

Control Number: 49125



Item Number: 22

Addendum StartPage: 0

### **PROJECT NO. 49125**

RECEIVED

# REVIEW OF ISSUES RELATING TO ELECTRIC VEHICLES

## PUBLIC UTILITY COMMISSION PM 2: 46 OF TEXAS PUBLIC UTILITY COMMISSION FILING CLERK

## COMMENTS OF EL PASO ELECTRIC COMPANY ON QUESTIONS REGARDING PROJECT NO. 49125

On December 13, 2019, the staff of the Public Utility Commission of Texas (the "Commission") ("Staff") requested comments on questions regarding Project No. 49125, *Review of Issues Relating to Electric Vehicles*. El Paso Electric Company (EPE) offers the following comments for the Commission's consideration.

## **General Data**

 The Commission requests that parties provide current data sources and projections for the expected deployment of electric vehicles in Texas over the next ten years. If available, the data sources should attribute the projections by vehicle class (i.e., personal, commercial short-haul including fleets and buses, and commercial long -haul electric vehicles).

#### **Response:**

Electric vehicle forecasts have been produced for light-duty vehicles (personal) within EPE's Texas service territory and are included in Attachment 1. Commercial long-haul electric vehicles forecasts are under development.

2. Please provide any current data sources and information on the expected amount of new load attributable to electric vehicles over the next ten years. If available, the data sources should attribute this load by vehicle class (i.e., personal, commercial short-haul including fleets and buses, and commercial long-haul electric vehicles).

## **Response:**

Increase of demand and energy usage due to light-duty electric vehicles have been estimated based on a common 7.2 kW Level-2 charger and with consideration of national average commute data. The forecasted data is included in Attachment 2. Please note that the forecasted demand is Maximum Non-Coincident Peak Demand and not the expected demand at the time of system peak, i.e., all vehicles charging at the same time.

3. Please identify any anticipated load "hot spots" in the state for electric vehicle charging. Please specify whether these hot spots are expected to result from personal, commercial short-haul, or commercial long-haul electric vehicle deployment and charging.

#### **Response:**

Please see Attachment 3 for the graph showing current public hotspots (2 or more charging stations near each other) in EPE's Texas service territory. The El Paso region could be a larger potential load "hot spot" once long-haul electric vehicles adoption becomes widespread. This is due to the region being an important border crossing for local and national long-haul cargo trucks. In addition to Attachment 3, EPE has included Attachment 4, which lists the address and other information for each of the 37 charging stations in EPE's Texas service territory.

4. Describe the observed or anticipated load profiles and impacts of various types of electric vehicle charging stations (e.g., residential Level 1, Level 2, and Level 3 DC Fast charging) and the class of the vehicle charging (i.e., personal, commercial short-haul including fleets and buses, and commercial long-haul electric vehicles).

## **Response:**

Although there are metered residential and public charging stations in EPE's service territory, there is limited data to produce accurate representations of the load profiles. EPE has just recently placed Interval Demand Recorder meters on a few charging stations in its Texas service territory, fall 2019.

5. What, if any, emerging vehicle charging technologies are anticipated to be commercially available in the next ten years that could impact electricity markets in Texas?

#### **Response:**

DC fast charging for commercial trucking and buses could potentially see an increase in deployment in EPE's service territory. El Paso is a major border town and transportation and warehousing hub both internationally and along the I-10 corridor. Commercial charging may see demand levels of 1MWac per charging port and distributed battery storage could reduce demand and grid impacts (SEPA, "Preparing for an Electric Vehicle Future: How Utilities Can Succeed", October 2019). Vehicle to grid applications may become technically viable outside of pilot and demonstration projects as advanced batteries

come on the market that can tolerate a high number of charge/discharge cycles with minimal impact on battery life (*SEPA*, "Utilities and Electric Vehicles, The Case for Managed Charging, April 2017). Vehicle to grid maturity could make distributed storage resources available to provide grid services.

## **Grid Impacts**

- 6. The Commission requests that parties provide a detailed explanation on the following items:
  - a. The anticipated impacts of electric vehicle charging, including residential and commercial charging stations on the distribution system in the next ten years;

### **Response:**

There are many factors that, over the course of then next ten years, will define the overall impact of EV charging on the utility's electric distribution system. From a cost perspective the utility will want to mitigate as much as possible any required rebuilding or upgrading of the existing distribution system to accommodate the increased EV charging load. The best way to accomplish that objective will be to incentivize EV charging to the off-peak hours by way of time-of-use (TOU) metering and motivational time-of-use rates. The use of off-peak charging incentives will help the utility absorb the majority of the new EV load by increasing the distribution system load factor (smoothing out the residential load curve) and minimize the expense of system upgrades.

