTOR 1.00755 0 0 25 SUBSTATION 3.997,751 1.711,308 0 26 INPUT 0 3.067,452 1.724,228 0 27 EXPANSION FACTOR 1.00755 3.997,452 1.724,228 0 28 SUB-TRANSMISSION 3.997,452 1.724,228 0 1.729,914 20 SUB-TRANSMISSION 3.997,452 1.724,228 0 1.9914 21 LOSSES 179,914 3.997,452 1.724,228 0 179,814 21 LOSSES 179,914 20,266 135,953 58,667 0 1628 22 RAMSKIN FACTOR 1.03406 10075 10075 168,005 0 178,91	11 12 13 14 15	LINE TRANS SALES LOSSES INPUT EXPANSION	SFORMER N FACTOR	1.02758		104 310	104,310 3,886 547	}				
Image: constraint instruction Image: constraint instruction 22 SUBSTATION 3,937,751 1,711,308 24 SALES 0 0 25 LOSSES 0 0 26 INPUT 3,937,751 1,711,308 0 26 LOSSES 0 0 0 26 INPUT 3,967,482 1,724,226 0 20 STRAISMISSION SUB-TRAINSMISSION 0 0 20 STRIBUTION SUBS 3,967,482 1,724,226 0 20 STRIBUTION SUBS 3,967,482 1,724,228 0 20 STRIBUTION SUBS 3,967,482 1,724,228 0 179,914 31 LOSSES 179,914 3,967,482 1,724,228 0 179,914 32 SALES 179,914 3,967,482 1,724,228 0 179,914 34 LOSSES 179,914 4,103,434 1,783,116 0 168,042 41 TOTAL S	16 17 18 19 20 21	PRIMARY SECONDAR SALES LOSSES INPUT EXPANSION		1 01317	1, 689 ,055	73,456	3,886 547 51 204	1 689,055 1 22,253	i 5			
22 SUB-TRANSMISSION DISTRIBUTION SUBS SALES SALES 30 SALES LOSSES INPUT 31 LOSSES INPUT SUBTRANSMISSION 32 TRANSMISSION SUBTRANSMISSION 3,967,462 1724,228 D 34 TRANSMISSION SUBTRANSMISSION 30 179,914 3,967,462 1724,228 D 34 SALES 179,914 220,266 135,953 58,867 D 185,042 36 LOSSES 220,266 135,953 58,867 D 185,042 36 INPUT 220,266 135,953 58,867 D 185,042 36 INPUT 200 160 165,042 160 41 TOTALS LOSSES 477,756 358,266 94,061 D 6,128 42 N OF TOTAL 1000% 74,99% 19,89% 0,00% 126% 43 SALES 5,614,134 3,745,165 1,689,055 D 179,914 44 N OF TO	27 23 24 25 26 27	SUBSTATIC PRIMARY SALES LOSSES INPUT EXPANSION		1.00755	٥	42,852	3,937,751 29,731 3,967,482	1 711,308 12,921 1,724,228	0 0 0 0			
34 TRANSMISSION 35 SUBTRANSMISSION 36 DISTRIBUTION SUBS 37 SALES 38 179 914 40 220 266 39 INPUT 41 TOTALS 42 ** OF TOTAL 43 SALES 59 1.03406 41 TOTALS 42 ** OF TOTAL 43 SALES 50,014 134 3,745.165 43 SALES 50,014 134 3,745.165 44 ** OF TOTAL 100 % 68 71% 30 06% 0 00% 32 00% 0 00% 32 0% 100 0% 43 SALES 5,014 134 3,745.165 1 689,055 44 ** OF TOTAL 100 0% 68 71% 45 INPUT 6,072 592 4,103,434 1 783,116 0 46 INPUT 6,072 592 4,103,434 1 785,116 0 186 042 47 OF EXPRANSION LOSS 5 & CTOR 5 <t< td=""><td>28 29 30 31 32 33</td><td>SUB-TRANS DISTRIBUTI SALES LOSSES INPUT EXPANSION</td><td>SMISSION ON SUBS N FACTOR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	28 29 30 31 32 33	SUB-TRANS DISTRIBUTI SALES LOSSES INPUT EXPANSION	SMISSION ON SUBS N FACTOR									
Image: Notice of the state of the	34 35 36 37 38 39 40	TRANSMISS SUBTRANS OISTRIBUTI SALES LOSSES INPUT EXPANSION	SION MISSION ON SUBS	1.03406	179 914	220 266	3,967,482 135,953 4,103,434 820	2 1 724,228 58,667 1 783,116 1 60	; D ; D ; D		179 91 6 12 158,04	4 8 2
43 SALES 5,614 134 3,745.165 1 689,055 0 179.914 44 % OF TOTAL 100.00% 66.71% 30.09% 0.00% 3 20% 45 INPUT 6,072.592 4,103.434 1 783,116 0 186.042 44 CHARMULATIVE EXTRANSION LOSS FACTORS 1 09565 1 05599 NA 1 03409	41 42	TOTALS	LOSSES NOF TOTAL	_		477 756 10 0%	358,2 0 6 74 99%	94,061 19 69%	0 000%		6,12 1 281	a 4
45 INPUT 6,072 592 4,103,434 1 783,116 0 186,042 44 CLIMBULI ATDRE EXTLANSIONAL OSS F & CTOR S 1 05565 1 05569 NA 4 03409	43 44		SALES NOF TOTAL		5,614 134 100 00%		3,745.165 65.71%	i 1 689,055 30 09%	000%		179 91 3 209	4
	45				8,072 592		4,103.434	1 783,116	i D I NA		186.04	2 A

