

Control Number: 46245

Item Number: 572

Addendum StartPage: 0

ECEIVED

SOAH DOCKET NO. 473-17-0119.WS PUC DOCKET NO. 46245

§

§

§

§

2017 JUL 28 PM 1:55

APPLICATION OF DOUBLE DIAMOND UTILITY COMPANY, INC. FOR WATER AND SEWER RATE/TARIFF CHANGE BEFORE THE STATE OFFICE Mission OF TILING CLERK ADMINISTRATIVE HEARINGS

DOUBLE DIAMOND UTILITY COMPANY, INC.'S RESPONSE TO THE CLIFFS RATEPAYER GROUP'S SECOND REQUEST FOR INFORMATION TCUC NO. 2-1 THROUGH 2-13

COMES NOW, Double Diamond Utility Company, Inc. ("DDU") and files its Response to the Cliffs Ratepayers Group's Second Request for Information – TCUC NO. 2-1 through 2-13. DDU agrees and stipulates that all parties may treat these responses as if they were filed under oath.

Respectfully submitted,

Bv:

John J. Carlton The Carlton Law Firm P.L.L.C. 2705 Bee Cave Road, Suite 200 Austin, Texas 78746 (512) 614-0901 Fax (512) 900-2855 State Bar No. 03817600

ATTORNEY FOR DOUBLE DIAMOND UTILITY COMPANY, INC.

CERTIFICATE OF SERVICE

I hereby certify that I have served or will serve a true and correct copy of the foregoing document via hand delivery, facsimile, electronic mail, overnight mail, U.S. mail and/or Certified Mail Return Receipt Requested to all parties on this the 28th day of July, 2017

John Carlton

Page 1 of 6

Page 1 of 73

TCUC'S SECOND REQUEST FOR INFORMATION TO DOUBLE DIAMOND UTILITY COMPANY, INC. <u>TCUC NO. 2-1 THROUGH 2-13</u>

PLEASE NOTE: DDU and TCUC have agreed that TCUC's Requests for Information are as restated below:

<u>TCUC 2-1</u> Please provide the basis and analysis relied upon by Double Diamond for allocation of the expenses titled "Allocated Resort Overhead" and "Allocated Resort G&A" and the analysis, work papers, and source documentation relied upon by Double Diamond to arrive at the allocation of expenses to The Cliffs water utilities.

RESPONSE The allocation of "Allocated Resort Overhead" costs are based on the budget numbers for The Cliffs Resort and percentage of resources used by The Cliffs water utilities. There is no "Allocated Resort G&A" requested in The Cliffs application.

Responsive documents will be produced.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

<u>TCUC 2-2</u> Please provide the analysis and means by which security is allocated to The Cliffs and the analysis, work papers, and source documentation relied upon by DDU to arrive at the allocation of expenses to The Cliffs water utilities.

RESPONSE: Security is not allocated to The Cliffs water utilities in the application.

Prepared by: Jay Joyce

Sponsored by: Jay Joyce

TCUC 2-3 Please provide the analysis and means by which insurance is allocated to The Cliffs as found on the Schedule of Insurance and the analysis, work papers, and source documentation relied upon by DDU to arrive at the allocation of expenses to The Cliffs water utilities.

RESPONSE: Insurance is allocated to The Cliffs based on number of people, trucks and equipment per resort then per department.

Responsive documents will be produced.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

<u>TCUC 2-4</u> DDU003586 provides a listing of company-wide notes payable and interest rates. There is one note for \$3,000,000 that lists collateral as "utility assets." Which system's assets were pledged as collateral for the loan? Please provide an itemized accounting of the spending of funds obtained through this loan.

RESPONSE: Water and wastewater utility assets located within the White Bluff Resort.

The requested itemized accounting information does not exist. This is akin to asking for an itemized list of the components of a house paid for with mortgage proceeds and another itemized list of the components of the house paid for with from the down payment. The request doesn't make sense.

The characteristics of the referenced loan were used in the applications to establish the reasonable cost of debt incorporated into the capital structure to produce an overall cost of capital for DDU which is applied to rate base to yield a reasonable return.

Prepared by: Christie Rotramel and Jay Joyce

Sponsored by: Tim Grout and Jay Joyce

<u>TCUC 2-5</u> For any of the purchase agreement that Double Diamond or any affiliate entered into with property owners for lots in the <u>White Bluff The Cliffs</u> subdivision contain representations that Double Diamond or an affiliate would be responsible for the providing necessary infrastructure to supply water and sewer to the lot, please provide an itemized detail as to which entities would install the utility infrastructure referenced in this response.

RESPONSE: Utility infrastructure has been in installed by Double Diamond Inc (DDI), Double Diamond Properties Construction (DDPC) or Double Diamond Utilities (DDU) at various times. Before 1996, most all of infrastructure was constructed and paid for by DDI. DDPC and DDU were created in December 1996. In 1997, DDPC began paying for most of the infrastructure, and DDU paid for a few items. Payment for utility infrastructure is identified and itemized in the invoices whose bates number are referenced on the asset list previously produced. As of the 2007-2008 rate case before the Texas Commission on Environmental Quality, most of the initial utility infrastructure was completed, and DDU begin paying for all utility assets and operations. The same contractors and employees worked for each entity that paid for the infrastructure.

Prepared by: Christie Rotramel

Sponsored by: Randy Gracy

<u>TCUC 2-6</u> Please provide work papers and all documents relied upon by Double Diamond in preparing its financial statements as provided beginning on DDU003567 to arrive at the cost of water/wastewater systems listed on DDU003584 in the amount of \$4,870,225 in native format (excel or similar).

RESPONSE: Responsive documents have been produced in native format as DDU16-015228 – DDU16-015231 in response to the White Bluff Ratepayers Group RFI No. 3-6.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

<u>TCUC 2-7</u> Admit or deny. Attachment A is a true and accurate copy of a Warranty Deed conveying the tracts listed on Exhibit "A" from Double Diamond, Inc., to The Cliffs Property Owners Association, Inc dated December 20, 1995.

RESPONSE: DDU can neither admit or deny because no document was attached.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

DDU's Response to TCUC's Second Request for Information

<u>TCUC 2-8</u> Admit or deny. Attachment B is a true and correct copy of a form Real Estate Sales Contract used to sell property in The Cliffs subdivision to purchasers.

RESPONSE: DDU can neither admit or deny because no document was attached.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

<u>**TCUC 2-9</u>** Please provide copies of all communications with the Texas Commission on Environmental Quality that occurred during the test year for The Cliffs systems.</u>

RESPONSE: Responsive documents will be produced.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

TCUC 2-10 Please provide copies of all public notifications required by the Texas Commission on Environmental Quality since January 1, 2014, for The Cliffs water system.

RESPONSE: Responsive documents will be produced.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

TCUC 2-11 If Double Diamond provides potable water to the wastewater treatment plant serving The Cliffs subdivision, please provide copies of all bills for the water service to the plant for 2015.

RESPONSE: No responsive documents exist.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

TCUC 2-12 Provide copies of the asset depreciation schedules from the draft IRS Forms 1120 for Double Diamond Utilities, Inc., for the years 2000 to 2016.

RESPONSE: Per agreement, the depreciation schedules for DDU attached to the consolidated IRS Forms 1120 tax returns for Double Diamond Delaware has been produced in accordance with the protective order issued in this case as DDU1616-015436 –DDU16-015483 in response to the White Bluff Ratepayers Group RFI No. 3-16.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

TCUC 2-13 The Cliffs Utility Committee requests that the Administrative Law Judge presiding over this PUC Docket No. 46245 require Double Diamond Utility Co. to prove conclusively with adequate documentation their need for a rate increase at The Cliffs in formal hearing and disallow any rate increase if their proven return on investment exceeds industry standards.

RESPONSE: This is not a question. DDU cannot answer it.