From EPE's perspective, we can reasonably expect the adoption (or penetration) of EVs and EV charging will follow a similar demographic and geographical service area pattern as that of residential solar distributed generation. Federal and State tax incentives, in combination with household income, home ownership, and space (roof top, etc.) have all played a deciding role in whether the customer "goes solar." Similarly, the decision to purchase an EV rather than a traditional gas-powered vehicle, will likely be decided by household income, home ownership, and ability to have (or modify the electric service to have) a level 1, level 2, or level 3 charging unit at home. Moreover, owners of established multi-family residential properties and other residential rental properties will be slow to shoulder the expense of modifying the electric service to accommodate tenant EVs for level 2 or level 3 charging units. On the other hand, new residential subdivisions will, and in a growing number of cases already do, plan for both solar distributed generation and level 2 or level 3 EV

charging units in their residential electrical design. Therefore, the newly expanded distribution infrastructure build-out will accommodate the increased load of EV charging.

Regarding to publicly available (Walmart, hotel/motel, etc.) and commercial fleet (FedEx, UPS, USPS, etc.) EV charging, both dominantly level 2 (240 VAC) and level 3 (200-450 VDC) charging stations, there may indeed be a difference in the actual usage profile of these two categories of non-residential EV charging. EPE would expect the publicly available ("public") charging stations to have a higher on-peak, or day-time charging frequency than the commercial fleet charging stations. The impact on the electric distribution system from public EV charging (daytime, on-peak) will be handled at the individual distribution feeder level. It is completely possible that the new public EV charging load is on a distribution feeder that already has a high penetration of solar distributed generation and there is no net increase in load above the normal feeder load capacity over the on-peak hours. Continuing, EPE believes the lower cost incentive of off-peak TOU rates will strongly influence commercial fleet charging and, like residential EV charging, it will be handled by way of an improved distribution system load factor (smoothing of the commercial load profile). In both cases, for public and commercial fleet EV charging, EPE expects the entity that pays the bill to want to be on the EV charging rate and will therefore follow EPE's "new service request" process for a different service and different meter and EPE will have ample opportunity to know of and plan for any new load requirements.

In summary, EPE believes that the majority of EV charging and the increased load impact on the distribution system can be mitigated by way of TOU metering and motivating TOU rates. Certainly, there will be situations where TOU metering and rates do not solve the problem (e.g. public EV charging) and localized improvements will have to be made to the electric distribution system. Going forward, modifications to our design standards will evolve with the new customer load profiles for the new, expanded, distribution infrastructure and it will accommodate any additional EV charging load. We do not expect those situations to be overly problematic system wide.

b. The anticipated impact of electric vehicle charging stations on the transmission system in the next ten years; and

#### **Response:**

As shown in Attachment 2, EPE expects 81 MW of increased maximum non-coincident peak load attributed to EV charging over a 10-year projection. This will not manifest itself in one area of EPE's service territory, or on one single distribution substation, therefore, the additional EV load will not be out of the scope of EPE's normal transmission system planning process. Thus, EPE does not expect EV charging to have a significant impact on the transmission system or on EPE's transmission system planning and expansion process.

c. The anticipated impact of electric vehicle charging stations on long-term system planning at the regional transmission organization level, given a widespread adoption scenario.

### **Response:**

Not applicable. EPE is not part of a regional transmission organization.

7. What is the overall anticipated impact of electric vehicle charging in the next ten years in terms of energy and peak demand? What changes, if any, should be made to energy and peak demand forecasts to incorporate this impact?

## **Response:**

Please see Attachment 2 for EPE's projected impact of light-duty electric vehicles on energy and Maximum Non-Coincident Peak demand over the next 10-years. EPE is currently working on finalizing its forecasts for the estimated impact of light-duty electric vehicles on system peak demand. EPE expects that as electric vehicle forecasts are developed and refined, they will be included into the official long-term system planning forecasts of the company.

8. What are the capabilities of electric vehicle related technologies, such as vehicle-togrid, to participate in wholesale electricity markets?

#### **Response:**

Current battery technology (cycle life) limits vehicle to grid applications to pilot projects (SEPA, "Utilities and Electric Vehicles, The Case for Managed Charging April 2017), but smart charging can potentially allow for demand response and peak

shifting by grid operators and shaping of electric vehicle load profiles to potentially minimize grid impacts and costs. Managed charging is primarily accomplished via networked charging equipment using WiFi, Cellular, or advanced metering infrastructure (AMI) based communications. In some cases, managed charging could be possible via the onboard vehicle diagnostics port (OBD-II) or via vehicle manufacturer telematics (*SEPA*, "A Comprehensive Guide to Electric Vehicle Managed Charging," May 2019).

 Please explain any preferred or best practice facilities siting and design standards for commercial electric vehicle charging stations and why such standards are recommended.

#### **Response:**

EPE has installed 16 networked level 2 charging ports for fleet and employee use. The stations were installed at four different facilities including one not owned by EPE. In EPE's experience, a licensed electrician following local regulations and the National Electrical Code (NEC) should be contracted when installing any commercial electric vehicle charging station. An electrical engineer and Professional Engineer stamped designs may be required when designing larger or more complex commercial installations involving multiple stations. Commercial charging stations are increasing in capacity and charging speeds (SEPA, "Preparing for an Electric Vehicle Future: How Utilities Can Succeed", October 2019; design and installation considerations must include the latest industry standards at the time of deployment. Consultation with electric utilities is important as part of electric vehicle charging infrastructure design, as utilities may need to upgrade distribution components to accommodate the new load. Electric vehicle battery size is growing over time and the majority of EV owners charge primarily at home for daily commuting and use DC fast charging on longer trips (SEPA, "Preparing for an Electric Vehicle Future: How Utilities Can Succeed", October 2019). Given current trends, siting stations where vehicles will be parked for long periods of times (residence or workplace) and along major travel corridors appears to make the most sense.

