

Filing Receipt

Received - 2022-04-27 03:22:59 PM Control Number - 52440 ItemNumber - 21

DOCKET NO. 52440

APPLICATION OF CRYSTAL SPRINGS	§	PUBLIC UTILITY COMMISSION
WATER COMPANY, INC. TO AMEND	§	
ITS CERTIFICATES OF CONVENIENCE	§	OF TEXAS
AND NECESSITY IN MONTGOMERY	§	
COUNTY	§	

CRYSTAL SPRINGS WATER COMPANY INC.'S RESPONSES TO COMMISSION STAFF'S THIRD REQUEST FOR INFORMATION QUESTION NOS. STAFF 3-1 THORUGH 3-4

Applicant, Crystal Springs Water Company, Inc. submits the following Responses to Commission Staff's Third Request for Information.

Responses to Commission Staff's First Request for Information

- Staff 3-1 Please refer to the bank letter filed on January 17, 2022 and provide the following:
 - 1. Admit or deny that the term loan and revolving line of credit covers the entire cost of \$8,465,000 for property and equipment (\$2,152,500 for water plant, \$1,312,500 for wastewater plant, \$1,250,000 for water distribution lines, and \$3,750,000 for sewage collection lines) provided in the 5 year projected balance sheet listed in Attachment H to the application on Bates Stamp page 147.
 - 2. If the bank letter does not cover the entire cost referenced above, please indicate which costs are not covered and whether they will be paid for by the developers who have requested service. For example, if the water distribution lines cost and the sewage collection lines cost will be paid for by the developer(s), please provide the developer agreement(s) indicating the developer will pay for those costs, as well as the number of water and sewer connections per agreement.
- **Response 3-1** Crystal Springs Water Company, Inc. admits that the term loan and revolving line of credit covers the entire cost of \$8,465,000 for property and equipment.
- Staff 3-2 Please refer to the 5 year projected balance sheet listed in Attachment H to the application on Bates Stamp page 147, as well as the response to Question 11 in the application on Bates Stamp pages 6-7 and provide the following:
 - 1. Admit or deny that the estimated plant cost of the water and sewer system will contain the capacity to provide water and sewer service to the entire requested area.
 - 2. Admit or deny that the water plant cost of \$2,152,500 includes the cost for all three water plants required to serve the requested area that are indicated on the response to Question 11 C
 - 3. If the water plant cost does not include all three water plants, please provide the projected costs and timeline for construction of Water Plants Nos. 2 and 3.

Response 3-2 The estimated plant cost of the water and sewer system referenced in Year 5 of the projected balance sheet listed in Attachment H to the application on Bates Stamp page 147 does not contain the capacity to provide water and sewer service to the entire requested area. Please see the tables in Attachment A that show the build out projections for both the water and sewer systems

In summary:

For the water system, Year 1 includes Well 1, Ground Storage Tank (GST) 1, Hydropneumatic Tank (HPT) 1 and Booster Pumps (BP) 1-4 at Water Plant (WP) 1. Year 2 includes adding Well 2 to WP 1, Year 3 includes adding GST 2 to WP 1. Year 4 includes adding HPT 2 to WP 1. Year 5 includes Well 3, GST 3, HPT 3 and BPs 5-8 at WP 2. There is no new construction in Year 6. Year 7 includes adding Well 4 to WP 2. There is no new construction in Years 8, 9, and 10. Year 11 includes construction of WP 3 inclusive of Well 5, GST 4, HPT 4, and BPs 9-12. There is no new construction is Year 12. Year 13 includes adding Well 6.

For the wastewater system, Year 1 includes the first 0.250 mgd Wastewater Treatment Plant (WWTP). The second 0.250 mgd WWTP will be constructed in Year 6. The third 0.250 mgd WWTP will be constructed in Year 11.

Staff 3 -3 Please provide the number of connections and capacity planned for each phase of the built-out for each of the water plants.

Response 3-3 Please see Attachment A.

Staff 3-4 Please provide a map showing the locations of each phase provided in response to Staff 3-3.

Response 3-4 See Attachment B.

Respectfully submitted,

WaterEngineers, Inc. 17230 Huffmeister Road, Suite A Cypress, Texas 77429

Telephone: (281) 373-0500

Fax (281) 373-1113

Shelley Young, P.E.

Engineer for Crystal Springs Water Company, Inc.

VERIFICATION

STATE OF TEXAS

COUNTY OF HARRIS

I hereby verify that the foregoing Responses to Commission Staff's Second Request for Information Nos. Staff 3-1 through Staff 3-4 are true and correct.

By: Sheller Young, P.E.

WaterEngineers., Inc.

SUBSCRIBED AND SWORN TO BEFORE ME this 27th day of April, 2022.