Prepared by: Christie Rotramel

Sponsored by: Tim Grout

RESPONSIVE TO TCUC NO. 2-1

Double Diamond Companies 2015 Budget

Cliffs Club Corp. - Allocations - 8022

L APPROVED POSITIONS MUST BE LISTED - FULL TIME and PART TIME POSITIONS

ced cost Employees			Existing				%	6 Spent	for each a	rea							
Employee Name	Title		Annual Rate	Beg Week	End Week	Sales	POA	Hosp	Utilitics	Const		Sales	POA	Hosp	Utilities	Const	
Employee Name	General Manager		103,887	1	52	0%	36%	58%	6%	0%	100%	-	37,399	60,255	6,233	-	103,8
				1	52	0%	21%	72%	7%	0%	100%	-	-	•	-	-	
	Accounts Payable/I	Payroli	25,000	1		0%	34%	53%	13%	0%	100%	-	8,500	13,250	3,250	-	25,0
•	Receptionist		20,800	1		0% 0%	23% 72%	70% 22%	7% 6%	0% 0%	100% 100%	•	4,784 20,160	14,560 6,160	1 ,456 1,680	-	20,1 28,0
	Security Manager Human Resources	Adimn	28,000 29,417	1		0%	21%	72%	0% 7%	0%	100%		6,178	21,180	2,059	-	29,4
	Hunma Reposites	- Collins	20,411		52	0%	21%	72%	7%	0%	100%	-	-	-	-		,
Raise			-	18	52	0%	53%	34%	13%	0%	100%	-	-	•	•	-	
Proposed New Positio	a										0%_	•	-	-	-		207
Subtotal - Salaries			207,104								-	<u> </u>	77,021	115,405	14,678	-	207,
riable cost Employees urly Wages												0.000%	37.189%	55.723%	7.087%	0.000%	100.00
Employee Name	Position	Beg Week	End Week	Rate	Hours per Week												
Employee Name							47%	38%	15%	0%	100%	-	-	-		-	
Dakota Lewis	PBX	1	52	8	40	0%	26%	68%	6%	0%	100%	-	4,193	10,967	968	-	16,
											0% 0%	-	-	-	-	-	
											0% 0%	-	-		-	•	
											0%			-	-	-	
,											0%	-	-	-	-	-	
1											0%	-	-	-	•	-	
											0% 0%	•	-	•	•	-	
Raise		18	52		40						0%	-	:		-	-	
) E										0%	-	-	-	-	-	
Proposed New Positio Variable cost Subtota											^{0%}		4,193 26.00%	10,967 68 00%	968 6.000%	- 0.00%	16,1 100.0
Proposed New Positio	ll - Hourly Wages	Beg									0%_ 						
Proposed New Positio Variable cost Subtota	l - Hourly Wages TY Position	Beg Week	End Week	Rate	Hours per Week							0.00%	26.00%	68 00%	6.000%	0.00%	100.0
Proposed New Positie Variable cost Subtota purly Wages - SECURF Employee Name	I - Hourly Wages TY Position SECURITY - Sgt	Wcek 1	52	8.50	Hours per Week 40	2% 0%	70%	22%	6% 6%	0%		0.00%	26.00%	68 00% 3,890	6.000%	0.00%	100.0
Proposed New Positio Variable cost Subtota nurty Wages - SECURF Employee Name	I - Hourly Wages TY Position SECURITY - Sgt SECURITY - LL	Week 1 1	52 52	8.50 9.25	Hours per Week 40 40	0%	72%	22%	6%	0%	100% 100%	0.00%	26.00% 12,376 13,853	68 00% 3,890 4,233	6.000% 1,061 1,154	0.00%	100.0 17,0 19,2
Proposed New Positie Variable cost Subtota purly Wages - SECURF Employee Name	I - Hourly Wages TY Position SECURITY - Sgt	Wcek 1	52	8.50	Hours per Week 40							0.00% 354	26.00%	68 00% 3,890	6.000%	0.00%	100.0 17,6 19,2 16,6
Proposed New Positie Variable cost Subtota aurity Wages - SECURF Employee Name	Position SECURITY - Lt. SECURITY	Wcek 1 1	52 52 52	8.50 9.25 8.00 8.25 8.00	Hours per Week 40 40 40 40 40 40	0% 0%	72% 72%	22% 22%	6% 6%	0% 0%	100% 100% 100%	0.00% 354 -	26.00% 12,376 13,853 11,981	68 00% 3,890 4,233 3,661	6.000% 1.061 1,154 998	0.00%	100.0 17,0 19,2 16,0 17,1
Proposed New Positie Variable cost Subtota nurty Wages - SECURF Employee Name	Position SECURITY - Sgt SECURITY - St SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 52 52 52 52 52 52 52	8.50 9.25 8.00 8.25 8 00 8.00	Hours per Week 40 40 40 40 40 40 40	0% 0% 0% 0%	72% 72% 72% 72% 72%	22% 22% 22% 22% 22%	6% 6% 6% 6%	0% 0% 0% 0%	100% 100% 100% 100% 100%	0.00% 354 - -	26.00% 12,376 13,853 11,981 12,355 11,981	68 00% 3,890 4,233 3,661 3,775 3,661 3,661	6.000% 1,061 1,154 998 1,030 998 998	0.00% - - - - - -	100.0 17,0 19,2 16,0 17,1 16,0 16,0
Proposed New Positie Variable cost Subtota auriy Wages - SECURF Employee Name	Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 52 52 52 52 52 52 52 52	8.50 9.25 8.00 8.25 8.00 8.00 8.00	Hours per Week 40 40 40 40 40 40 40 40	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22%	6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100%	0.00% 354 - -	26.00% 12,376 13,853 11,981 12,355 11,981	68 00% 3,890 4,233 3,661 3,775 3,661	6.000% 1.061 1.154 998 1.030 998 998 998	0.00% - - - - - -	100.0 17,0 19,2 16,0 17,1 16,0 16,0
Proposed New Positie Variable cost Subtota aurly Wages - SECURF Employee Name	Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 1 20	52 52 52 52 52 52 52 52 52 37	8.50 9.25 8.00 8.25 8 00 8.00 8.00 8.00	Hours per Week 40 40 40 40 40 40 40 0	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100%	0.00% 354 - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 11,981 11,981	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 3,661	6.000% 1.061 1,154 998 1,030 998 998		100.0 17,4 19,2 16,4 17,1 16,4 16,4
Proposed New Positio Variable cost Subtota anty Wages - SECURF Employee Name	Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 20 32	52 52 52 52 52 52 52 52 52 37 52	8.50 9.25 8.00 8.25 8.00 8.00 8.00	Hours per Week 40 40 40 40 40 40 60 7 40	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22%	6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100%	0.00% 354 - - - -	26.00% 12,376 13,853 11,981 12,355 11,981	68 00% 3,890 4,233 3,661 3,775 3,661 3,661	6.000% 1.061 1.154 998 1.030 998 998 998	0.00% - - - - - -	100.0 17,6 19,2 16,6 17,1 16,6 16,6
Proposed New Positie Variable cost Subtota aurly Wages - SECURF Employee Name	TY Position SECURITY - Set SECURITY - LL SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 1 20	52 52 52 52 52 52 52 52 52 37	8.50 9.25 8.00 8.25 8 00 8.00 8.00 8.00 7	Hours per Week 40 40 40 40 40 40 40 0	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 11,981 11,981 - - 4,234 -	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 3,661 3,661 - 1,294 -	6.000% 1.061 1.154 998 1,030 998 998 	- - - - - - - - - - - - - - - - - -	100.0 17,6 19,2 16,6 17,1 16,6 16,6 - - - - - - - - - - - - - - - - - -
Proposed New Positio Variable cost Subtota nurty Wages - SECURF Employee Name	TY Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 20 32	52 52 52 52 52 52 52 52 52 37 52	8.50 9.25 8.00 8.25 8 00 8.00 8.00 8.00 7	Hours per Week 40 40 40 40 40 40 60 7 40	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.0 17,¢ 19,2 16,¢ 17,1 16,¢ 16,¢ 5,8
Proposed New Positie Variable cost Subtota auriy Wages - SECURF Employee Name	TY Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 1 1 1 1 1 20 32	52 52 52 52 52 52 52 52 52 37 52	8.50 9.25 8.00 8.25 8 00 8.00 8.00 8.00 7	Hours per Week 40 40 40 40 40 40 60 7 40	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 11,981 11,981 - - 4,234 -	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 3,661 3,661 - 1,294 -	6.000% 1.061 1.154 998 1,030 998 998 	0.00%	100.0 17,4 19,5 16,4 17,1 16,4 16,4 5,3 126,5
Proposed New Positio Variable cost Subtota auriy Wages - SECURF Employee Name	TY Position SECURITY - Sgt SECURITY - Lt SECURITY	Week 1 1 1 1 1 1 1 1 20 32 18 Beg	52 52 52 52 52 52 52 52 52 52 52	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.4 17, 19, 16, 17, 16, 16, 16, 5, 126,
Proposed New Positio Variable cost Subtota auriy Wages - SECURF Employee Name	TY Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY	Week 1 1 1 1 1 20 32 18 Beg Wcek	52 52 52 52 52 52 52 52 52 52 52	8.50 9.25 8.00 8.25 8 00 8.00 8.00 8.00 7	Hours per Week 40 40 40 40 40 40 40 40 40 40 40	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.0 17, 19, 16, 17, 16, 16, 16, 5, 126,
Proposed New Positio Variable cost Subtota anty Wages - SECURF Employee Name Complex Name Increase Security Positio Proposed New Positio Variable cost Subtota party Wages Employee Name	TY Position SECURITY - Sgt SECURITY - Lt SECURITY	Week 1 1 1 1 1 1 1 1 20 32 18 Beg	52 52 52 52 52 52 52 52 52 52 52	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.0 17,4 19,5 16,4 17,1 16,4 16,4 5,3 126,5
Proposed New Positio Variable cost Subtota auriy Wages - SECURF Employee Name	TY Position SECURITY - Sgt SECURITY - Lt SECURITY	Wcek 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%	100% 100% 100% 100% 100% 100% 100% 100%	0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.0 17,4 19,5 16,4 17,1 16,4 16,4 5,3 126,5
Proposed New Positie Variable cost Subtota aurty Wages - SECURF Employee Name Increase Security Positi Raise Proposed New Positie Variable cost Subtota aurty Wages Employee Name	TY Position SECURITY - Sgt SECURITY - Lt SECURITY	Wcek 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1 1 1 1 1 1 1	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%		0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.0 17,4 19,5 16,4 17,1 16,4 16,4 5,3 126,5
Proposed New Positio Variable cost Subtota anty Wages - SECURF Employee Name Complexity Position Increase Security Position Variable cost Subtota Proposed New Position Variable cost Subtota party Wages Employee Name	TY Position SECURITY - Sgt SECURITY - Lt SECURITY	Wcek 1 1 1 1 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1 1 1 1 1 1 1 1 1 1 1 1 1	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%		0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -		100.0 17,4 19,5 16,4 17,1 16,4 16,4 5,3 126,5
Proposed New Positio Variable cost Subtota urty Wages - SECURF Employee Name Increase Scentty Positio Raise Proposed New Positio Variable cost Subtota surty Wages Employee Name Increase Security Positio	TY Position SECURITY - Sgt SECURITY - Sgt SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY aseCURITY SECURITY SECURITY Position Position	Wcek 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1 1 1 1 1 1 1	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%		0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -	0.00%	100.0 17, 19, 16, 17, 16, 16, 16, 5, 126,
Proposed New Positie Variable cost Subtota urty Wages - SECURF Employee Name Increase Scentty Posit Raise Proposed New Positie surty Wages Employee Name Proposed New Positie	I - Hourly Wages TY Position SECURITY - Sgt SECURITY - Lt. SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY II - SECURITY Position Position	Wcek 1 1 1 1 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1 1 1 1 1 1 1 1 1 1 1 1 1	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%		0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - 90,741	68 00% 3,890 4,233 3,661 3,775 3,661 3,661 - 1,294 - - 27,834	6.000% 1.061 1.154 998 1,030 998 998 - - - - - - - - - - - - -	0.00%	100.0 17,4 19,5 16,4 17,1 16,4 16,4 5,3 126,5
Proposed New Positie Variable cost Subtota urly Wages - SECURF Employee Name Employee Name Increase Security Positi Raise Proposed New Positie Variable cost Subtota surly Wages Employee Name Froposed New Positie Variable cost Subtota	Position SECURITY - Sgt SECURITY - Sgt SECURITY - LL SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY AL - SECURITY Position	Wcek 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 14	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%		0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 1,981 - 4,234 - - - - - - - - - - - - -	68 00% 3,890 4,233 3,661 3,661 3,661 - 1,294 - - - - - - - - - - - - -	6.000% 1.061 1.154 998 1,030 998 998 	0.00%	100.0 17,6 19,2 16,6 17,1 16,6 16,6 5,8
Proposed New Positie Variable cost Subtota urty Wages - SECURF Employee Name Increase Scentty Posit Raise Proposed New Positie surty Wages Employee Name Proposed New Positie	Position SECURITY - Sgt SECURITY - Sgt SECURITY - LL SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY AL - SECURITY Position	Wcek 1 1 1 1 1 1 1 20 32 18 Beg Wcek 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 14	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8.50 9.25 8.00 8.25 8.00 8.00 8.00 8.00 7 -	Hours per Week 40 40 40 40 40 40 40 40 40 40 7 40 40 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 0% 0% 0%	72% 72% 72% 72% 72% 72% 72%	22% 22% 22% 22% 22% 22% 22%	6% 6% 6% 6% 6%	0% 0% 0% 0% 0%		0.00% 354 - - - - - - - - - - - - - - - - - - -	26.00% 12,376 13,853 11,981 12,355 11,981 11,981 11,981 - 4,234 - - - 90,741 71.72%	68 00% 3,890 4,233 3,661 3,661 3,661 3,661 3,661 - 1,294 - - 27,834 22,00%	6.000% 1.061 1.154 998 1,030 998 998 - 353	0.00%	100.0 17,4 19,5 16,4 17,1 16,4 16,4 16,5 ,1 126,5 100.0