Respectfully submitted,

Matthew K. Behrens State Bar No. 24069356 Attorney <u>matthew.behrens@epelectric.com</u> El Paso Electric Company P.O. Box 982 El Paso, Texas 79960 Telephone: (915) 543-5882 Facsimile: (915) 521-4412

-71 ZR ノ

ATTORNEY FOR EL PASO ELECTRIC COMPANY

#### El Paso Electric Company Light-Duty Battery Electric Vehicle (BEV) and Plug-in Hybrid EV (PHEV) Analysis for Texas Forecasted Number of BEV's and PHEV's (2020-2029)

Project No. 49125 Attachment 1 Page 1 of 3

|                   | Cummulative # of BEVs and PHEVs |                |                |  |  |  |  |  |  |
|-------------------|---------------------------------|----------------|----------------|--|--|--|--|--|--|
| Month/            |                                 |                |                |  |  |  |  |  |  |
| Year              | low                             | Baseline       | High           |  |  |  |  |  |  |
| 2019              | 57A                             | 574            | 574            |  |  |  |  |  |  |
| ian-20            | 589<br>589                      | 5,80           | 501            |  |  |  |  |  |  |
| Feb.20            | 500<br>601                      | 604            | 607            |  |  |  |  |  |  |
| Mar-20            | 615                             | 619            | 624            |  |  |  |  |  |  |
| Δnr-20            | 628                             | 634            | 640            |  |  |  |  |  |  |
| Mav-20            | 647                             | 649            | 657            |  |  |  |  |  |  |
| Jun-20            | 655                             | 664            | 674            |  |  |  |  |  |  |
| Jul-20            | 669                             | 679            | 690            |  |  |  |  |  |  |
| Aug-20            | 682                             | 694            | 707            |  |  |  |  |  |  |
| Sep-20            | 696                             | 709            | 723            |  |  |  |  |  |  |
| Oct-20            | 709                             | 724            | 740            |  |  |  |  |  |  |
| Nov-20            | 723                             | 739            | 756            |  |  |  |  |  |  |
| Dec-20            | 736                             | 754            | 773            |  |  |  |  |  |  |
| Jan-21            | 754                             | 774            | 795            |  |  |  |  |  |  |
| Feb-21            | 771                             | 794            | 817            |  |  |  |  |  |  |
| _                 | -                               |                |                |  |  |  |  |  |  |
| Mar-21            | 788                             | 814            | 840            |  |  |  |  |  |  |
| Apr-21            | 806                             | 833            | 862            |  |  |  |  |  |  |
| May-21            | 823                             | 853            | 884            |  |  |  |  |  |  |
| Jun-21            | 840                             | 873            | 907            |  |  |  |  |  |  |
| Jul-21            | 858                             | 893            | 929            |  |  |  |  |  |  |
| Aug-21            | 875                             | 912            | 951            |  |  |  |  |  |  |
| Sep-21            | 892                             | 932            | 973            |  |  |  |  |  |  |
| Oct-21            | 909                             | 952            | 996            |  |  |  |  |  |  |
| Nov-21            | 927                             | 971            | 1,018          |  |  |  |  |  |  |
| Dec-21            | 944                             | 991            | 1,040          |  |  |  |  |  |  |
| Jan-22            | 966                             | 1,017          | 1,070          |  |  |  |  |  |  |
| Feb-22            | 989                             | 1,043          | 1,100          |  |  |  |  |  |  |
| Mar-22            | 1,011                           | 1,069          | 1,130          |  |  |  |  |  |  |
| Apr-22            | 1,033                           | 1,095          | 1,160          |  |  |  |  |  |  |
| May-22            | 1,055                           | 1,121          | 1,190          |  |  |  |  |  |  |
| Jun-22            | 1,077                           | 1,147          | 1,220          |  |  |  |  |  |  |
| Jul-22            | 1,100                           | 1,173          | 1,250          |  |  |  |  |  |  |
| Aug-22            | 1,122                           | 1,199          | 1,280          |  |  |  |  |  |  |
| Sep-22            | 1,144                           | 1,224          | 1,310          |  |  |  |  |  |  |
| Oct-22            | 1,166                           | 1,250          | 1,340          |  |  |  |  |  |  |
| Nov-22            | 1,188                           | 1,276          | 1,370          |  |  |  |  |  |  |
| Dec-22            | 1,211                           | 1,302          | 1,400          |  |  |  |  |  |  |
| Jan-23            | 1,239                           | 1,336          | 1,441          |  |  |  |  |  |  |
| Feb-23            | 1,268                           | 1,370          | 1,481          |  |  |  |  |  |  |
| Mar-23            | 1,296                           | 1,404          | 1,521          |  |  |  |  |  |  |
| Apr-23            | 1,325                           | 1,438          | 1,562          |  |  |  |  |  |  |
| May-23            | 1,353                           | 1,472          | 1,602          |  |  |  |  |  |  |
| Jun-23            | 1,382                           | 1,507          | 1,642          |  |  |  |  |  |  |
| Jul-23            | 1,410                           | 1,541          | 1,683          |  |  |  |  |  |  |
| Aug-23            | 1,438                           | 1,575          | 1,/23          |  |  |  |  |  |  |
| Sep-23            | 1,46/                           | 1,609          | 1,/64          |  |  |  |  |  |  |
| UCC-23            | 1,495                           | 1,043          | 1,804          |  |  |  |  |  |  |
| NOV-23            | 1,524                           | 1,0//          | 1,844          |  |  |  |  |  |  |
| Uec-23            | 1,552                           | 1,/11          | 1,885          |  |  |  |  |  |  |
| Jan-24            | 1,589                           | 1 000          | 1,939          |  |  |  |  |  |  |
| Mar 24            | 1,025                           | 1,000          | 1,993<br>040 C |  |  |  |  |  |  |
| Apr 24            | 1,002                           | 1,045          | 2,048          |  |  |  |  |  |  |
| May 24            | 1,098<br>1 725                  | 1,090          | 2,102          |  |  |  |  |  |  |
| ividy-24          | 1,755                           | 1,933          | 2,100          |  |  |  |  |  |  |
| 5011-24<br>Inf_7/ | 1 2/1                           | 1,373<br>2 074 | 2,211          |  |  |  |  |  |  |
| Jui"24            | T'0/0                           | 2,024          | 2,203          |  |  |  |  |  |  |

