

Filing Receipt

Received - 2022-04-26 02:58:21 PM Control Number - 52485 ItemNumber - 172

April 26, 2022

VIA ELECTRONIC FILING

Jasmine Kirkland Public Utility Commission of Texas Central Records P.O. Box 13326 Austin, Texas 78711 512-936-7180

Re: PUCT Docket No. 52485, Application of Southwestern Public Service Company to Amend Its Certificate of Convenience and Necessity to Convert Harrington Generating Station from Coal to Natural Gas.

Dear Ms. Kirkland:

In accordance with the Administrative Law Judge's direction please find attached for filing, Errata Pages to Direct Testimony of Devi Glick on Behalf of Sierra Club, admitted at the at the April 26, 2022 Hearing. As explained by Ms. Glick on the record, edits were made to bates stamped pages 0002-04, 0010, 0043-44, 0049-57. Thank you.

Respectfully submitted,

VY HY

Joshua Smith Sierra Club 2101 Webster St., Suite 1300 Oakland, CA - 94612-3011 (415) 977-5660 joshua.smith@sierraclub.org

PUC DOCKET NO 52485

APPLICATION OF SOUTHWESTERN	§
PUBLIC SERVICE COMPANY TO	§
AMEND ITS CERTIFICATE OF	§
CONVENIENCE AND NECESSITY TO	§
CONVERT HARRINGTON	8
GENERATING STATION FROM COAL	
TO NATURAL GAS	- 3 - §

PUBLIC UTILITY COMMISSION OF TEXAS

ERRATA PAGES TO

DIRECT TESTIMONY OF

DEVI GLICK

ON BEHALF OF SIERRA CLUB

March 25, 2022

TABLE OF CONTENTS

LI	ST OF	EXHIBITS
LI	ST OF	TABLES
1.	Introdu	action and Purpose of Testimony4
2.	Finding	gs and Recommendations7
3.	SPS is on gas	requesting a CCN to convert one of its two coal-fired power plants to operate
	i.	Application overview
	ii.	SPS is assuming full recovery of all undepreciated balances associated with the Harrington Plant
4.	SPS's existin future	application to convert Harrington to gas is driven by the need to comply with g environmental regulations, but the Company fails to consider the risk of regulation in its analysis
	i.	SPS must cease burning coal at Harrington to comply with an agreement with the Texas Commission on Environmental Quality to address exceedances of the SO ₂ NAAQS
	ii.	SPS has not evaluated the impact of other potential and likely environmental regulations on the proposed project
5.	SPS's Unit 1	Harrington 2021 Analysis does not support the Company's request to convert to operate on gas
	i.	SPS presents modeling results for scenarios retiring two-units or all three-units but was not upfront that these options are not feasible given the timeline to procure alternatives
	ii.	SPS's modeling shows that the Harrington units will be inefficient, expensive, and minimally used after they are concerted to operate on gas
	iii.	SPS 2021 Harrington modeling relied on concerning assumptions and the Company has selectively highlighted specific results
6. -	- Synaps to retir	se's modeling finds that it is the lowest-cost scenario, and a no-regrets decision, e Unit 1 at Harrington and convert only two units

LIST OF EXHIBITS

DG-1:	Resume of Devi Glick
DG-2:	SPS Responses to Sierra Club's Interrogatories and Requests for Production of Documents
DG-3:	Direct Testimony of Devi Glick, Case No. 19-00170-UT (filed Nov. 22, 2019)
DG-4:	SPS, 2021 Integrated Resource Plan, Appendix K at 7, Case No. 21-00169-UT (July 16, 2021)
DG-5:	EPA IPM Model - Updates to Cost and Performance for APC Technologies, January 2017.
DG-6:	Sargent & Lundy Consulting, prepared for U.S. EIA. Generating Unit Annual Capital and Life Extension Costs Analysis, December 2019
DG-7:	Attachment LJW-2 to Direct Testimony of Laurie Wold on Behalf of SPS, Case No, 19-00170-UT
DG-8:	 Harrington Station Fuel Repowering System Impact Study. Xcel Energy Services, Inc. Transmission Planning, South. July 10. 2019. 9 (confidentiality designation waived, NM PRC 21-00200-UT)