	Sales	POA	Hosp	Utilities	Const	Total
curr yr empl salary	0.00%	37.19%	55.72%	7.09%	0.00%	100.00%
curr yr empl hrly	0.00%	26.00%	68.00%	6.00%	0.00%	100.00%
curr yr empl front of house	0.28%	71.72%	22.00%	6.00%	0.00%	100.00%
curr yr blended %	0.10%	49.16%	44.09%	6.64%	0.00%	100.00%

DDU16 - 015485

New	Description		Periodl	Period2	Period3	Period4	Period5	Period6	Period7	Period8	Period9	Period10	Period11	Period12	total
Payroll and Rela	ated Expenses														
6001-0000	Employee Compensation	7 087%	1,129	1,129	1,411	1,129	1,129	1,411	1,129	1,129	1,411	1,129	1,129	1,411	14,678
6030-0000	Commission/Bonus	7 087%	248	-	-	248	-	-	248	-	-	319	-	-	1,063
6050-0000	Hourly Wages	6 000%	61	61	96	77	77	96	77	77	96	77	77	96	968
6050-0001	Hourly Wages - Front House	6.000%	557	557	696	557	557	696	557	607	780	624	624	780	7,591
6050-0002	Hourly Wages - Back House	7.087%	-	-	-	-	_	-	-	-	-	-	-	-	-
6100-0000		6.644%	-	-	-	-	-	-	-	-	-		-	-	-
6200-0000	Payroll Burden	6 644%	316	279	352	319	282	352	319	291	367	341	294	367	3,877
6400-0000		6.644%	510	217	-			-	-	-	-		-	-	-
6600-0000		6.644%	33	33	13	13	13	40	40	13	33	13	13	13	272
0000-0000	outer Employee Expense		2,345	2,059	2,569	2,343	2,058	2,595	2,369	2,117	2,687	2,503	2,137	2,668	28,450
Occupancy Expe	ense	-		2,007	2,007	2,5 15	2,000	2,070	2,507	2,117	2,007	2,000	2,107	1,000	20,120
7010-0000		6.644%	50	50	60	50	50	66	60	60	50	37	37	50	618
7020-0000		6.644%	5	7	8	5	8	5	17	7	8	12	12	17	110
7030-0000	Water / Sewer	6.644%	12	5	5	68	101	20	55	73	93	43	37	40	551
7040-0000		6.644%	8	8	5	5	5		5	5	5	8	8	10	77
			74	69	78	128	164	96	136	145	156	99	93	116	1,356
<u> </u>		-										•			
General and Adu		r - 1 10 -	•	-	-	-	-	-	~	-	~	~		-	20
	Cleaning Supplies	6 644%	3	3	3	3	3	3	3	3	3	3	3	3	32
) Smallwares / Tools	6 644%	4	4	4	4	4	4	4	4	4	4	4	4	53
8010-0000	Uniforms	6 644%	-	-	-	183	-	17	-	-	-	-	-	-	199
8015-0000	Office Supplies	6 644%	30	30	28	28	28	28	28	28	28	28	28	28	342
8018-0000	Safety Items	6.644%	3	21	3	3	3	3	3	3	3	3	3	3	58
8020-0000	Other Supplies	6.644%	3	3	5	3	3	5	3	3	5	3	3	5	43
8025-0000	Printing	6.644%	8	8	8	8	8	8	8	8	8	8	8	8	100
8030-0000	Computer Expense	6.644%	10	10	10	10	10	10	10	10	10	10	10	10	120
8035-0000	Postage & Delivery	6.644%	19	19	19	19	19	19	19	19	19	19	19	19	223
8040-0000	Telephone	6 840%	143	143	143	143	143	143	143	143	143	143	143	143	1,711
8045-0000	Mobile Phones / Pagers	6.644%	12	12	105	12	12	12	12	12	12	12	12	12	233
8050-0000	Travel	6 644%	3	3	3	3	3	3	3	3	3	3	3	3	32
8051-0000	Travel-Outlying	6.644%	-	-	-	-	-	-	-	-	-	-	-	-	-
8055-0000	Meals & Entertainment	6.644%	-	2	2	-	2	-	2	-	2	-	2	2	12
8060-0000	Refreshments	6.644%	5	5	5	5	5	5	5	5	5	5	5	5	60
8065-0000	Vehicle Expense	6.644%	53	7	7	7	7	7	7	53	7	7	7	7	173
8070-0000	Vehicle Fuel Expense	6 644%	40	40	40	40	66	47	60	60	86	66	40	40	625
8100-0000	Pest Control	6.644%	7	7	7	7	13	7	7	7	13	7	7	7	93
8110-0000	Landscaping		-	-	-	-	-	_ `		_	-	-	-	-	-
8120-0000	Equipment Lease/Payment	6.510%	111	111	121	111	111	121	111	111	121	111	111	121	1,370
8130-0000	Vehicle Lease/Payment	6.644%		-	-	-	-	-	74	74	74	74	74	74	446
8190-0000	Other Contract Services	6.644%	31	19	23	61	19	33	31	19	54	54	19	23	388
8200-0000	Dues & Subscriptions	6 644%	-		-	-	18		-		2	-		2	21
8210-0000	Training & Education	6 644%	27	4	4	4	4	4	- 4	4	4	4	- 4	4	74
8220-0000	Taxes & Licenses	6 644%	27	7	2	1	10	1	1	1	1	1	1	-	30
8230-0000	Property Taxes	6 644%	10	10	10	10	10	10	10	10	10	10	10	10	120
8250-0000	Professional Fees	6 644%	10	10	10	10	10	10	10	10	10	10	10	10	120
8260-0000	Insurance Expense	6 644%	- 96	- 96	- 96	- 96	- 96	- 96	- 96	- 96	- 96	- 96	- 96	- 96	1,149
8305-0000	-	6 644% 6 644%	96 10	96 10	96 10	96 28	96 28	96 28	96 18	96 18	96 18	96 30	30	90 30	259
	Bank Charges														
8400-0000	R&M Building	6 644%	17	17	17	17	33	27	27	27	27	27	17	17	266
8410-0000	R&M Equipment	6 644%	3	3	7	13	13	13	13	13	13	10	3	3	110
8480-0000	Minor Improvements	6 644%	-	-	-	-	-	-	-	-	-	-	-	-	-
8700-0000	Activities Expense	6.644%	-	-	-	-	-	133	-	-	-	-	-	66	199
8710-0000	Advertising & Promotion	6.644%	-	-	-	-	-	-	-		-	-	-	-	-
	Not Income hofers Non Cost	-	648	591	679	818	671	785	701	2.995	770	<u>737</u> 3,340	<u>661</u> 2.890	743	8,538
	Net Income before Non Cash	-	3,067	2,720	3,326	3,289	2,893	3,476	3,206	2,995	3,614	5,340	2,890	3,527	38,344

RESPONSIVE TO TCUC NO. 2-9

	TCEQ	EXIT INTERVIEW FOR	M: Potential Violations	and/or Records R	lequest			
Regulated Entity/Site Name Double Diamond Utilities- The Cliffs Resort TCEQ Add. ID No. RN No (optional) WQ0002789000								
Investigation Type	CCI	Contact Made In-House (Y/N)	Purpose of Investigation	Mandatory Minor CCI				
Regulated Entity Contact	Josh N	olte	Telephone No.	940-779-2734	Date Contacted	6/12/2015		
Title	Operate	or	FAX #/Email address	utilities@thecliffsre sort.com	FAX/Email date	6/12/2015		

NOTICE: The information provided in this form is intended to provide clarity to issues that have arisen during the investigation process between the TCEQ and the regulated entity named above and *does not represent final TCEQ findings* related to violations. Any potential or alleged violations discovered after the date on this form will be communicated to the regulated entity representative prior to the issuance of a notice of violation or enforcement. Conclusions drawn from this investigation, including additional violations or potential violations discovered (if any) during the course of this investigation, will be documented in a final investigation-report.