| [    | Cummulative # of BEVs and PHEVs by Year |          |        |  |  |  |  |  |  |
|------|-----------------------------------------|----------|--------|--|--|--|--|--|--|
| Year | Low                                     | Baseline | High   |  |  |  |  |  |  |
| 2019 | 574                                     | 574      | 574    |  |  |  |  |  |  |
| 2020 | 736                                     | 754      | 773    |  |  |  |  |  |  |
| 2021 | 944                                     | 991      | 1,040  |  |  |  |  |  |  |
| 2022 | 1,211                                   | 1,302    | 1,400  |  |  |  |  |  |  |
| 2023 | 1,552                                   | 1,711    | 1,885  |  |  |  |  |  |  |
| 2024 | 1,991                                   | 2,248    | 2,537  |  |  |  |  |  |  |
| 2025 | 2,552                                   | 2,953    | 3,415  |  |  |  |  |  |  |
| 2026 | 3,273                                   | 3,880    | 4,596  |  |  |  |  |  |  |
| 2027 | 4,197                                   | 5,098    | 6,186  |  |  |  |  |  |  |
| 2028 | 5,382                                   | 6,697    | 8,326  |  |  |  |  |  |  |
| 2029 | 6,901                                   | 8,799    | 11,207 |  |  |  |  |  |  |

|      | Forecasted BEV and PHEV Growth Rate per<br>Month |     |     |  |  |  |  |  |  |  |
|------|--------------------------------------------------|-----|-----|--|--|--|--|--|--|--|
| Year | Low Baseline High                                |     |     |  |  |  |  |  |  |  |
| 2020 | 14                                               | 15  | 17  |  |  |  |  |  |  |  |
| 2021 | 17                                               | 20  | 22  |  |  |  |  |  |  |  |
| 2022 | 22                                               | 26  | 30  |  |  |  |  |  |  |  |
| 2023 | 28                                               | 34  | 40  |  |  |  |  |  |  |  |
| 2024 | 37                                               | 45  | 54  |  |  |  |  |  |  |  |
| 2025 | 47                                               | 59  | 73  |  |  |  |  |  |  |  |
| 2026 | 60                                               | 77  | 98  |  |  |  |  |  |  |  |
| 2027 | 77                                               | 101 | 133 |  |  |  |  |  |  |  |
| 2028 | 99                                               | 133 | 178 |  |  |  |  |  |  |  |
| 2029 | 127                                              | 175 | 240 |  |  |  |  |  |  |  |

| EIA Projected Electric Vehicle Penetration |             |             |  |  |  |  |  |
|--------------------------------------------|-------------|-------------|--|--|--|--|--|
| Low Baseline High                          |             |             |  |  |  |  |  |
| 0.1046538                                  | 0.170165106 | 0.276070949 |  |  |  |  |  |
| 10%                                        | 17%         | 28%         |  |  |  |  |  |

#### 2019 is Historical data

#### El Paso Electric Company Light-Duty Battery Electric Vehicle (BEV) and Plug-in Hybrid EV (PHEV) Analysis for Texas Forecasted Number of BEV's and PHEV's (2020-2029)