LIST OF TABLES

Table 1: CONF Average emissions rates of Harrington on coal and on gas	
Table 2: Average annual capacity factors at Harrington on coal and gas	
Table 3: Resource position for planning forecast and financial forecast	40
Table 4: Sustaining capital expenditure estimates vs actual spending for steam coa and steam gas plants	al plants 42
Table 5: Total capex spending at Harrington using original and updated assumption	ons43
Table 6: NPVRR Results from Table BRE-2	44
Table 7: Scenarios modeled	49
Table 8: NPVRR results from Synapse modeling runs	

Table 9: NPVRR breakdown for Synapse Unit 1 retire scenario	53
Table 10: NPVRR of retire one unit scenario Unit 1 retirement scenario	54
Table 11: CO ₂ -price sensitivity results	55
Table 12: NPVRR of Synapse runs under alternative financing and plant balance	
recovery assumptions	56

1		implemented during the units' remaining lives, it should choose to retire
2		between one and three Harrington units.
3		8. Synapse's modeling, which uses updated assumptions for renewable and
4		battery storage costs as well as realistic ongoing sustaining capital
5		expenditures at Harrington, finds that it likely costs less to retire
6		Harrington Unit 1 and fill any outstanding capacity gaps with Solar PV
7		and battery storage than to convert the unit to gas.
8	Q	Please summarize your recommendations.
9	Α	Based on my findings, I offer the following recommendations:
10		1. The Commission should require the retirement of Unit 1 or affirm that it
11		will not allow the Company to collect a rate of return on any plant
12		balances that are not used and useful.
13		2. The Commission should find that SPS did not meet its obligation to
14		demonstrate that converting Harrington Unit 1 to operate on gas is the
15		least-cost option. This finding should be based SPS's use of unrealistic
16		projections for ongoing capital costs, its failure to conduct a CO2 price
17		sensitivity, its flawed cost assumption for alterative resources, and its
18		omission of any analysis on alternative financing mechanisms such as a
19		regulatory asset or securitization, which can spread out the costs over the
20		economic life of the asset.
21		3. The Commission should require SPS to issue a request for proposal
22		("RFP") and determine which resources are still available and their
23		timeline for availability.

9

Table 4: Sustaining capital expenditure estimates vs actual spending for steam coal plants and steam gas plants

Item	Description	Annual capital expenditure spending (\$2021 Million)
Coal Capex		
Harrington historical capital expenditures spending (coal)	Average of 2015–2020 actual spending	\$18.59
U.S. EIA estimate of sustaining capital expenditures for steam coal plant	Sargent and Lundy report, plant 30–40 years old, no FGD	\$24.12
Gas Capex		
Harrington projected capex spending (gas)	Projection for 2024–2040, escalated at 2%/year	\$3.75
U.S EIA estimate of sustaining capital expenditures for steam gas plant	Sargent and Lundy report, plant >30 years old, >1000 MW	\$12.47
SPS historical capital expenditures spending on steam gas plants	Rate case spending, April 1, 2018–March 31, 2019 for company's steam gas units	\$8.58

3 Source: Calculations based on SPS Response to SC Request 3-3 (a); Ex. DG-7, Exhibit Attachment LJW-2

4 to Direct Testimony of Laurie Wold on Behalf of SPS, Case No, 19-00170-UT; Ex. DG-6, Sargent & Lundy

5 Consulting, prepared for U.S. EIA. Generating Unit Annual Capital and Life Extension Costs Analysis,

6 December 2019.

7 Q Do SPS's assumptions around sustaining capital expenditures have a large 8 impact on its overall findings?

- 9 A Yes. As shown in Table 5, SPS estimated the NPV of sustaining capital
- 10 expenditures for Harrington operating on gas at between \$16.1 million (with one \$33.5
- 11 unit converted) and \$33.9 million (with all units converted) over the remaining

\$20.5

1	life of the plant. ⁵² These values are substantially lower than the $\frac{42.8}{42.8}$ million (one
2	unit converted) to $\frac{543.2}{558.0}$ million (three units converted) range we estimate based
3	on SPS's historical spending on its gas steam plants. ⁵³ The comparison is even
4	more jarring using EIA's methodology, which shows values of \$79.9 million (one
5	unit converted) to $\frac{$160.1}{$167.8}$ million (three units converted). ⁵⁴ While it is reasonable
6	that SPS would want to minimize investments at a plant with such a low projected
7	capacity factor, there is a baseline level of investment and maintenance required
8	to ensure the plant is actually reliable and functional when needed. In total, this
9	means that SPS has very likely understated the ongoing costs required to maintain
10	the Harrington plant by between $\frac{320.5}{42.8}$ million and $\frac{5132.6}{133.9}$ million.