	Issue				contact and date due to the ag Other type of issues: fully desc		nd Potentia	l Violation issue	es, include		
No.	Type ¹	Rule Citation (if known)									
1	AV	305.125(1); Monitoring and Reporting Requirements, No. 7.c	Failed to provide notification of any effluent violation which deviates from the permitted effluent limitation by m than 40%. Specifically, during the record review period of September 2012- April 2015, 6 violations which exceed the permitted limit by more than 40% were noted. September 2012: Outfall 001A- TDS mg/L (Daily Average and Max); October2012: Outfall 001A- TDS mg/L (Daily average and Daily Max), Outfall 201A TSS mg/L (daily average).								
2	AV	305.125(5)			device. Specifically, flow n r have the meter calibrated.		were not av	ailable after O	ctober		
3	0		DMR data is still under re	eview. If nece	essary, an additional exit int	terview will be pro	vided.				
4	RR	305.128(a)			n the discharge monitoring n to the Compliance Monito						
5	0		A TCLP of the sewage slu	dge must be	conducted prior to permit e	expiration on May	1, 2019.				
Note 1: 1	Issue Type Can E	Be One or More of: AV (Allege	ed Violation), PV (Potential Viola	tion), O (Other), or RR (Records Request)	· · · · · · · · · · · · · · · · · · ·					
Did th	ne TCEQ docu	ment the regulated entity	named above operating with	out proper au	thorization?	Yes	Ξ	No			
Did th	ne investigator	advise the regulated entity	y representative that continue	ed operation	is not authorized?	Yes	Ξ	No			
			ent establishes only that the regulant via FAX or Email to RE; therefo		representative received a copy of t ture is not required.	his document and assoc	iated continua	tion pages on the	date noted. If		
Monta	ana Bragg			6/12/2015	Josh Nolte						
	In	(nvestigator Name (Signed & Printed) Date Regulated Entity Representative Name (Signed & Printed) Date							Date		

If you have questions about any information on this form, please contact your local TCEQ Regional Office.

Individuals are entitled to request and review their personal information that the agency gathers on its forms. They may also have any errors in their information corrected. To review such information, call 512/239-3282.

Page 1 of 1

From:Nunley, BuckSent:Monday, January 12, 2015 10:44 AMTo:Steve ZawrotnyCc:Rotramel, ChristieSubject:RE: Compliance Documentation NeededAttachments:Schedule.xlsx

Steve,

I will respond via email. If this is not sufficient, please let me know and I will compose a more formal correspondence.

Currently, the Cliffs Resort is operating on a "winter" schedule. Our demand for water is such that we are not required to operate on a 24/7 basis. Our peak summer months would be from May to September. During winter months, we operate the plant 5 to 7 days per week 7:30am to 5:00pm, as needed for demand. If an emergency situation requires continuous operation, one of three water plant employees will operate the plant for 8 hour shifts through the night. I have attached our "on-call" schedule showing operator's expected attendance and shift scheduling if needed. Peak months are highlighted. Please, let me know if any further information is required.

Thank you,

Buck Nunley Regional Director of Utilities Double Diamond Utilities 160 Cliffs Dr. Graford TX 76449 940-779-2734 ofc 940-521-6268 cell 940-779-4560 fax bnunley@thecliffsresort.com

From: Steve Zawrotny [Steve.Zawrotny@tceq.texas.gov] Sent: Wednesday, January 07, 2015 12:05 PM To: Nunley, Buck Subject: Compliance Documentation Needed

Hi Buck,

Thank you for taking the time to speak with me while you are out of town. In regards to the outstanding alleged violation regarding continuous staffing/continual monitoring equipment:

Please send me a statement detailing:

- 1) Current hours of operation for the water plant
- 2) Current staffing schedules showing the plant is staffed during all hours of operation
- 3) A month-by-month breakdown of when the system is operating 24/7 and when the system is operating at reduced hours
- 4) Any other details you deem relevant in documenting the aforementioned information

An Additional Issue will be noted in the report for an inspector to verify, during the next inspection, that the required upgrades have been made to ensure the plant is either staffed or equipped with continuous monitoring equipment with plant shutdown and alarm capabilities at all times that it is in operation.

If you have any questions, please feel free to contact me.

Steve Zawrotny Environmental Investigator Public Water Supply Texas Commission on Environmental Quality Region 4, D/FW 2309 Gravel Drive Ft. Worth, TX 76118-6951 <u>steve.zawrotny@tceq.texas.gov</u> 817-588-5859 Direct Line 817-588-5701 Fax

If you would like to comment on my customer service, you can use the following link: <u>http://www.tceq.texas.gov/customersurvey</u>

Or you can contact my supervisor directly at: <u>jefftate@tceq.texas.gov</u>

From:	Nunley, Buck
Sent:	Tuesday, January 20, 2015 2:33 PM
То:	AmyJean.Katterjohn@tceq.texas.gov
Cc:	Rotramel, Christie
Subject:	WS ID 1820061 SWMOR for August 2014
Attachments:	1820061august2014corrected.pdf

Amy Jean,

After being notified of the alleged violation regarding the August 2014 SWMOR for WS 1820061, I reviewed the SWMOR retained copy of said month. I believe the SWMOR was submitted; however, the drop-down menu for the month selection was inadvertently set to 'JULY.' As you can see in the corrected copy I have attached, I signed the SWMOR in September. I initialed each page where the correction was made.

I assume the attached copy will be sufficient to correct the violation. Please, correct me if I am mistaken. I will compose a public notice, to be included with our next round of billing, notifying our customers of the error. If there is anything else required, please do not hesitate to contact me by phone or email.

Thank you,

Buck Nunley Regional Director of Utilities Double Diamond Resorts 160 Cliffs Dr. Graford TX 76449 940-779-2734 ofc 940-521-6268 cell 940-779-4560 fax bnunley@ddresorts.com Bryan W. Shaw, Ph.D., P.E., *Chairman* Toby Baker, *Commissioner* Jon Niermann, *Commissioner* Richard A. Hyde, P.E., *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution November 6, 2015

RECT NOV 0 9 2015

Mr. Josh Nolte, Operator Double Diamond Utilities 160 Cliffs Drive Graford, Texas 76449

Re: Notice of Compliance with Notice of Violation (NOV) dated July 24, 2015: The Cliffs WWTP, 922 SH 16 S, Graford, Palo Pinto County Regulated Entity: RN 102328515, TCEQ ID: WQ0002789000, EPA ID: TX0099015 Investigation No.1254598

Dear Mr. Nolte:

This letter is to inform you that the Texas Commission on Environmental Quality (TCEQ) Dallas-Fort Worth Regional Office has received adequate compliance documentation on November 5, 2015 to resolve the alleged violations documented during the investigation of the above-referenced regulated entity conducted on June 11, 2015. Based on the information submitted, no further action is required concerning this investigation.

The Texas Commission on Environmental Quality appreciates your assistance in this matter and your compliance efforts to ensure protection of the State's environment. If you or members of your staff have any questions, please feel free to contact Ms. Montana Bragg in the DFW Region-Stephenville Office at 254-965-9200.

Sincerely,

July Jeff Tate, Water Section Manager DFW Region Office

JT:mb

cc: Mr. Randy Gracy, 5495 Belt Line Road, Suite 200, Dallas, TX 75254

TCEQ Region 4-Dallas/Fort Worth • 2309 Gravel Dr. • Fort Worth, Texas 76118-6951 • 817-588-5800 • Fax 817-588-5700

Austin Headquarters: 512-239-1000 • tceq.texas.gov • How is our customer service? tceq.texas.gov/customersurvey printed on recycled paper using vegetable-based ink

DDU16 - 015491 Page 16 of 73 Bryan W. Shaw, Ph.D., P.E., *Chairman* Toby Baker, *Commissioner* Zak Covar. *Commissioner* Richard A. Hyde, P.E.. *Executive Director*

NECT JAN 2 ⁽²⁾ 2015

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

January 21, 2015

Mr. Randy Gracy, President Double Diamond Utility 5495 Belt Line Rd., Ste. 200 Dallas, Texas 76245

Re: Notice of Compliance with Notice of Violation (NOV) dated July 10, 2014: The Cliffs Resort Water System, 160 Cliffs Dr., Graford, Palo Pinto County, Texas RN 101265213, PWS ID No. 1820061, Investigation No. 1170377

Dear Mr. Gracy:

This letter is to inform you that Texas Commission on Environmental Quality (TCEQ) Dallas/Fort Worth (D/FW) Regional Office has received adequate compliance documentation on October 7, 2014, and January 12, 2015, to resolve the alleged violations documented during the investigation of the above-referenced regulated entity conducted on May 21, 2014. Based on the information submitted, no further action is required concerning this investigation. However, please see the enclosed Additional Issue.

The Texas Commission on Environmental Quality appreciates your assistance in this matter and your compliance efforts to ensure protection of the State's environment. If you or members of your staff have any questions, please feel free to contact Mr. Steve Zawrotny at the D/FW Regional Office at (817) 588-5859.

Sincerely,

Charles Marshall Team Leader, Public Water Supply Program Texas Commission on Environmental Quality D/FW Regional Office

CM/sz

cc: Buck Nunley, The Cliffs Resort, 160 Cliffs Dr., Graford, TX 76449

Enclosure: Summary of Investigation Findings (w/o attachments)

TCEQ Region 4-Dallas/Fort Worth • 2309 Gravel Dr. • Fort Worth. Texas 76118-6951 • 817-588-5800 • Fax 817-588-5700

Austin Headquarters: 512-239-1000 • tceq.texas.gov • How is our customer service? tceq.texas.gov/customersurvey

Sector Summary of Investigation Eindings

CLIFFS THE

PALO PINTO COUNTY,

Investigation # 1216334 Investigation Date: 12/30/2014

Additional ID(s): 1820061

A COLORADOR NONE NO LED AND LES OLVED

Track No: 539800 30 TAC Chapter 290.42(f)(1)(E)(ii)(ii)

Alleged Violation:

Investigation: 1170377

Comment Date: 06/26/2014

290.42(f)(1)(E)(ii)(II) – Failure to have a containment area for the chemical storage facility. The containment area must be able to hold 110% of the total volume of the containers. No containment was provided for the chemical drum storage area. Investigation: 1216334 Comment Date: 12/22/2014

Failure to provide spill containment in the chemical storage area.

30 TAC §290.42(f)(1)(E)(ii)(II) Common containment for multiple containers that are not interconnected must be large enough to hold the volume of the largest container with a minimum freeboard of six vertical inches or to hold 110% of the total volume of the container(s), whichever is less.