Notary Public. State of Texas

[SEAL]

JENNIFER R. MITRICK
ID #126010225
My Commission Expires
June 30, 2024

JenniFer R. Mitrick

Printed Name

My Commission Expires: June 30, 2024

CERTIFICATE OF SERVICE

I hereby certify that on April 27, 2022, the foregoing document and attachments were filed with all parties of record in this proceeding via electronic submission through the PUC Filer.

Shelley Young, P.D.

ATTACHMENT A

TABLE 1 WHITE ROCK WATER AND WASTEWATER SYSTEM

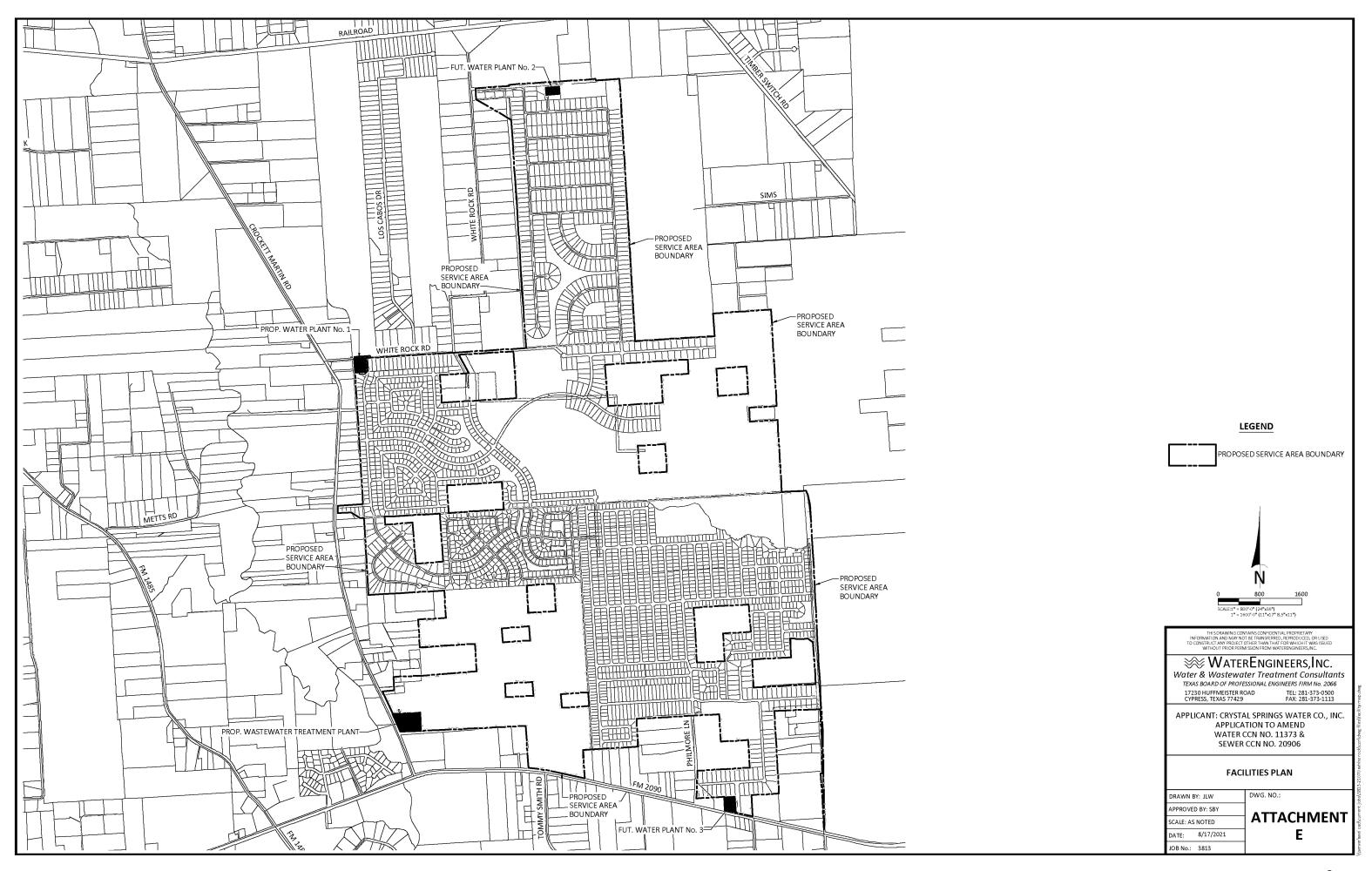
WATER SYSTEM CAPACITY RATING & EXPANSION PLAN