11 Table 5: Total capex spending at Harrington using original and updated assumptions

Total capex spending (NPV \$2021 Million)	Convert 3 units to gas	Convert 2 units to gas	Convert 1 unit to gas
Total	٨	- 2 pr	
SPS projection for sustaining capex on gas in Harrington 2019 Analysis	\$33.9 \$33.5	\$25.7 \$25. 5	5 \$16.1 \$15. 9
U.S. EIA estimate of sustaining capex for steam gas plant	\$167.8 \$166 .	.1 <u>\$127.6</u> \$120	5 .3 <u>\$79.9</u> \$79.0
SPS historical capex spending on steam gas plants	\$91.8 \$76. 7	\$77.5 \$58.	3 <u>\$58.9</u> \$36.5
Delta between SPS projection and upda	ted sustaining c	apex assumpti	ons
U.S. EIA estimate of sustaining capex for steam gas plant	\$133.9 \$132 .	.6 <u>\$101.8</u> \$10	0.8 <u>\$63.7</u> \$63.1
SPS historical capex spending on steam gas plants	\$58.0 \$43.2	\$51.7 \$32. 8	8 <u>\$42.8</u> \$20.5

12 Source: Calculations based on SPS Response to SC Request 3-3 (a); Ex. DG-7, Exhibit Attachment LJW-2

13 to Direct Testimony of Laurie Wold on Behalf of SPS, Case No, 19-00170-UT; Ex. DG-6, Sargent &

⁵² Ex. DG-2, SPS Response to SC Request 2-3(a).

⁵³ Calculated based on Ex. DG-7, Attachment LJW-2 to Direct Testimony of Laurie Wold on Behalf of SPS, Case No, 19-00170-UT.

⁵⁴ Ex. DG-6, Sargent & Lundy Consulting, prepared for U.S. EIA. Generating Unit Annual Capital and Life Extension Costs Analysis, December 2019. Available at https://www.eia.gov/analysis/studies/powerplants/generationcost/pdf/full_report.pdf.

1 6. <u>Synapse's modeling finds that it is the lowest-cost scenario, and a no-</u>

2 <u>REGRETS DECISION, TO RETIRE UNIT 1 AT HARRINGTON AND CONVERT ONLY TWO</u> 3 <u>UNITS</u>

4 **Q** Explain the alternative modeling that Synapse conducted.

- 5 A We began with SPS's Encompass files used by the Company to conduct its
 6 Harrington 2021 Analysis.^{64,65} We reviewed the inputs and methodology as
 7 discussed in the prior section. We developed updates and corrections to address
 8 the items outline above.
- We used SPS's scenario from the Harrington 2020 Analysis as the basis for our
 modeling and we used SPS's results as reference costs. Note that we originally
 evaluated all of SPS's conversion scenarios. But because SPS made it clear in its
 rebuttal testimony in NM Docket 21-00200-UT that retirement of two or three
 units are not viable options, given the timeline required to secure replacement
- resources, we will focus on the results regarding the conversion of two units and
 the retirement of Unit 1.
- Scenario 2: Convert Harrington Units 1, 2, and 3 to operate on gas⁶⁶
 Scenario 6: Retire Unit 1 and convert Units 2 and 3 to operate on gas.
- 18 For each model run, we used the following assumptions as shown in Table 7:

⁶⁴ SPS Response to SC 1-3(i)(HS)(USB) Encompass Optimized Databased 10.18.21 files.

⁶⁵ The modeling files provided by SPS did not contain the databases for Scenario 2. We therefore relied on the EnCompass files that were provided as part of the Tolk Analysis during the IRP Docket, Case No. 21-00169-UT as the basis of our evaluation of Scenario 2.

⁶⁶-<u>Id</u>.