On the day of the investigation, May 21, 2014, the investigator observed there was no spill containment for the drums located in the chemical storage area. On October 7, 2014, The Cliffs Resort submitted compliance documentation, which included a photograph of a newly constructed spill containment area in the chemical storage area. This appears to resolve the alleged violation.

Recommended Corrective Action: Provide a containment area for the chemical storage area. Submit documentation to the Region 4 office by the compliance due date showing that the violation has been corrected.

Resolution: On October 7, 2014, The Cliffs Resort submitted compliance documentation, which included a photograph of a newly constructed spill containment area in the chemical storage area. This appears to resolve the alleged violation.

Track No: 539802 30 TAC Chapter 290.46(e)(6)(C)

Alleged Violation:

Investigation: 1170377

Comment Date: 06/30/2014

290.46(e)(6)(C) - Failure to provide continuous turbidity and disinfectant residual monitors with automatic plant shutdown and alarms to summon operators so as to ensure that the water produced continues to meet the commission's drinking water standards during periods when the plant is not staffed.

The system does not have at least one Class "C" or higher surface water operator on duty at the plant when it is in operation. The plant operates continually but is only staffed for eight to twelve hours a day. There are no automatic plant shutdown and alarms to summon operators. Investigation: 1216334 Comment Date: 01/05/2015

Failure to provide staffing when the plant is in operation or provide continuous turbidity and disinfectant residual monitors with automatic plant shutdown and alarms to summon

Summary of Investigation Findings

Page 1 of 2

30 TAC §290.46(e)(6)(C) Each surface water treatment plant must have at least one Class "C" or higher surface water operator on duty at the plant when it is in operation or the plant must be provided with continuous turbidity and disinfectant residual monitors with automatic plant shutdown and alarms to summon operators so as to ensure that the water produced continues to meet the commission's drinking water standards during periods when the plant is not staffed.

On the day of the investigation, it was observed that the surface water treatment plant (SWTP) operated continuously, but did not have continuous turbidity and disinfectant residual monitors with alarms and plant shutdown capabilities and a licensed operator was only present eight to twelve hours a day.

Recommended Corrective Action: Provide at least one Class "C" or higher surface water operator on duty at the plant when it is in operation or provide the plant with continuous turbidity and disinfectant residual monitors with automatic plant shutdown and alarms to summon operators so as to ensure that the water produced continues to meet the commission's drinking water standards during periods when the plant is not staffed.

Resolution: On January 12, 2015, The Cliffs Resort submitted a statement and a staffing schedule indicating that the water system is currently not operating around the clock and that water system personnel are staffed at all times the plant is in operation. It appears that the water system is compliant at this time and the alleged violation will be resolved.

ADDITONAL SEVES

Description Item 3

Additional Comments

Please be aware that the surface water treatment plant must be staffed at all times it is in operation or it must have continuous turbidity and disinfectant residual monitors with alarms and plant shutdown capabilities at all times it is in operation. The status of these requirements will be reviewed during the next comprehensive compliance investigation and evaluated for compliance with applicable TCEQ regulations.

Summary of Investigation Findings

Page 2 of 2

Bryan W. Shaw, Ph.D., P.E., Chairman Toby Baker, Commissioner Richard A. Hyde, P.E., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution

July 24, 2015

CERTIFIED MAIL 7012 2210 0002 0781 2942 RETURN RECEIPT REQUESTED

ET JUL 2 7 2015

Mr. Josh Nolte, Operator Double Diamond Utilities 160 Cliffs Drive Graford, Texas 76449

Re: Notice of Violation for Comprehensive Compliance Investigation at: The Cliffs WWTP, 922 SH 16 S, Graford, Palo Pinto County Regulated Entity: RN 102328515, TCEQ ID: WQ0002789000, EPA ID: TX0099015

Dear Mr. Nolte:

On June 11, 2015, Montana Bragg of the Texas Commission on Environmental Quality (TCEQ) Dallas-Fort Worth Region Office conducted an investigation of the above-referenced regulated entity to evaluate compliance with applicable requirements for wastewater treatment. Enclosed is a summary which lists the investigation findings. During the investigation, certain outstanding alleged violations were identified for which compliance documentation is required. Please submit to this office by **August 24, 2015** a written description of corrective action taken and the required documentation demonstrating that compliance has been achieved for each of the outstanding alleged violations.

In the listing of the alleged violations, we have cited applicable requirements, including TCEQ rules. Please note that both the rules themselves and the agency brochure entitled Obtaining TCEQ Rules (GI 032) are located on our agency website at http://www.tceq.state.tx.us for your reference. If you would like a hard copy of this brochure mailed to you, you may call and request one from either the DFW Region Office at 817-588-5800 or the Central Office Publications Ordering Team at 512-239-0028.

The TCEQ appreciates your assistance in this matter. Self-reported effluent violations may be subject to formal enforcement, including penalties, upon review by the Enforcement Division. Please note that the Legislature has granted TCEQ enforcement powers which we may exercise to ensure compliance with environmental regulatory requirements. We anticipate that you will resolve the alleged violations as required in order to protect the State's environment. If you have additional information that we are unaware of, you have the opportunity to contest the violation documented in this notice. Should you choose to do so, you must notify the DFW Region Office within 10 days from the date of this letter. At that time, Jeff Tate, Water Section Manager will schedule a violation review meeting to be conducted within 21 days from the date of this letter.

TCEQ Region 4-Dallas/Fort Worth • 2309 Gravel Dr. • Fort Worth, Texas 76118-6951 • 817-588-5800 • Fax 817-588-5700 Austin Headquarters: 512-239-1000 • tceq.texas.gov • How is our customer service? tceq.texas.gov/customersurvey

Headquarters: 512-239-1000 • tceq.texas.gov • How is our customer service? tceq.texas.gov/customer printed on recycled paper Josh Nolte Page 2 July 24, 2015

However, please be advised that if you decide to participate in the violation review process, the TCEQ may still require you to adhere to the compliance schedule included in the attached Summary of Investigation Findings until an official decision is made regarding the status of any or all of the contested violations.

If you or members of your staff have any questions, please feel free to contact Ms. Montana Bragg in the DFW Region- Stephenville Office at 254-965-9200.

Sincerely,

mit m

∠Jeff Tate, Water Section Manager DFW Region Office

JT:mb

Enclosure:

Summary of Investigation Findings Sample Results and COC DMR Table

cc:

Randy Gracy, President (w/ enclosures) Double Diamond Utilities Co. 5495 Belt Line Road, Suite 200 Dallas, Texas 75234

Summary of Investigation Findings

DOUBLE DIAMOND DBA THE CLIFFS RESORT

GRAFORD, PALO PINTO COUNTY, TX 76449

Investigation # 1254598 Investigation Date: 06/11/2015

Additional ID(s): WQ0002789000

TX0099015

OUTSTANDING ALLEGED VIOLATION(S) ASSOCIATED TO A NOTICE OF VIOLATION

Track No: 575197 Compliance Due Date: 08/24/2015 30 TAC Chapter 305.125(1) PERMIT WQ0002789000, Page 6 Monitoring and Reporting Requirements, No. 7.c

Alleged Violation:

160 CLIFFS DR

Investigation: 1254598

Comment Date: 07/07/2015

Failed to provide notification of any effluent violation which deviates from the permitted effluent limitation by more than 40%. Specifically, during the record review period of September 2012- April 2015, 6 violations which exceeded the permitted limit by more than 40% were noted. September 2012: Outfall 001A- TDS mg/L (Daily Average and Daily Max); October2012: Outfall 001A- TDS mg/L (Daily average and Daily Max), Outfall 201A TSS mg/L (daily average); December 2014: Outfall 201A TSS mg/L (daily average).

Recommended Corrective Action: Noncompliance notification shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. Submit the required noncompliance notifications. Also, submit documentation outlining the steps taken to ensure the proper notification of effluent violations.

Track No: 577276 Compliance Due Date: 08/24/2015 30 TAC Chapter 305.128(a)

Alleged Violation:

Investigation: 1254598

Comment Date: 07/23/2015

Failed to provide an authorized signature on the discharge monitoring reports (DMRs). Specifically, the DMRs Signatory Authority Form was outdated as of May 2015, when the previous operator and DMR signatory was replaced with Mr. Notle. An authorized signature is required on the discharge monitoring reports (DMRs). A copy of the DMR Address and Signatory Authority Form was sent to the operator with the Exit Interview on June 12, 2015. Recommended Corrective Action: DMRs shall be signed by a duly authorized representative. Please complete and submit a DMR Address and Signatory Authority Form to the Compliance Monitoring Team (MC 224) and the DFW Region Office.

Track No: 577277 Compliance Due Date: 08/24/2015 30 TAC Chapter 319.1

Alleged Violation: Investigation: 1254598

Comment Date: 07/24/2015

Failed to accurately complete the discharge monitoring reports (DMRs). Specifically,

Outfall 001 Chloride Daily Maximum mg/L and Chloride Daily Average mg/L were reported incorrectly during the period of June 2014-May 2015;

Outfall 001 Total Dissolved Solids Daily Average mg/L was reported incorrectly during the months of March 2015 and May 2015;

Summary of Investigation Findings

Page 1 of 3

Outfall 001 Total Dissolved Solids Daily Maximum mg/L was reported incorrectly during the months of June 2014-May 2015;

Outfall 301 Chloride Daily Maximum mg/L was reported incorrectly during the month of August 2014;

Outfall 301 Chloride Daily Average mg/L was reported incorrectly during the month of March 2015;

Outfall 301 Total Dissolved Solids Daily Average mg/L was reported incorrectly during the months of August 2014, March 2015 and May 2015;

Outfall 301 Total Dissolved Solids Daily Maximum mg/L was reported incorrectly during the month of March 2015 and May 2015;

Outfall 101 TDS Daily Average mg/L and Daily Maximum mg/L was reported incorrectly during the month of May 2015.

See the attached table.

Recommended Corrective Action: All effluent data must be accurately reported on all DMRs. Correct and resubmit the DMRs for the period of June 2014 to July 2015 to the DFW Region Office and the Enforcement Division (MC 224).