	Location	TCE	cility Rating Q Std- C/Unit ESFC		23 Facility R TCEQ Std- ESFC/Unit	Total	T	Facility Ration CEQ Std- SFC/Unit E	Total		cility Rating Q Std- To C/Unit ES	otal		cility Ratin Q Std- Total C/Unit E	Ī		acility Ration	al	TC	Facility Rat CEQ Std- Tol SFC/Unit	al	TC	acility Rati EQ Std- Tot FC/Unit	al	TC	Facility Rat EQ Std- Tot SFC/Unit	tal	Т	Facility Rai CEQ Std- To SFC/Unit	tal	Т	2 Facility Rat CEQ Std- To ESFC/Unit	tal	Т	33 Facility Ra TCEQ Std- To ESFC/Unit	otal	-	4 Facility Ra ICEQ Std. To ESFC/Unit	tal		35 Facility Ra TCEQ Std- ESFC/Unit	Total	
Well Supply Well #1, gpm Well #2, gpm Well #2, gpm Well #3, gpm Well #5, gpm Well #6, gpm Total System Well Capacity, gpm	WP#1 WP#1 WP#2 WP#2 WP#3 WP#3	350 0 0 0 0 0 0 350	0.6 56 0.6 0.6 0.6 0.6 0.6 0.6	83 350 0 400 0 0 0 0 0 0 0 0 83 750	0.6 0.6 0.6 0.6 0.6 0.6 0.6	583 667 0 0 0 0	350 400 0 0 0 0 750	0.6 0.6 0.6 0.6 0.6 0.6	583 667 0 0 0 0	350 400 0 0 0 0 750	0.6 0.6 0.6 0.6 0.6 0.6	583 667 0 0 0 0	350 400 350: 0 0 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 0 0 0	350 400 350 0 0 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 0 0 0	350 400 350 450 0 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 750 0 0	350 400 350 450 0 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 750 0 0	350 400 350 450 0 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 750 0 0	350 400 350 450 0 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 750 0 0	350 400 350 450 450 0	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 750 750 0	350 400 350 450 450 0 2,000	0.6 0.6 0.6 0.6 0.6	583 667 583 750 750 0	350 400 350 450 450 450 2,450	0.6 0.6 0.6 0.6 0.6 0.6	583 667 583 750 750 750 4,083	350 400 350 450 450 450 2,450	0.6 0.6	583 667 583 750 750 750 4,083	
Ground Storage GST#1Volume, gal GST#2 Volume, gal GST#3 Volume, gal GST#4 Volume, gal Total System GST Volume, gal	WP#1 WP#1 WP#2 WP#3	125,186 0 0 0 125,186	200 6: 200 200 200 200	26 125,186 0 0 0 0 0 0 26 125,186	200 200 200 200 200	626 0 0 0	125,186 125,186 0 0 250,372	200 200 200 200 200			200 200 200 200 200	0 2 0	25,186 25,186 250,372 0	200		125,186 125,186 250,372 0	200 200 200 200 200	0	125,186 125,186 250,372 0 500,744	200 200 200 200 200		125,186 125,186 250,372 0	200 200 200 200 200	0	125,186 125,186 250,372 0 500,744	200 200 200 200 200	626 626 1,252 0 2,504	125,186 125,186 250,372 0 500,744	200 200 200 200 200	626 626 1,252 0 2,504	125,186 125,186 250,372 250,372 751,116	200 200 200 200 200	626 626 1,252 1,252 3,756	125,186 125,186 250,372 250,372 751,116	200 200 200 200 200	626 626 1,252 1,252 3,756	125,186 125,186 250,372 250,372 751,116	200 200 200 200 200	626 626 1,252 1,252 3,756	125,186 125,186 250,372 250,372 751,116	200	626 626 1,252 1,252 3,756	
Booster Pumping Capacity BP #1.gpm BP #2.gpm BP #3.gpm BP #3.gpm BP #5.gpm BP #5.gpm BP #5.gpm BP #7.gpm BP #7.gpm BP #1.gpm BP #1.gpm BP #11.gpm BP #11.gpm BP #12.gpm BP #12.gpm BP #12.gpm	WP#1 WP#1 WP#1 WP#2 WP#2 WP#2 WP#3 WP#3	600 600 600 0 0 0 0 0 0 0 0 0	2 31 2 33 2 33 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00 600 00 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 0 0 0 0 0 0	600 600 600 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 0 0 0 0 0 0	600 600 600 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 0 0 0 0 0 0 0	600 600 600 600 600 600 600 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 0 0 0	600 600 600 600 600 600 600 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 0 0 0	600 600 600 600 600 600 600 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 0 0	600 600 600 600 600 600 600 600 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 0 0	600 600 600 600 600 600 600 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 0 0 0	600 600 600 600 600 600 600 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 0 0	600 600 600 600 600 600 600 600 600 600	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300 300 300 300 300 300 300 300 300 300										
Hydropneumatic Tank HPT#1 Volume, gal HPT#2 Volume, gal HPT#3 Volume, gal HPT#4 Volume, gal Total System Hydropneumatic Tank Required Water System C	Capacity, E		25		20 20 20 20 20	500	10,104 10,104 0 0 20,208	20 20 20 20 20	505 505 0 0 1,010 =	10,104 10,104 0 0 20,208	1,	0 1,010 ,000	10,104 10,104 15,000 0 35,208	1	750 0 2,750 (*) , 250	10,104 10,104 15,000 0 35,208		505 505 750 0 2,750 (*)	10,104 10,104 15,000 0 35,208		505 505 750 0 2,750 (*)	10,104 10,104 15,000 0 35,208		505 505 750 0 2,750	10,104 10,104 15,000 0 35,208	20 20 20 20 20	2,250	10,104 10,104 15,000 0 35,208	20 20 20 20 20	2,500	10,104 10,104 15,000 15,000 50,208	20 20 20 20 20	505 505 750 750 3,500	10,104 10,104 15,000 15,000 50,208	20 20 20 20 20	505 505 750 750 3,500	10,104 10,104 15,000 15,000 50,208	20 20 20 20 20	505 505 750 750 3,500	10,104 10,104 15,000 15,000 50,208		505 505 750 750 750 3,500	
Rated Water System Con Excess System Connection (*) TCEQ Rules specify that 30,000 gray TCEQ Rules specify that total se	ion Capcity	Available, I	esf(volume is adequ	O uate to serve up			the ability to		260	le with the larr		,010 10	a whichever		,833 583			1,833 333		_	650		_	400 400		-	2,400 150		-	-100 **	*	-	3,333 583		-	3,333 333		-	3,500 250		-	3,500 0	