Project No. 49125 Attachment 1 Page 2 of 3

|          | Cummulative # of BEVs and PHEVs<br>by Month |                |                |  |  |  |  |  |  |
|----------|---------------------------------------------|----------------|----------------|--|--|--|--|--|--|
| Month/   | T                                           | ay month       |                |  |  |  |  |  |  |
| Year     | Low                                         | Baseline       | High           |  |  |  |  |  |  |
| Aug-24   | 1.845                                       | 2.069          | 2,319          |  |  |  |  |  |  |
| Sen-74   | 1 881                                       | 2,005          | 2,313          |  |  |  |  |  |  |
| Oct-24   | 1 918                                       | 2,114          | 2,374          |  |  |  |  |  |  |
| Nov 24   | 1,510                                       | 2,130          | 2,420          |  |  |  |  |  |  |
| NOV-24   | 1,954                                       | 2,203          | 2,482          |  |  |  |  |  |  |
| Dec-24   | 1,991                                       | 2,240          | 2,537          |  |  |  |  |  |  |
| Jan-25   | 2,037                                       | 2,307          | 2,610          |  |  |  |  |  |  |
| Fe0-25   | 2,084                                       | 2,305          | 2,683          |  |  |  |  |  |  |
| Mar-25   | 2,131                                       | 2,424          | 2,756          |  |  |  |  |  |  |
| Apr-25   | 2,1/8                                       | 2,483          | 2,829          |  |  |  |  |  |  |
| May-25   | 2,225                                       | 2,542          | 2,903          |  |  |  |  |  |  |
| Jun-25   | 2,272                                       | 2,600          | 2,976          |  |  |  |  |  |  |
| Jul-25   | 2,318                                       | 2,659          | 3,049          |  |  |  |  |  |  |
| Aug-25   | 2,365                                       | 2,718          | 3,122          |  |  |  |  |  |  |
| Sep-25   | 2,412                                       | 2,777          | 3,195          |  |  |  |  |  |  |
| Oct-25   | 2,459                                       | 2,836          | 3,268          |  |  |  |  |  |  |
| Nov-25   | 2,506                                       | 2,894          | 3,341          |  |  |  |  |  |  |
| Dec-25   | 2,552                                       | 2,953          | 3,415          |  |  |  |  |  |  |
| Jan-26   | 2,613                                       | 3,030          | 3,513          |  |  |  |  |  |  |
| Feb-26   | 2,673                                       | 3,108          | 3,611          |  |  |  |  |  |  |
| Mar-26   | 2,733                                       | 3,185          | 3,710          |  |  |  |  |  |  |
| Apr-26   | 2,793                                       | 3,262          | 3,808          |  |  |  |  |  |  |
| May-26   | 2,853                                       | 3,339          | 3,907          |  |  |  |  |  |  |
| Jun-26   | 2,913                                       | 3.417          | 4.005          |  |  |  |  |  |  |
| Jul-26   | 2.973                                       | 3,494          | 4.104          |  |  |  |  |  |  |
| Aug-26   | 3 033                                       | 3 571          | 4 202          |  |  |  |  |  |  |
| Sen-26   | 3,003                                       | 3 648          | 4 301          |  |  |  |  |  |  |
| Oct-26   | 3,055                                       | 3 725          | 4,301          |  |  |  |  |  |  |
| Nov 26   | 2 212                                       | 3,723          | 4,333          |  |  |  |  |  |  |
| Doc. 26  | 3,213                                       | 3,805          | 4,457          |  |  |  |  |  |  |
| Jan 27   | 3,273                                       | 3,880          | 4,550          |  |  |  |  |  |  |
| Jair27   | 3,330                                       | 3,301          | 4,720          |  |  |  |  |  |  |
| reu-27   | 3,427                                       | 4,005          | 4,801          |  |  |  |  |  |  |
| Mar-27   | 3,504                                       | 4,184          | 4,993          |  |  |  |  |  |  |
| Apr-27   | 3,581                                       | 4,286          | 5,126          |  |  |  |  |  |  |
| May-27   | 3,658                                       | 4,387          | 5,258          |  |  |  |  |  |  |
| Jun-27   | 3,735                                       | 4,489          | 5,391          |  |  |  |  |  |  |
| Jul-27   | 3,812                                       | 4,590          | 5,524          |  |  |  |  |  |  |
| Aug-27   | 3,889                                       | 4,692          | 5,656          |  |  |  |  |  |  |
| Sep-27   | 3,966                                       | 4,793          | 5 <b>,789</b>  |  |  |  |  |  |  |
| Oct-27   | 4,043                                       | 4,895          | 5,921          |  |  |  |  |  |  |
| Nov-27   | 4,120                                       | 4,996          | 6,054          |  |  |  |  |  |  |
| Dec-27   | 4,197                                       | 5,098          | 6,186          |  |  |  |  |  |  |
| Jan-28   | 4,296                                       | 5,231          | 6,364          |  |  |  |  |  |  |
| Feb-28   | 4,394                                       | 5,364          | 6,543          |  |  |  |  |  |  |
| Mar-28   | 4,493                                       | 5,497          | 6,721          |  |  |  |  |  |  |
| Apr-28   | 4,592                                       | 5,631          | 6,900          |  |  |  |  |  |  |
| May-28   | 4,690                                       | 5,764          | 7,078          |  |  |  |  |  |  |
| Jun-28   | 4,789                                       | 5,897          | 7,256          |  |  |  |  |  |  |
| Jul-28   | 4,888                                       | 6,031          | 7,435          |  |  |  |  |  |  |
| Aug-28   | 4,987                                       | 6.164          | 7.613          |  |  |  |  |  |  |
| Sen-28   | 5.085                                       | 6.297          | 7,791          |  |  |  |  |  |  |
| Oct-28   | 5,184                                       | 6.431          | 7,970          |  |  |  |  |  |  |
| Nov-78   | 5 282                                       | 6 564          | 2 1 <i>1</i> 2 |  |  |  |  |  |  |
| Dec-29   | 5,203                                       | 6 607          | 0,140<br>0 274 |  |  |  |  |  |  |
| Jan 20   | 5,502                                       | 0,037<br>6 077 | 0,320          |  |  |  |  |  |  |
| Jail-29  | 2,208<br>5 625                              | 7 040          | 0,007          |  |  |  |  |  |  |
| rep-29   | 5,055                                       | 7,048          | 8,807          |  |  |  |  |  |  |
| iviar-29 | 5,701                                       | 7,223          | 9,047          |  |  |  |  |  |  |
| Apr-29   | 5,888                                       | /,398          | 9,287          |  |  |  |  |  |  |