Track No: 575296

2D TWC Chapter 26.121(a) 2D TWC Chapter 26.121(a)(1) 2D TWC Chapter 26.121(a)(3) 2D TWC Chapter 26.121(b) 2D TWC Chapter 26.121(c) 2D TWC Chapter 26.121(d) 2D TWC Chapter 305.125(4) 30 TAC Chapter 305.125(5) TWC Chapter 26.121 TWC Chapter 26.121 TWC Chapter 26.121(a)(2) PERMIT WQ0002789000, Permit Conditions, No. 2.g

Alleged Violation:

Investigation: 1254598

Comment Date: 07/22/2015

Failed to prevent the unauthorized discharge of wastewater. Specifically, during the 18 months preceding the investigation, 1 unauthorized discharge was reported. This discharge occurred August 20, 2013 and was a 50 gallon discharge from the collection system. Resolution: Compliance has been maintained since September 2013.

ADDITIONAL ISSUES

Description

Is sludge analysis conducted for all the required parameters? Are the annual sludge reports submitted, as required by the permit?

Additional Comments

A TCLP of the sewage sludge must be conducted prior to permit expiration on May 1, 2019. The Annual Sludge Report is due in the DFW Region Office and the Water Quality Compliance Monitoring Team by September 1 of each year.

Summary of Investigation Findings

Page 2 of 3

DOUBLE DIAMOND DBA	THE CLIFFS RESORT
--------------------	-------------------

Were the required records maintained and available for review during the investigation?

ORT Investigation # 1254598 The flow meter calibrations were not available after October 2013. Documentation of the calibrations occurring on April 24, 2014 and February 6, 2015 were received in the Region office on June 16, 2015.

Summary of Investigation Findings

Page 3 of 3

INVESTIGATION SAMPLE RESULTS

Regulated Entity Name: Double Diamond Utilities- The Cliffs Resort WWTP

Authorization ID(s): WQ0002789000, TX0099015

Date of Investigation: June 11, 2015

٠

Sampling Location & Parameter	Measured Value	Authorized. Limit	Type Sample	COCIDNO	Primary Source of Wastewater
Outfallion.					Previously smonitored effluent from Outfall 101 and 201
Flow, MG	0.0748		Total daily flow		
BOD5 (mg/l)	3	65	Grab	W001786-01	
TSS (mg/l)	15	65	Grab	W001786-01	
TDS (mg/l)	2010 (Reportable increase: 570)*	3000* .	Grab	W001786-01	
Chlorid e (mg/l)	853 (Reportable increase: 217)*	NA*	Grab	W001786-01	
pH (SU)	7.33	6.0-9.0	Grab		
Outtall 101					Reverse osmosis
Flow, MG	0.0748		Total daily flow		
TDS (mg/l)	4060	13,100	Grab	W001786-02	
Outfall 201					Domestic
Flow, MGD	No Discharge	<u> </u>	-		
TSS (mg/l)	No Discharge	45	Grab		
BOD5 (mg/l)	No Discharge	45	Grab		
E. coli	No Discharge	NA	Grab		
Chlorine (mg/l)	No Discharge	1.0-4.0	Grab		
pH (SU)	No Discharge	6.0-9.0	Grab		
Outfall:301					Influent from Bossum Kingdom Ibake
TDS (mg/!)	1440	NA	Grab	W001786-03	
Chloride (mg/l)	636	NA	Grab	W001786-03	

*increase over lake feed to water treatment plant monitored at Outfall 301.

·	سلنصف		A65613	·						·	tody					A856			¥	1	00	1786
Send to: A Houston Labor Phone: 201-45 TCEQ	atory 7-5229		agion: <u>O</u> implet Na implet ph	mar	_ Or / Numb	ganiza <u>MOJ</u> per:	11101 11 140 251	Na 1	04 165	рса с (029) - 9	ode: 0] 200	<u> 631</u> _ Sai		Prografi Signatur E-Mail I	n: re;/		1+C	D	Ural B-	Lag	b/ Cea·T	thas.go
	Sample ID	Sam	pilog	Comp		Matrix Se line	ol Tiers	Contai Preșer	ners" Valives"	P.		1			1	1		Ē				
		Date	Ţime ibi a m					Penallyco	1	<u></u> 8/8	<u>/</u>	3/3		10 / A	1/3		/	_	/		Remai	
	01 02	911/15 1911/15	10:37 10:30		$\overline{\mathbf{v}}$		1)]		X.		× 			X X	X				N₀ N≀	npo on f	iable Vota b	-00 e 101
	03 04	11115	10:31		Y	Ľ,	1							X	X	RE Ø	1 571 1	- × /	Nov	~ ·	table	2 301
	- 05								- · ·							JUL	23	233				
	107:		<u>;</u>													REG	TCE ON 4	2 5'	E	<u> </u>		
A STATE RELINQUISHE	- 08 D'BY		DAT				, and the second se		IECEIV	ED,BY				VE					DRILA	ENUS	VONEY	
Montana Bragg	· · · · ·		@///		4:0		FC 15.5	de/ z	Q.				6///	115; 115;	felt 1-00 2915		Construction of the local sector of the local	edion				NE N
Shipper Name: Fect:		Ciónr Giáns			la58	· · ·	/ = VOA	Vials	Ø=	Olher	34			14-9	Ø			ica).			Зсу i	
"Preservalivess" <u>1 - ice.</u> TCECi-20646 (Rev. Qto)	2=1	4,SO,	3 = HC While (Oil		Lep		i = HNO	a	5	Nay Yopovy - 1		G = Olhe	ſ		Pi	- Collex	1.870					

.

DDU16 - 015501 Page 26 of 73

.

5144 East Sam Houston Parkway North Houston, Texas 77015 Phone: (281) 457-5229 Fax: (281) 457-9107 Contact: Jesus Salas - Work Leader

Rajan Geevarghese - Work Leader

7/23/2015 8:47:49AM

Hi Montana,

The sample results for COC # W001786-01, Sample # AA65613 are attached to this email within this PDF document.

The Staff of the TCEQ Houston Laboratory appreciates your business and continued support.

A copy of the Chain of Custody will be sent in a separate email.

Please contact us at (281) 457-5229 if you are in need of assistance.

Thank you,

Texas Commission on Environmental Quality Houston Laboratory 5144 East Sam Houston Parkway North Houston, Texas 77015 (281) 457-5229 (Main) (281) 457-9107 (Fax)

14	5144 East Sam Houston Parkway North
	Houston, Texas 77015
- 3	Phone: (281) 457-5229
	Fax: (281) 457-9107
	Contact
a second	Jesus Salas - Work Leader
· · · · · · · · · · · · · · · · · · ·	Rajan Geevarghese - Work Leader

TCEQ Laboratory Report of Analysis LELAP Certificate #04167 Page 2 of 2

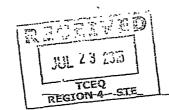
7/23/2015 8:47:49AM

TCEQ Sample #: AA65613 Program: Water Quality Monitoring Sample Collected: 06/11/2015 10:37 Sample Received: 06/12/2015	Sample Matrix: LIQU	V001786-01 ID 1.bragg@lceq.texas.	gov	Region: 4 Organization #: 0 Work #: 96308 Permit #:	6104
Sample Depth:	CL2R:	Field pH:		Conductivity:	
Collection Site: GRAB					
CONSTITUENT	RESULT	QUAL	UNIT	ANALYSIS DATE	METHOD
BOD, 5-Day	3		mg/L	06/12/2015 10:55	SM 5210 B-2001
Chloride	853		mg/L	06/19/2015 15:03	EPA 300.0 R2.1
Total Dissolved Solids	2010		mg/L	06/18/2015 08:55	SM 2540 C-1997
Total Suspended Solids	15		mg/L	06/12/2015 14:00	SM 2540-D-1997
Volatile Suspended Solids	<5		mg/L	06/12/2015 14:00	SM 2540-E-1997

BOD52 Method:

Note Text: One or more dilution water blanks exhibited a dissolved oxygen uptake of >0.2 mg/L, suggesting the reported result may be biased high.

> End of Report for TCEQ Sample Number: AA65613


Laboratory Approval:

۰.

This report contains results generated by the TCEQ Houston Laboratory. All solid results are calculated on a dry weight basis. The results reported meet the requirements of the current NELAP Standard.

E

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately and delete all copies of the message.

Please fill out our customer feedback form at the following web address:

http://home.tceg.state.tx.us/internal/water/water_guality_planning/lab/index.shtml

Report #1437641304001

. · ·

Rpt16Final Report-Last Modified 02/11/15

Jul 23, 2015

7/7/2015 8:49:30AM

Hi Montana,

ŕ

The sample results for COC # W001786-02, Sample # AA65614 are attached to this email within this PDF document.

The Staff of the TCEQ Houston Laboratory appreciates your business and continued support.

A copy of the Chain of Custody will be sent in a separate email.

Please contact us at (281) 457-5229 if you are in need of assistance.

Thank you,

Texas Commission on Environmental Quality Houston Laboratory 5144 East Sam Houston Parkway North Houston, Texas 77015 (281) 457-5229 (Main) (281) 457-9107 (Fax)

5144 East Sam Houston Parkway North Houston, Texas 77015 Phone: (281) 457-5229 Fax: (281) 457-9107 Contact: Jesus Salas - Work Leader Rajan Geevarghese - Work Leader	TCEQ Laboratory Report of Analysis 7/7/2015 8:49:30AM	LELAP Certificate #04167 Page 2 of 2
TCEQ Sample #: AA65614 Program: Water Quality Monitoring Sample Collected: 06/11/2015 10:30 Sample Received: 06/12/2015	Chain of Custody #: W001786-02 Sample Matrix: LIQUID Collected By: montana.bragg@lceq.texas.gov	Region: 4 Organization #: 06104 Work #: 96308 Permit #:
Sample Depth: Collection Site: -GRAB	L2R: Field pH:	Conductivity:
CONSTITUENT Total Dissolved Solids	RESULT QUAL UNIT 4060 mg/L	ANALYSIS DATE METHOD 06/18/2015 08:55 SM 2540 C-1997
Er Laboratory Approval:	d of Report for TCEQ Sample Number: AA65614	- Jul 07, 2015

This report contains results generated by the TCEQ Houston Laboratory. All solid results are calculated on a dry weight basis. The results reported meet the requirements of the current NELAP Standard.