1 **Table 7: Scenarios modeled**

Base	Tolk	Harrington Retirement / Conversion	Tx
Scenario	Retirement		Cost ⁶⁷
Scenario 2	2032	All units converted at end of 2024	\$400/kW
Scenario 5	2032	Units 2 and 3 units converted at and of 2024; Unit 1 retired	\$400/kW

2 Q Explain each of the changes you made to the model.

3 A We first updated several assumptions in SPS's base runs.

4	First, for all generic solar, wind, and battery storage resource additions we relied
5	on the National Renewable Energy Laboratory's ("NREL") Annual Technology
6	Baseline ("ATB") capital cost assumption for generic solar PV and wind
7	resources. SPS assumed that the federal ITC expires in 2025, while NREL
8	assumed that it is extended beyond 2025 for solar PV.68
9	Second, we updated the FOM assumptions for the Harrington units between
10	2022 2024 using the correction we discussed above. We used the cost stream that

- 11 was \$1.5 million lower for all units that SPS planned to retire in 2024, and the
- 12 higher cost stream for all units that SPS planned to convert to operate on gas.
- 13 Third, we did not allow the model to build any new gas projects prior to 2030 in
- 14 any scenarios. Although we did allow new gas after 2030, we assume that any
- 15 new gas projects that the model selects after 2030 are simply place-holders for
- 16 firm and dispatchable capacity resources that SPS may need in the future.

⁶⁷ SPS modeled transmission costs of \$200/kW, \$400/kW, and \$600/kW. We used SPS's central value of \$400/kW in all scenarios.

⁶⁸ National Renewable Energy Laboratory, Annual Technology Baseline.

1		Fourth, we modeled sustaining capital expenditures for Harrington on the basis of
2		SPS's historical spending. As discussed above in Table 4 and Table 5, the
3		historical Harrington sustaining capital values we use in our modeling are higher
4		than those used in the SPS scenarios but remain below EIA's projections.
5		Finally, we capped annual storage additions at 300 MW over the modeling
6		horizon. This annual limit was used to ensure that the model would not overbuild
7		battery storage in any single year. There was no cumulative constraint, however,
8		on any resource type over the period of analysis.
9	Q —	Explain which sensitivities you tested.
10	A	We tested a number of sensitivities based on likely future outcomes that SPS
11		should consider in deciding whether to retire or convert Harrington to operate on
12		gas.
13		1. CO2 price: To assess the impact that future carbon regulations would
14		have on the cost to continue to operate Harrington, we tested a carbon
15		price sensitivity. We used the middle carbon price that SPS relied on for
16		its most recent New Mexico IRP, which was \$20/metric ton using a base
17		year of 2011 and escalated at 2.5 percent per year. ⁶⁹
18		2. Financial Load: Like SPS, we tested our sensitivities using both the
19		higher Planning Load and the lower Financial Load.
20		3. Depreciation schedule: Given the uncertainty around SPS's recovery of
21		the remaining plant balance at Harrington, we tested several alternative
22		assumptions for recovery of the undepreciated plant balance at Harrington:

⁶⁹-Ex. DG-4, SPS 2021 IRP, page 85.

1	a. Depreciate remaining balance over each unit's remaining life
2	instead of three years for any unit that retired early without a return
3	on investment post-retirement.
4	b. Disallow the entire undepreciated plant balance after a unit retired.
5	c. Disallow half the undepreciated plant balance after a unit retires
6	and disallow a rate of return on the remaining balance.
7	4. Gas sustaining capital expenditure costs: SPS's assumptions around the
8	sustaining capex costs required after the units are converted to gas
9	operation are extremely low and unsupported. Therefore, we tested a
10	sensitivity using SPS historical data based on its existing steam gas plants
11	for sustaining capex costs. We did not model the risk of compliance costs
12	from future environmental regulations. Technologies to limit nitrogen
13	oxide emissions could cost between \$24.9 million and \$368 million for
14	SNCR and SCR technologies respectively. ⁷⁰ The inclusion of these costs,
15	and the associated annual O&M, would make gas conversion more
16	expensive in our modeling compared to a partial retirement or full
17	retirement scenario.
18	Q What did you find when you made the changes and tested the sensitivities
19	outlined above?
20	A Like SPS, I find that retiring Unit 1 results in a lower NPVRR than converting all

21 three Harrington units to operate on gas, as shown in Table 8 below. Specifically,

⁷⁰ This range was calculated using the updated methodology developed by Sargent and Lundy in May 2018 for the EPA IPM Model v6. The Emission Control Technology Attachment 5-3 SCR Cost Development Methodology and Attachment 5-4 SNCR Cost Development Methodology are attached in Ex. DG-5.