(from meter to system input)

TCC and TNC	DEVELOPMENT	of LOSS FACTORS	EXHIBIT 10
COMPOSITE	ADJUSTED	EXHIBIT 7	PAGE 1 OF 2
LOSS FACTORS	DEMAND		

LOSS FACTOR	CUSTOMER SALES MIN	SALES ADILIST	CAL TO	CLOSS	SALES MW	CUM PEAK	EXPANTION
	а	b	c		d	6	f=1/e
BULK LINES	00	ו	00	00	00	0 00000	0
TRANS SUBS	0	נ	00	00	00	0 00000	0
TRANS LINES	Q.(1	0.0	0.0	0.0	0.00000	0
SUBTRANS SUBS	Q.(2	0.0	0.0	0.0	0.00000	0
TOTAL TRANS	627 :	1	00	14 8	641 9	1 02353	0.97824
PRIM SUBS	0.0	נ	00	00	00	0 00000	0
PRIM LINES	571.3	3	0.0	38.6	609.9	1.06761	0.94061
SECONDARY	4,683.8	3	0.0	4 32.0	5,115.7	1.09223	0.91849
TOTALS	5,882.2	2	0.0	485.3	6,367.5	1.08251	

DEVELOPMENT of LOSS FACTORS ADJUSTED

		ENERGY					
LOSS FACTOR	CUSTOMER	SALES	C/	ALC LOSS	SALES MWH	CUM ANNU	EXPANTION
LEVEL	SALES MWH	ADJUST	т	DIEVEL	🕼 GEN	FACTORS	
	а	ь	c		d	e	f=1/e
BULK LINES	0	I	Q	Q	0	0.00000	0.00000
TRANS SUBS	ہ <u>ا</u>		٥	٥	0	0 00000	0.00000
TRANS LINES	0		0	٥	0	0 00000	0.00000
SUBTRANS SUBS	0		0	٥	0	0.00000	0.00000
TOTAL TRANS	5,751,071		0	100,343	5,851,414	1.01745	0.98285
PRIM SUBS	0		0	0	0	0 00000	0.00000
PRIM LINES	4,268,133		o	216,821	4,484,954	1.05080	0.95166
SECONDARY	21,719,495		O	1,740,690	23,460,185	1.0 8014	0.925 80
TOTAL	31,738,699		٥	2,057,854	33,796,553	1.06484	<composite< td=""></composite<>