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately and delete all copies of the message.

> RECEIVED JUL 07 255 TCEQ REGION 4-STE

Please fill out our customer feedback form at the following web address:

http://home.tceg.state.tx.us/internal/water/water_quality_planning/lab/index.shtml

Report #1436259006001

.

Rpt16Final Report-Last Modified 02/11/15

5144 East Sam Houston Parkway North Houston, Texas 77015 Phone: (281) 457-5229 Fax: (281) 457-9107 lesus Salas - Work Leader

- Work Leader

7/15/2015 9:31:00AM

Hi Montana,

The sample results for COC # W001786-03, Sample # AA65615 are attached to this email within this PDF document.

The Staff of the TCEQ Houston Laboratory appreciates your business and continued support.

A copy of the Chain of Custody will be sent in a separate email.

Please contact us at (281) 457-5229 if you are in need of assistance.

Thank you,

. .

Texas Commission on Environmental Quality Houston Laboratory 5144 East Sam Houston Parkway North Houston, Texas 77015 (281) 457-5229 (Main) (281) 457-9107 (Fax)

RECEIVED)
JUL 1 5 20:5	
TCEQ REGION 4 - STE	

5144 East Sam Houston Parkway Nort Houston, Texas 77015 Phone: (281) 457-5229 Fax: (281) 457-9107 Contact: Jesus Salas - Work Leader Rajan Geevarghese - Work Leader	TCI Rep	EQ Laborat ort of Analy 5/2015 9:31:00AM	•	LEL	AP Canificate #04167 Page 2 of 2
TCEQ Sample #: AA65615 Program: Water Quality Monitoring Sample Collected: 06/11/2015 10:31 Sample Received: 06/12/2015	Chain of Custody i Sample Matrix: Collected By: m	k: W001786-03 LIQUID kontana.bragg@tceq	lexas.gov	Region: 4 Organization #: 0 Work #: 96308 Permit #:	6104
Sample Depth:	L2R:	Field pH	:	Conductivity:	
Collection Site: -GRAB					
CONSTITUENT Chloride Total Dissolved Solids	RE 63 14	•	UNIT mg/L mg/L	ANALYSIS DATE 06/19/2015 15:46 06/18/2015 08:55	METHOD EPA 300.0 R2.1 SM 2540 C-1997
Eaboratory Approval:	nd of Report for TCE	Q Sample Number	AA65615	Jul 15, 2	015
This report contains results generated by basis. The results reported meet the re				i on a dry weight	

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately and delete all copies of the message.

Please fill out our customer feedback form at the following web address:

http://home.tceg.state.tx.us/internal/water/water_guality_planning/lab/index.shtml

Report #1436952693001

Rpt16Final Report-Last Modified 02/11/15

DDU16 - 015507

			Chlorid	de.		TDS	
	5	iamples		increase to	Samples		increase to
June 2014 Samples	a	at 001	at 301	report for 001	at 001	at 301	report for 001
	1	2120					1996
	2	2100	1			2540	1616
	3	2000			3940	the second second second	
	4	2175			4680		
average		2098.75	1266.25	832.5	4320	2496	1824
			Chiorie	de		TDS	
	S	iamples	Samples	increase to	Samples	Samples	increase to
luly 2014 Samples	a	t 001	at 301	report for 001	at 001	at 301	report for 001
	1	2000	1250	750	4021	2434	1587
	2	2200	1130	1070	4228	2508	1720
	3	1900	1360	540	3840	1839	2001
	4	2120	1280	840	4096	2304	1792
	5	2140	1300	840	4696	2496	2200
iverage		2072	1264	808	4176.2	2316.2	1860
			Chlorie	de		TDS	
		iamples	•	increase to	Samples		increase to
August 2014 Samples	a	t 001	at 301	report for 001	at 001	at 301	report for 001
	1	1810	2780	-970	3632	.2780	852
	2	1960	2424	-464	3732	2424	1308
	3	2100	2616	-516	4240	2616	1624
	4	2300	2696	-396	4764	2696	2068
average		2042.5	2629	-586.5	4092	2629	1463
		amataa	Chlorie		Samalar	TDS	increase to
September 2014 Samples	a	iamples at 001	Samples at 301	increase to report for 001	at 001	Samples at 301	increase to report for 001
September 2014 Samples	, a 1	nt 001 2420	Samples at 301 1420	increase to report for 001 1000	at 001 3012	Samples at 301 2764	report for 001 248
September 2014 Samples	a 1 2	nt 001 2420 2410	Samples at 301 	increase to report for 001 1000 1010	at 001 3012 4924	Samples at 301 2764 2708	report for 001 248 2216
September 2014 Samples	a 1 2 3	at 001 2420 2410 2520	Samples at 301 	increase to report for 001 1000 1010 1130	at 001 3012 4924 5096	Samples at 301 2764 2708	report for 001 248 2216 2224
September 2014 Samples	a 1 2 3 4	2420 2420 2410 2520 2680	Samples at 301 1420 1400 1390 1400	increase to report for 001 1000 1010 1130	at 001 3012 4924 5096 5240	Samples at 301 2764 2708 377 2872 2468	report for 001 248 2216 2224 2772
	a 1 2 3	2420 2410 2520 2680 2100	Samples at 301 1400 1390 1400 1390	increase to report for 001 1000 1010 1130 1280 710	at 001 3012 4924 5096 5240 4516	Samples at 301 2764 2708 2708 2468 2748	report for 001 248 2216 2224 2772 1768
	a 1 2 3 4	2420 2420 2410 2520 2680	Samples at 301 1400 1390 1400 1390	increase to report for 001 1000 1010 1130 1280 710	at 001 3012 4924 5096 5240	Samples at 301 2764 2708 377 2872 2468	report for 001 248 2216 2224 2772
	1 2 3 4 5	et 001 2420 2410 2520 2680 2100 2426	Samples at 301 1400 1390 1400 1390 1400 Chlorid	increase to report for 001 1000 1130 1280 710 1026 de	at 001 3012 4924 5096 5240 4516 4557.6	Samples at 301 2764 2708 2708 2468 2748 2748 2712 TDS	report for 001 248 2216 2224 2772 1768 1845.6
werage	1 2 3 4 5	at 001 2420 2410 2520 2680 2100 2426	Samples at 301 1400 1390 1400 1390 1400 1400 Chlorie Samples	Increase to report for 001 1000 1130 1230 710 1026 de increase to	at 001 3012 4924 5096 5240 4516 4557.6 Samples	Samples at 301 2764 2708 2468 2748 2748 2712 TDS Samples	report for 001 248 2216 2224 2772 1768 1845.6 increase to
werage	1 2 3 4 5 5	et 001 2420 2410 2520 2680 2100 2426 amples et 001	Samples at 301 1400 1390 1400 1390 1400 1400 Chlorie Samples at 301	Increase to report for 001 1000 1130 1230 710 1026 de increase to report for 001	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001	Samples at 301 2764 2708 2468 2748 2712 TDS Samples at 301	report for 001 248 2216 2224 2772 1768 1845.6 increase to report for 001
werage	1 2 3 4 5 \$ 1	t 001 2420 2410 2520 2680 2100 2426 amples t 001 1200	Samples at 301 1400 1390 1400 1390 1400 Chlorid Samples at 301	Increase to report for 001 1000 1130 1230 710 1026 de increase to report for 001 -200	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268	Samples at 301 2764 2708 2468 2748 2712 TDS Samples at 301 2840	report for 001 248 2216 2224 7772 1768 1845.6 increase to report for 001 -572
average	1 2 3 4 5 5	at 001 2420 2410 2520 2680 2100 2426 2426 amples at 001 1200 2040	Samples at 301 1420 1400 1390 1400 1390 1400 Chlorid Samples at 301 1400 1380	Increase to report for 001 1000 1130 1280 710 1026 de increase to report for 001 -200 660	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044	Samples at 301 2764 2708 7708 2748 2748 2712 TDS Samples at 301 2840 2598	report for 001 248 2216 2224 2772 1768 1845.6 increase to report for 001 -572 1846
average	a 1 2 3 4 5 5 8 8 1 2 3	at 001 2420 2410 2520 2680 2100 2426 2426 2426 100 2426 2426 2426 2426 2426 2426 2426 24	Samples at 301 	Increase to report for 001 1000 1130 1220 710 1026 de increase to report for 001 -200 660 1100	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500	Samples at 301 2764 2708 2468 2748 2748 2712 TDS Samples at 301 2840 2598	report for 001 248 2216 2224 2772 1768 1845.6 increase to report for 001 -572 1446 -384
iverage October 2014 Samples	1 2 3 4 5 5	at 001 2420 2410 2520 2680 2100 2426 amples at 001 1200 2040 2500 2900	Samples at 301 1420 1400 1390 1400 1390 1400 Chiork Samples at 301 1400 1380 1400 1390	Increase to report for 001 1000 1130 1230 710 1026 de increase to report for 001 -200 660 1100	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2900	Samples at 301 2764 2708 2708 2748 2748 2748 2748 2748 2748 2749 2840 2598 2844 2598 2844 2644	report for 001 248 2216 2224 7772 1768 1845.6 increase to report for 001 -572 1446 -384 256
average October 2014 Samples	a 1 2 3 4 5 5 8 8 1 2 3	at 001 2420 2410 2520 2680 2100 2426 2426 2426 100 2426 2426 2426 2426 2426 2426 2426 24	Samples at 301 	Increase to report for 001 1000 1130 1280 710 1026 de increase to report for 001 -200 660 1100	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500	Samples at 301 2764 2708 2708 2748 2748 2748 2748 2748 2748 2749 2840 2598 2844 2598 2844 2644	report for 001 248 2216 2224 2772 1768 1845.6 increase to report for 001 -572 1446 -384 256
average October 2014 Samples	a 1 2 3 4 5 5 8 8 1 2 3 4	at 001 2420 2410 2580 2680 2100 2426 2426 2426 2426 2426 2426 2426 24	Samples at 301 1400 1390 1400 1390 1400 Chlork Samples at 301 1400 1380 1390 1392.5 Chlork	Increase to report for 001 1000 1130 1230 710 1026 de increase to report for 001 -200 660 1100 767.5	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2900 2928	Samples at 301 2764 2708 2708 2708 2748 2748 2748 2748 2748 2748 2748 274	report for 001 248 2216 2224 7772 1768 1845.6 increase to report for 001 -572 1646 -384 256 186.5
iverage October 2014 Samples Iverage	a 1 2 3 4 5 5 8 8 1 2 3 4 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	at 001 2420 2410 2520 2680 2100 2426 2426 2426 1200 2040 2500 2900 2160	Samples at 301 	Increase to report for 001 1000 1130 1280 710 1026 de increase to report for 001 -200 660 1100 5110 767.5	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2900 2928 Samples	Samples at 301 2764 2708 2708 2708 2468 2748 2748 2712 TDS Samples 301 2840 2598 2644 2741.5 TDS Samples	report for 001 248 2216 2224 7772 1768 1845.6 1845.6 1845.6 -384 256 186.5
iverage October 2014 Samples Iverage	a 1 2 3 4 5 5 8 4 2 3 4 5 8 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	amples to 001 2420 2410 2520 2680 2100 2426 2426 2426 2426 2426 2426 2420 2500 2500 2900 2160	Samples at 301 1420 1400 1390 1400 1390 1400 Chiork Samples at 301 1400 1390 1390 1392.5 Chiork Samples at 301	Increase to report for 001 1000 1010 1130 710 1025 de increase to report for 001 -200 660 1100 1510 767.5 de increase to report for 001	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2900 2928 Samples at 001	Samples at 301 2764 2708 2768 2768 2764 2768 2748 2712 TDS Samples at 301 2840 2598 	report for 001 248 2216 2224 2772 1768 1845.6 1845.6 -372 -374 -374 256 186.5
iverage October 2014 Samples Iverage	a 1 2 3 4 5 5 3 4 2 3 4 5 3 4 1 2 3 4	t 001 2420 2410 2520 2680 2100 2426 300 2426 1200 2040 2500 2040 2500 2160 2160 300 2160 1700	Samples at 301 1420 1400 1390 1400 1390 1400 Chiork Samples at 301 1400 1390 1392,5 Chiork Samples at 301	Increase to report for 001 1000 1010 1130 710 1026 de increase to report for 001 -200 660 100 1510 767.5 de increase to report for 001 300	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2928 Samples at 001 3218	Samples at 301 2764 2708 2762 2708 2708 2708 2748 2748 2748 2748 2748 2748 2748 274	report for 001 248 2216 2224 2272 1768 1845.6 increase to report for 001 -384 256 186.5 increase to report for 001 534
iverage October 2014 Samples Iverage	a 1 2 3 4 5 5 3 4 2 3 4 2 3 4 5 3 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	at 001 2420 2410 2580 2680 2100 2426 300 2426 300 2040 2500 2040 2500 2160 2160 300 2160 1700 1740	Samples at 301 1400 1390 1400 1390 1400 1390 Chloric Samples at 301 1400 1380 1392.5 Chloric Samples at 301 1400 1390.1392.5	Increase to report for 001 1000 1010 1130 1230 710 1026 de increase to report for 001 -200 660 1100 1510 767.5 de increase to report for 001 300	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2900 2928 Samples at 001 3218 3104	Samples at 301 2764 2708 2708 2708 2708 2708 2748 2748 2748 2748 2748 2840 2598 2644 2741.5 TDS Samples at 301 2644 2741.5 TDS Samples at 301	report for 001 248 2216 2224 2772 1768 1845.6 increase to report for 001 -572 1446 -384 256 186.5 increase to report for 001 534 604
average October 2014 Samples average	a 1 2 3 4 5 5 3 4 2 3 4 5 3 4 2 3 4 2 3 4 2 3	amples to 001 2420 2410 2580 2680 2100 2426 300 2426 300 2426 2500 2040 2500 2900 2160 300 2160 1700 1740 1740	Samples at 301 	Increase to report for 001 1000 1010 1130 1220 710 1026 de increase to report for 001 -200 660 1100 1510 767.5 de increase to report for 001 300 400 140	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2900 2928 Samples at 001 3218 3104 2624	Samples at 301 2764 2764 2764 2762 2468 2748 2712 TDS Samples at 301 2840 2598 2644 2741.5 TDS Samples at 301 26644 2500 2592	report for 001 248 2216 2224 2772 1768 1845.6 increase to report for 001 -572 1446 -384 256 186.5 increase to report for 001 534 604 32
September 2014 Samples average October 2014 Samples average November 2014 Samples	a 1 2 3 4 5 5 3 4 2 3 4 2 3 4 5 3 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	at 001 2420 2410 2580 2680 2100 2426 300 2426 300 2040 2500 2040 2500 2160 2160 300 2160 1700 1740	Samples at 301 1400 1390 1400 1390 1400 1390 Chloric Samples at 301 1400 1380 1392.5 Chloric Samples at 301 1400 1390.1392.5	Increase to report for 001 1000 1130 1230 710 1026 de increase to report for 001 -200 660 1100 1510 767.5 de increase to report for 001 300 140 400	at 001 3012 4924 5096 5240 4516 4557.6 Samples at 001 2268 4044 2500 2900 2928 Samples at 001 3218 3104	Samples at 301 2764 2708 2708 2708 2708 2748 2748 2748 2748 2748 2748 2840 2598 2840 2598 2644 2741.5 TDS Samples at 301 2654 2592 2592 2624	report for 001 248 2216 2224 1768 1845.6 increase to report for 001 -572 1446 -384 256 186.5 186.5 increase to report for 001 534 604 32