## El Paso Electric Company Light-Duty Battery Electric Vehicle (BEV) and Plug-in Hybrid EV (PHEV) Analysis for Texas Forecasted Number of BEV's and PHEV's (2020-2029)

Project No. 49125 Attachment 1 Page 3 of 3

.

|        | Cummulative # of BEVs and PHEVs |          |                |  |  |  |  |  |  |  |
|--------|---------------------------------|----------|----------------|--|--|--|--|--|--|--|
|        |                                 | by Month |                |  |  |  |  |  |  |  |
| Month/ |                                 |          |                |  |  |  |  |  |  |  |
| Year   | Low                             | Baseline | High           |  |  |  |  |  |  |  |
| May-29 | 6,015                           | 7,573    | 9,527          |  |  |  |  |  |  |  |
| Jun-29 | 6,141                           | 7,748    | 9,767          |  |  |  |  |  |  |  |
| Jul-29 | 6,268                           | 7,923    | 1 <b>0,007</b> |  |  |  |  |  |  |  |
| Aug-29 | 6,394                           | 8,098    | 10,247         |  |  |  |  |  |  |  |
| Sep-29 | 6,521                           | 8,274    | 10,487         |  |  |  |  |  |  |  |
| Oct-29 | 6,647                           | 8,449    | 10,727         |  |  |  |  |  |  |  |
| Nov-29 | 6,774                           | 8,624    | 10,967         |  |  |  |  |  |  |  |
| Dec-29 | 6,901                           | 8,799    | 11,207         |  |  |  |  |  |  |  |
| Feb-29 | 4,897                           | 6,277    | 8,036          |  |  |  |  |  |  |  |
| Mar-29 | 5,024                           | 6,455    | 8,284          |  |  |  |  |  |  |  |
| Apr-29 | 5,151                           | 6,632    | 8,531          |  |  |  |  |  |  |  |
| May-29 | 5,278                           | 6,810    | 8,778          |  |  |  |  |  |  |  |
| Jun-29 | 5,405                           | 6,988    | 9,026          |  |  |  |  |  |  |  |
| Jul-29 | 5,531                           | 7,166    | 9,273          |  |  |  |  |  |  |  |
| Aug-29 | 5,658                           | 7,343    | 9,521          |  |  |  |  |  |  |  |
| Sep-29 | 5,785                           | 7,521    | 9,768          |  |  |  |  |  |  |  |
| Oct-29 | 5,912                           | 7,699    | 10,015         |  |  |  |  |  |  |  |
| Nov-29 | 6,038                           | 7,877    | 10,263         |  |  |  |  |  |  |  |
| Dec-29 | 6,165                           | 8,054    | 10,510         |  |  |  |  |  |  |  |

1

## El Paso Electric Company Light-Duty Battery Electric Vehicle (BEV) and Plug-in Hybrid EV (PHEV) Analysis for Texas Forecasted Demand and Energy for BEV's and PHEV's (2020-2029)

Project No. 49125 Attachment 2 Page 1 of 1

|      | Forecasted Demand (MW) <sup>1</sup> |              |    |  |  |  |  |  |  |
|------|-------------------------------------|--------------|----|--|--|--|--|--|--|
| Year | Low                                 | Low Baseline |    |  |  |  |  |  |  |
| 2020 | 5                                   | 5            | 6  |  |  |  |  |  |  |
| 2021 | 7                                   | 7            | 7  |  |  |  |  |  |  |
| 2022 | 9                                   | 9            | 10 |  |  |  |  |  |  |
| 2023 | 11                                  | 12           | 14 |  |  |  |  |  |  |
| 2024 | 14                                  | 16           | 18 |  |  |  |  |  |  |
| 2025 | 18                                  | 21           | 25 |  |  |  |  |  |  |
| 2026 | 24                                  | 28           | 33 |  |  |  |  |  |  |
| 2027 | 30                                  | 37           | 45 |  |  |  |  |  |  |
| 2028 | 39                                  | 48           | 60 |  |  |  |  |  |  |
| 2029 | 50                                  | 63           | 81 |  |  |  |  |  |  |