(*) TCEO Rules specify that total service pump capacity be 2.0 gm//connection or a total capacity of at least 1000 gpm and the ability to meet peak hourly demands with the largest pump out of service, whichever is less.

WATERWATER TREATMENT SYSTEM CAPACITY RATING & EXPANSION PLAN

WWTP Capacity Required @ 200 gpd/ESFC, gpd	50,000	100,000	150,000	200,000	250,000	300,000	350,000	400,000	450,000	500,000	550,000	600.000	650,000	700,000
												350,000	750,000	
Rated WWTP Capacity, gpd	250,000	250,000	250,000	250,000	250,000	500,000	500,000	500,000	500,000	500,000	750,000	750,000	750,000	750,000
Excess System Capcity, gpd	200,000	150,000	100,000	50,000		200,000	150,000	100,000	50,000	0	200,000	150,000	100,000	50,000


WHITE ROCK WATER SYSTEM DEVELOPMENT WATER SYSTEM BUDGETARY COSTS

		Budgetary	Fasiassias
Year	Action	Construction Cost	Engineering Cost @ 5%
-			
2022	Construct Water Plant No. 1	\$750,000	\$37,500
2023	Add Well # 2 to Water Plant No. 1	\$225,000	\$11,250
2024	Add HPT # 2 to Water Plant No. 1	\$50,000	\$2,500
2025	Add GST # 2 to Water Plant No. 1	\$200,000	\$10,000
2026	Construct Water Plant No. 2	\$825,000	\$41,250
2027		\$0	\$0
2028	Add Well # 4 to Water Plant No. 2	\$250,000	\$12,500
2029		\$0	\$0
2030		\$0	\$0
2031		\$0	\$0
2032	Construct Water Plant No. 3	\$925,000	\$46,250
2033			\$0
2034	Add Well No. 6 to Water Plant No. 3	\$275,000	\$13,750
2035			
2036			
		\$3,500,000	\$175,000

WHITE ROCK/PINE ROCK/ TRACT DEVELOPMENT WASTEWATER SYSTEM BUDGETARY COSTS

		Budgetary Construction	Engineering		
Year	Action	Cost	Cost @ 5%		
2022 2023	Construct 0.25 mgd Phase I WWTP	\$1,250,000 \$0	\$62,500 \$0		
2023 2024 2025		\$0 \$0 \$0	\$0 \$0 \$0		
2026 2027	Construct 0.25 MGD Addition in Phase II	\$0	\$0 \$75,000		
2028 2029		\$0 \$0	\$0 \$0		
2030 2031		\$0 \$0	\$0 \$0		
2032 2033	Construct 0.25 MGD Addition in Phase II	\$0	\$87,500 \$0		
2034 2035 2036		\$0 \$0	\$0 \$0		
		\$4,500,000	\$225,000		

ATTACHMENT B