- 1 our results show that SPS would save roughly \$62 million if it chose to retire Unit
 - 1 instead of converting all three units to gas.
- 3

2

Table 8.	NPVPE	roculte	from	Sunanco	modeling runs
T able 0.	TAT A TAT	results	nom	Synapse	mouting runs

	2022 2024		202	2 2041
Cost (SMillion)	Delta	NPV	Delta	NPV
SPS Modeling Results				
Convert all Harrington (IRP Scenario 2)	\$0	\$2,450	\$0	\$11,949
Retain 2 Gas Harrington / Retire 1	\$39	\$2,490	(\$5)	\$11,944
8	Ϋ́.	:	*	
Planning Load				
Convert all Harrington	\$0	\$2,428	\$0	\$11,53 4
Retain 2 Gas Harrington / Retire 1	\$40	\$2,468	(\$62)	\$11,472
Financial Load				
Convert all Harrington	\$0	\$2,272	\$0	\$10,027
Retain 2 Gas Harrington / Retire 1	\$40	\$2,313	(\$62)	\$9,965
CO₂ Price				
Convert all Harrington	\$0	-\$2,855	\$0	-\$12,491
Retain 2 Gas Harrington / Retire 1	\$ 41	-\$2,896	(\$65)	-\$12,426

Source: Synapse results from modeling completed based on SPS Response to SC 1-3(i)(HS)(USB),
 Encompass Optimize Databased 10.18.21.

6

While SPS would incur slightly higher capital costs and purchased power costs, it
 would also see savings from fuel, non-fuel VOM, and FOM costs, as shown in
 Table 9 below. Results are similar with both the planning load and the financial
 load.

Tabla 0. NDVDD	braakdawn f	or Synanca	Unit 1 ratira	connerio
Table 2. INI VINI	DI CARUOWII I	or synapse	Unit i reure	scenar io

1

2

3

Cost Catagory Description	2022 2041 Delta from Convert		
Cost Category Description	All Baseline (\$Million)		
Capital Costs	\$2.1		
Fuel Costs	(\$11.3)		
Commitment Costs	(\$0.7)		
Non-Fuel VOM	(\$10.8)		
FOM	(\$45.2)		
Purchase Costs	\$11.2		
Contract Costs	(\$7.2)		
Total	(\$61.9)		

Source: Synapse results from modeling completed based on SPS Response to SC 1-3(i)(HS)(USB), Encompass Optimize Databased 10.18.21

4 As shown in Table 10, I also find that retiring Unit 1 is a no-regrets decision that 5 results in nearly identical or lower NPVRR than converting all three units under 6 every scenario and sensitivity I tested. Additionally, I find that SPS's modeling 7 substantially understated the likely savings from retiring Unit 1 units relative to 8 converting it. Despite recommending conversion of all three units to gas, SPS's 9 own results did show that over the planning period (2022-2041), there would be 10 NPVRR savings of \$5 million from retiring Unit 1 relative to converting all three 11 units. Our results show that the likely savings are larger, ranging between \$62 and 12 \$65 million.

Table 10: NPVRR of retire one unit scenario Unit 1 retirement scenario

Description	2022–2041 Delta from Convert All Baseline (\$Million)
SPS Scenario 5	
SPS Base (Planning Load)	(\$5)
Financial Load	(\$29)
Synapse Scenario 5	
Synapse Base with baseline changes discussed above	(\$62)
Financial Load	(\$62)
CO₂ Price	(\$65)
Undepreciated balance disallowed post-retirement	(\$109)
Undepreciated balance allowed but no return allowed	(\$77)
Financial Load, undepreciated balance disallowed post-retirement	(\$110)

3 Source: SPS results from Tables BRE-2 and BRE-3. Synapse results from modeling completed based on

4 SPS Response to SC 1-3(i)(HS)(USB), Encompass Optimize Databased 10.18.21.

5 What resources are required to replace the units when they retire? θ

6 The retirement of one unit does not necessitate a significant change in resource A 7 mix over what the model already selects in the "Convert All" scenario. My 8 modeling results show an addition of 40 MW of incremental battery storage in 9 2027, and another 70 MW in 2028 for a total of 110 MW of battery storage. This 10 minimal difference over the next decade, and in fact over the entire planning 11 period, between the scenarios with and without Unit 1 shows exactly how little 12 remaining value and use Unit 1 has for SPS and its ratepayers. This finding is 13 supported by the Company's own modeling results which, as discussed above, 14 shows that Unit 1 is never used even after it is converted to gas operation.