|      | Forecasted Energy Usage (MWh) <sup>2</sup> |          |        |  |  |  |  |  |  |
|------|--------------------------------------------|----------|--------|--|--|--|--|--|--|
| Year | Low                                        | Baseline | High   |  |  |  |  |  |  |
| 2020 | 1,434                                      | 1,470    | 1,506  |  |  |  |  |  |  |
| 2021 | 1,839                                      | 1,931    | 2,026  |  |  |  |  |  |  |
| 2022 | 2,358                                      | 2,537    | 2,728  |  |  |  |  |  |  |
| 2023 | 3,024                                      | 3,333    | 3,671  |  |  |  |  |  |  |
| 2024 | 3,878                                      | 4,379    | 4,942  |  |  |  |  |  |  |
| 2025 | 4,972                                      | 5,753    | 6,652  |  |  |  |  |  |  |
| 2026 | 6,376                                      | 7,558    | 8,953  |  |  |  |  |  |  |
| 2027 | 8,176                                      | 9,930    | 12,051 |  |  |  |  |  |  |
| 2028 | 10,484                                     | 13,046   | 16,220 |  |  |  |  |  |  |
| 2029 | 13,443                                     | 17,141   | 21,832 |  |  |  |  |  |  |

1 - Forecasted Maximum Non-Coincident Peak Demand considering 7.2 kW level-2 charger