LOSS FACTOR	CUSTOMER	SALES	CA	LCLOSS	SALES MW	CUM PEAK	DPANTION
LEVEL	SALES MW	ADJUST	TC	LEVEL	(GP GEN	FACTORS	
	8	b	C		d	e	f=1/•
BULK LINES	0.0	٥	٥	0	00	0 00000	0
TRANS SUBS	0.0	0	٥	0	00	0 00000	0
TRANS LINES	a (D	O	0	0.0	0.00000	0
SUBTRANS SUBS	0.0	0	0.0	0.0	0.0	0.00000	0
TOTAL TRANS	612.3	3	00	14 1	626 4	1 02307	0.97824
PRIM SUBS	01	מ	00	00	00	0 00000	c
PRIM LINES	375.3	3	0.0	24 .0	399.3	1.06395	0,94061
SECONDARY	3,853.1	1	0.0	340.4	4,193.6	1.08836	0.91849
TOTALS	4,840.3	7	0.0	378.6	5,219.3	1.07821	<composite< td=""></composite<>

DEVELOPMENT of LOSS FACTORS ADJUSTED ENERGY

		EN ERG T					
LOSS FACTOR	CUSTOMER	SALES	C	ALCLOSS	SALES MWH	CUM ANNU	EXPANTION
LEVEL	SALES MWH	ADJUST	Т	O LEVEL	🕼 GEN	FACTORS	
	4	b	c		d	e	f=1/•
BULK LINES	C)	٥	0	0	0 00000	0.00000
TRANS SUBS)	O	a	۵	0.00000	0.00000
TRANS LINES)	O	0	٥	0.00000	0.00000
SUBTRANS SUBS		1	Ď	0	a	0 00000	0.00000
TOTAL TRANS	5,571,157	I	٥	94,215	5,665,372	1.01691	0.98337
PRIM SUBS	C)	D	٥	0	0,00000	0.00000
PRIM LINES	2,579,078		0	120,240	2,699,318	1.04662	0.95546
SECONDARY	17,974,330	l -	0	1,365,643	19,339,973	1.07598	0.92939
TOTAL	26,124,565		0	1,580,098	27,704,663	1.06048	<composite< td=""></composite<>

TNC

DEVELOPMENT of LOSS FACTORS ADJUSTED EXHIBIT 7 DEMAND

LOSS FACTOR	CUSTOMER	SALES	CA	LC LOSS	SALES MW	CUM PEAK	EXPANTION
LEVEL	SALES MW	ADJUST	то	LEVEL	🖉 GEN	FACTOR5	
	a	ь	c		d	e	f=1/e
BULK LINES	C.(כ	0	Q	Q.Q	0.00000	0.00000
TRANS SUBS	0.0)	0	٥	00	0 00000	0.00000
TRANS LINES	0.0	נ	0	٥	00	0 00000	0.00000
SUBTRANS SUBS	a.	נ	Q	¢	00	0.00000	0.00000
TOTAL TRANS	14.8	3	0.0	0.6	15 4	1 04250	0.95924
PRIM SUBS	0.0	3	00	00	00	0 00000	0.00000
PRIM LINES	196.0	נ	00	14 6	210 6	1 07461	0.93057
SECONDARY	830.6	5	0.0	91.5	922 1	1.11018	0.90075
TOTALS	1,041.4	1	0.0	106.8	1,145.2	1.10252	<composite< td=""></composite<>

DEVELOPMENT OF LOSS FACTORS ADJUSTED

		ENERGY					
LOSS FACTOR	CUSTOMER	SALES	CAL	C LOSS	SALES MWH	CUM ANNU	EXPANTION
LEVEL	SALES MWH	ADJUSť	TO	EVEL	🖨 GEN	FACTORS	
	2	b	د		d	e	f=1/e
BULK LINES	0	I	0	Q	0	0.00000	0.00000
TRANS SUBS	0		0	0	o	0.00000	0.00000
TRANS LINES	0	I.	0	D	o	0 00000	0.00000
SUBTRANS SUBS	0	I.	0	D	0	0 00000	0.00000
TOTAL TRANS	179,914		0	6,128	185,042	1.03406	0.96706
PRIM SUBS	0	I.	0	Q	Q	0.00000	0.00000
PRIM LINES	1,689,055		0	96,581	1,785,636	1.05718	0.94591
SECONDARY	3,745,165		0	375,047	4,120,212	1.10014	0.90897
TOTAL	5,614,134		0	477,756	6,091,890	1.08510	<composite< td=""></composite<>