15 0-

1

2

What did you find in terms of CO₂-prices, pollutants, and emissions?

- 16 **A** Synapse modeled a CO₂ price sensitivity set to \$20/metric tonnes in Base Year
- 17 2011, escalating at 2.5 percent per year. The CO₂ price scenarios were identical to

- 1 the Synapse base EnCompass runs, with the exception of the CO₂ price. In these
- 2 scenarios, we found that converting two Harrington units and retiring Unit 1would
- 3 all be cheaper for SPS customers between 2022 and 2041 if a CO₂ price is
- 4 implemented. As shown in Table 11, savings were \$65 million with Unit 1 retired.

5 **Table 11: CO₂ price sensitivity results**

Scenario	NPVRR (\$Million) 2022-2041	Delta (\$Million) Compared to Convert All Scenario
Convert All Harrington Units	\$12,491	\$0
Convert Two Harrington Units	\$12,426	-(\$65)

Source: Synapse results from modeling completed based on SPS Response to SC 1 3(i)(HS)(USB), Encompass Optimize Databased 10.18.21.

8	Given these results, our recommendation is that SPS model a CO2 price sensitivity
9	so that the utility's modeling can capture the risk that the conversion of all
10	Harrington units to gas would pose to SPS customers should federal carbon
11	legislation be enacted.

12 Q What did you find under alternative financing options and plant balance
 13 assumptions?

14	A	-I found that when all or part of the undepreciated balance is disallowed after
15		retirement, or if the rate of return is disallowed post retirement, the savings from
16		retiring Unit 1 relative to conversion increase substantially, as shown in Table 12.
17		It intuitively makes sense that if the balance is disallowed, savings will increase.
18		But these results show the cost that SPS assumes its ratepayers will be required to
19		pay for the remaining plant balance at Harrington. Specifically, if Unit 1 is retired
20		and the remaining balance for the unit is disallowed post-retirement, SPS
21		ratepayers will save \$109 million relative to the cost of converting the unit to
22		operate on gas and paying off the balance prior to retirement. Even if only 50
23		percent of the balance is disallowed, savings will be around \$73 million. And if

- 1 the full balance is allowed post-retirement but a rate of return is not permitted, we
- 2 estimate savings of around \$77 million.

3 Table 12: NPVRR of Synapse runs under alternative financing and plant balance

4 recovery assumptions

	2022 202 4		2022-2040		
Cost (\$Million)	Delta	NPV	Delta	NPV	
100% Undepreciated balance disa	llowed po	st-retirement			
Convert all Harrington	\$0	\$2,428	\$0	-\$11,53 4	
Retain 2 Gas Harrington / Retire 1	(\$7)	\$2,421	(\$109)	-\$11,42 4	
50% Undepreciated balance disall	owed pos	t-retirement			
Convert all Harrington	\$0	\$2,428	\$0	-\$11,534	
Retain 2 Gas Harrington / Retire 1	(\$7)	\$2,421	(\$73)	-\$11,461	
Undepreciated balance allowed, ne	Undepreciated balance allowed, no return post-retirement				
Convert all Harrington	\$0	\$2,428	\$0	-\$11,534	
Retain 2 Gas Harrington / Retire 1	(\$7)	\$2,421	(\$77)	-\$11,457	
Financial Load / 100% undepreciated balance disallowed post-retirement					
Convert all Harrington	\$0	\$2,272	\$0	-\$10,027	
Retain 2 Gas Harrington / Retire 1	\$11	\$2,283	(\$110)	-\$9,917	

5 Source: Synapse results from modeling completed based on SPS Response to SC 1-3(i)(HS)(USB),

6 Encompass Optimize Databased 10.18.21

- 7 θ
- 8

What do you conclude about the reasonableness and cost of SPS's proposal to convert all three Harrington units to operate on gas?

- 9 **A**— I find that SPS has not demonstrated that converting Harrington Unit 1 to operate 10 on gas is in the best interest of its ratepayers. As discussed above, SPS's modeling 11 is flawed and based on inaccurate assumptions and its results do not show a 12 meaningful cost difference between many scenarios. Our modeling results, 13 produced based on SPS's modeling files with our own modifications, show that 14 retiring one unit and only converting two units will result in substantially lower
- 15 costs for ratepayers than converting all three units to operate on gas.