2 - Forecasted Energy considering average commute



Project No. 49125 Attachment 3 Page 1 of 1

#### El Paso Electric Company **EV Charging Site Locations**

|     |           |                                                            |                             |          |       |       |                   | EV Level1 | EV Level2 | EV DC |                      |                       | Ownership/          |               |
|-----|-----------|------------------------------------------------------------|-----------------------------|----------|-------|-------|-------------------|-----------|-----------|-------|----------------------|-----------------------|---------------------|---------------|
|     | Fuel Type | 2                                                          |                             |          |       |       |                   | EVSE      | EVSE      | Fast  | Average              | Peak                  | Groups With Access  |               |
| No. | Code      | Station Name                                               | Street Address              | City     | State | ZIP   | Charging Level    | Num       | Num       | Count | Usage <sup>(2)</sup> | Demand <sup>(2)</sup> | Code                | Facility Type |
| 1   | ELEC      | Latuna Federal Correctional Institution                    | 8500 Doniphan Rd            | Anthony  | тх    | 79821 | Level 2           |           | 1         |       |                      |                       | Private             | PRISON        |
| 2   | ELEC      | Casa Nissan                                                | 5855 Montana Ave            | El Paso  | тх    | 79925 | Level 2           |           | 1         |       |                      |                       | Public - Call ahead | CAR_DEALER    |
| 3   | ELEC      | Mission Chevrolet                                          | 1316 George Dieter          | El Paso  | тх    | 79936 | Level 2           |           | 1         |       |                      |                       | Public - Call ahead | CAR_DEALER    |
| 4   | ELEC      | Casa Nissan                                                | 5855 Montana Ave            | El Paso  | TX    | 79925 | Level 2           |           | 1         |       |                      |                       | Private             | CAR_DEALER    |
| 5   | ELEC      | Viva Nissan                                                | 1310 N Zaragoza Rd          | El Paso  | TX    | 79936 | Level 2           |           | 1         |       |                      |                       | Private             | CAR_DEALER    |
| 6   | ELEC      | BMW EL PASO                                                | 6318 Montana Ave            | El Paso  | тх    | 79925 | Level 2           |           | 2         |       |                      |                       | Public              |               |
| 7   | ELEC      | ADP - El Paso                                              | 1851 N Resler Dr            | El Paso  | тх    | 79912 | Level 2           |           | 2         |       |                      |                       | Private             | OFFICE_BLDG   |
| 8   | ELEC      | ADP - El Paso                                              | 7650 San Felipe Dr          | El Paso  | TX    | 79912 | Level 2           |           | 2         |       |                      |                       | Private             | OFFICE_BLDG   |
| 9   | ELEC      | Sun Metro Glory Road- 2nd Level                            | 100 E Glory Road            | El Paso  | тх    | 79902 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 10  | ELEC      | El Paso Int'l Airport-Short-Term Parking                   | 6701 Convair Road           | El Paso  | тх    | 79925 | Level 2           |           | 4         |       |                      |                       | Public              |               |
| 11  | ELEC      | Sun Metro - Mission Valley Terminal                        | 9065 Alameda Avenue         | El Paso  | TX    | 79907 | Level 2           |           | 2         |       |                      |                       | Public              |               |
| 12  | ELEC      | Sun Metro Westside                                         | 7535 Remcon Circle          | El Paso  | TX    | 79912 | Level 2           |           | 2         |       |                      |                       | Public              |               |
| 13  | ELEC      | The University of Texas at El Paso (UTEP)                  | 500 West University         | El Paso  | тх    | 79902 | Level 2           |           | 3         |       |                      |                       | Public              |               |
| 14  | ELEC      | UTEP - Academic Services Building Parking Lot              | 501 W Schuster Avenue       | El Paso  | TX    | 79902 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 15  | ELEC      | UTEP - Schuster Parking Garage                             | 500 W. Schuster Avenue      | El Paso  | тх    | 79902 | Level 2           |           | 2         |       |                      |                       | Private             |               |
| 16  | ELEC      | UTEP - Union Building East Parking Lot                     | 275 W University Avenue     | El Paso  | TX    | 79902 | Level 2           |           | 2         |       |                      |                       | Public              |               |
| 17  | ELEC      | UTEP - Sun Bowl Parking Facility                           | 2522 Sun Bowl Drive         | El Paso  | тх    | 79922 | Level 2           |           | 3         |       |                      |                       | Public              |               |
| 18  | ELEC      | Rudy's Country Store and BBQ - Tesla Supercharger          | 6401 South Desert Boulevard | El Paso  | тх    | 79932 | DC Fast           |           |           | 8     | (2)                  | (2)                   | Public              |               |
| 19  | ELEC      | JLR EL PASO                                                | 1148 Airway Blvd            | El Paso  | тх    | 79925 | Level 2 & DC Fast |           | 2         | 1     |                      |                       | Public              |               |
| 20  | ELEC      | Courtyard by Marnott El Paso East/I-10 - Tesla Destination | 12065 Gateway Blvd W        | El Paso  | TX    | 79936 | Level 2           |           | 3         |       |                      |                       | Public              | HOTEL         |
| 21  | ELEC      | Cutter Aviation El Paso - Tesia Destination                | 1771 Shuttle Columbia Dr    | El Paso  | тх    | 79925 | Level 2           |           | 2         |       |                      |                       | Public              | AIRPORT       |
| 22  | ELEC      | Home2 Suites by Hilton El Paso Airport - Tesla Destination | 6308 Montana Ave            | El Paso  | тх    | 79925 | Level 2           |           | 3         |       |                      |                       | Public              | HOTEL         |
| 23  | ELEC      | Walmart 512 - El Paso, TX                                  | 10727 Gateway Blvd West     | El Paso  | тх    | 79935 | DC Fast           |           |           | - 4   | (2)                  | (2)                   | Public              |               |
| 24  | ELEC      | HACEP- Williams Community                                  | 314 Resier Drive            | El Paso  | тх    | 79912 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 25  | ELEC      | HACEP- Central Office Loading Dock                         | 5300 East Paisano Drive     | El Paso  | тх    | 79905 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 26  | ELEC      | HACEP- Central Office Guard Shack                          | 5301 East Paisano Drive     | El Paso  | тх    | 79905 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 27  | ELEC      | HACEP- Paisano Green                                       | 4000 E Paisano Drive        | El Paso  | TX    | 79905 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 28  | ELEC      | EPCC- Valle Verde Campus- Advanced Technology Center       | 919 Hunter Drive            | El Paso  | тх    | 79915 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 29  | ELEC      | The Fountains at Farah                                     | 8889 Gateway Boulevard West | El Paso  | ŤΧ    | 79925 | Level 2           |           | 5         |       |                      |                       | Public              |               |
| 30  | ELEC      | Hampton Inn Van Horn - Tesla Supercharger                  | 1921 Frontage Rd.           | Van Horn | тх    | 79855 | DC Fast           |           |           | 8     |                      |                       | Public              |               |
| 31  | ELEC      | Days Inn - Van Horn, TX                                    | 600 E Broadway              | Van Horn | TX    | 79855 | DC Fast           |           |           | - 4   |                      |                       | Public              |               |
| 32  | ELEC      | Texas Tech Health Science Center                           | 4801 Alberta Ave 3rd Fl     | El Paso  | TX    | 79905 | Level 2           |           | 3         |       |                      |                       | Public              |               |
| 33  | ELEC      | Charlie Clark Nissan                                       | 6451 S Desert Blvd          | El Paso  | тх    | 79932 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 34  | ELEC      | Whole Foods Market                                         | 100 Pitt St                 | El Paso  | TX    | 79912 | Level 2           |           | 2         |       |                      |                       | Public              |               |
| 35  | ELEC      | Sunland Park Crysler                                       | 950 Crockett St.            | El Paso  | тх    | 79922 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 36  | ELEC      | Casa Ford                                                  | 5815 Montana Ave            | El Paso  | тх    | 79925 | Level 2           |           | 1         |       |                      |                       | Public              |               |
| 37  | ELEC      | Deadbeach Brewerv                                          | 406 Durango St.             | El Paso  | тх    | 79901 | Level 2           |           | 1         |       |                      |                       | Public              |               |
|     |           | ,                                                          | · · · •                     |          |       |       |                   |           | -         |       |                      |                       |                     |               |

1) EPE does not have detailed information for all the public charging stations above EPE installs survey meters (interval data recorders) to gather charging information on customers enrolled in both the Texas Electric Vehicle Charging Rate as well as DC fast charging stations in its retail service territory. However this data is very limited in size and history. At the end of November 2019, EPE only has 2 DC fast charging stations with interval survey meters, and these meters were installed in August and October of this year.

2) EPE does not survey meter public charging stations because they generally are not separately metered from the rest of the premise, so EPE cannot analyze the charging load separately

Project No. 49125 Attachment 4 Page 1 of 1

Project No 49125

Attachment 4 Page 1 of 1