тсс

Appendix B

Discussion of Hoebel Coefficient

COMMENTS ON THE HOEBEL COEFFICIENT

The Hoebel coefficient represents an established industry standard relationship between peak losses and average losses and is used in a loss study to estimate energy losses from peak demand losses. H. F. Hoebel described this relationship in his article, "Cost of Electric Distribution Losses," <u>Electric Light and Power</u>, March 15, 1959. A copy of this article is attached.

Within any loss evaluation study, peak demand losses can readily be calculated given equipment resistance and approximate loading. Energy losses, however, are much more difficult to determine given their time-varying nature. This difficulty can be reduced by the use of an equation which relates peak load losses (demand) to average losses (energy). Once the relationship between peak and average losses is known, average losses can be estimated from the known peak load losses.

Within the electric utility industry, the relationship between peak and average losses is known as the loss factor. For definitional purposes, loss factor is the ratio of the average power loss to the peak load power loss, during a specified period of time. This relationship is expressed mathematically as follows:

(1)
$$F_{LS} \cong A_{LS} \neq P_{LS}$$

where: $F_{LS} = Loss Factor$
 $A_{LS} = Average Losses$
 $P_{LS} = Peak Losses$

The loss factor provides an estimate of the degree to which the load loss is maintained throughout the period in which the loss is being considered. In other words, loss factor is the ratio of the actual kWh losses incurred to the kWh losses which would have occurred if full load had continued throughout the period under study.

Examining the loss factor expression in light of a similar expression for load factor indicates a high degree of similarity. The mathematical expression for load factor is as follows:

(2) $F_{ID} \cong A_{ID} \div P_{ID}$	where:	\mathbf{F}_{LD}	=	Load Factor
		A_{ID}	=	Average Load
		\mathbf{P}_{ID}	=	Peak Load

This load factor result provides an estimate of the degree to which the load loss is maintained throughout the period in which the load is being considered. Because of the similarities in definition, the loss factor is sometimes called the "load factor of losses." While the definitions are similar, a strict equating of the two factors cannot be made. There does exist, however, a relationship between these two factors which is dependent upon the shape of the load duration curve. Since resistive losses vary as the square of the load, it can be shown mathematically that the loss factor can vary between the extreme limits of load factor and load factor squared. The

MAC _____

relationship between load factor and loss factor has become an industry standard and is as follows:

(3) $F_{LS} \cong H^* F_{LD}^2 + (1-H)^* F_{LD}$	where	F _{LS} F _{LD}	=	Loss Factor Load Factor
		Н	=	Hoebel Coefficient

As noted in the attached article, the suggested value for H (the Hoebel coefficient) is 0.7. The exact value of H will vary as a function of the shape of the utility's load duration curve. In recent years, values of H have been computed directly for a number of utilities based on EEI load data. It appears on this basis, the suggested value of 0.7 should be considered a lower bound and that values approaching unity may be considered a reasonable upper bound. Based on experience, values of H have ranged from approximately 0.85 to 0.95. The standard default value of 0.9 is generally used.

Inserting the Hoebel coefficient estimate gives the following loss factor relationship using Equation (3):

(4) $F_{LS} \approx 0.90 * F_{LD}^2 + 0.10 * F_{LD}$

Once the Hoebel constant has been estimated and the load factor and peak losses associated with a piece of equipment have been estimated, one can calculate the average, or energy losses as follows:

(5)
$$A_{LS} \cong P_{LS} * [H*F_{LD}^2 + (I-H)*F_{LD}]$$
 where: $A_{LS} = Average Losses$
 $P_{LS} = Peak Losses$
 $H = Hoebel Coefficient$
 $F_{LD} = Load Factor$

Loss studies use this equation to calculate energy losses at each major voltage level in the analysis.