Legend

Daily Avg Daily max

Violation

To be corrected in DMR

DDU16 - 015508

.

			Chlori	de		TDS	
		•	Samples	increase to	Samples	•	increase to
December 2014 Samples		t 001	at 301	report for 001	at 001	at 301	report for 001
	1	2100				2676	1564
	2	1620			3188	2732	456
	3	2040			4428		1438
	4	1390			4488	2644	1844
	5	1980				2696	1152
iverage		1826	1536	5 290	4038.4	2747.6	1290.8
			Chlori			TDS	
		amples				•	increase to
anuary 2015 Samples	-	t 001	at 301	report for 001	at 001	at 301	report for 001
	1	2100				2884	-700
	2	2300			2196	2716	-520
	3	2400			4452	2984	1468
	_4	2100			3936	3084	852
iverage		2225	1452.5	5 772.5	3192	2917	275
			Chlori	de		TDS	
		amples	Samples	increase to	Samples		increase to
ebruary 2015 Samples		t 001	at 301	report for 001	at 001	at 301	report for 001
	1	1620				2990	34
	2	1900			3920	3196	724
	3	2670	A service by the second			2890	2338
	4	6648	1520	5128	3250	2626	624
iverage		3209.5	1487.5	1722	3855.5	2925.5	930
			Chlori			TDS	
		amples	Samples	increase to	•	•	increase to
March 2015 Samples		t 001	at 301	report for 001	at 001	at 301	report for 001
	1	1890				2790	990
	2	2100	,		5040	·	1252
	3	2050	-		4316	3004	1312
	4	1710	1,900	-190	3420	3084	336
iverage					3440	5004	
		1937.5	1597.5	340	4139	3166.5	972.5
			Chlori	ide	4139	3166.5 TDS	972.5
		ampies	Chlori Samples	ide increase to	4139 Samples	3166.5 TDS Samples	972.5 increase to
April 2015 Samples	a	amples t 001	Chlori Samples at 301	ide increase to report for 001	4139 Samples at 001	3166.5 TDS Samples at 301	972.5 increase to report for 001
April 2015 Samples	a 1	ampies t 001 1520	Chlori Samples at 301 2850	ide increase to report for 001	4139 Samples at 001 5648	3166.5 TDS Samples at 301 2916	972.5 increase to report for 001 2732
April 2015 Samples	2 1 2	amples t 001 1520 2790	Chlori Samples at 301 2850 1480	ide increase to report for 001	4139 Samples at 001	3166.5 TDS Samples at 301	972.5 increase to report for 001
April 2015 Samples	a 1	amples t 001 1520 2790 1600	Chlori Samples at 301 2850 1480 1460	ide increase to report for 001 -1330 -1310 -140	4139 Samples at 001 5648 5436 2490	3166.5 TDS Samples at 301 2916 2968 2940	972.5 increase to report for 001 2732
April 2015 Samples	2 1 2	amples t 001 1520 2790	Chlori Samples at 301 2850 1480 1460	ide increase to report for 001 -1330 -1310 -140	4139 Samples at 001 5648 5436	3166.5 TDS Samples at 301 2916 2968 2940	972.5 increase to report for 001 2732 2468
· · ·	a 1 2 3	amples t 001 1520 2790 1600	Chlori Samples at 301 285(1480 1460 1500	ide increase to report for 001 -1330 1310 140 9 920	4139 Samples at 001 5648 5436 2490	3166.5 TDS Samples at 301 2916 2968 2940 5264	972.5 increase to report for 001 2732 2468 -450
· · ·	1 2 3 4	amples t 001 1520 2790 1600 2420 2082.5	Chlori Samples at 301 2850 1480 1480 1460 1500 1822.5 Chlori	ide Increase to report for 001 -1330 1310 -140 -140 -220 -260 -260	4139 Samples at 001 5648 5436 2490 6304 4969.5	3166.5 TDS Samples at 301 2916 2968 2940 5264 3522 TDS	972.5 increase to report for 001 2732 2468 -450 1040
· · ·	1 2 3 4 5	ampies t 001 1520 2790 1600 2420 2082.5 ampies	Chlori Samples at 301 2850 1480 1480 1480 1500 51822.5 Chlori Samples	ide Increase to report for 001 1310 1310 140 140 140 140 140 140 140 140 140 1	4139 Samples at 001 5648 5436 2490 6304 4969.5 Samples	3166.5 TDS Samples at 301 2916 2968 2940 5264 3522 3522 TDS Samples	972.5 increase to report for 001 2732 2468 -450 1040 1447.5 increase to
average	1 2 3 4 5	amples t 001 1520 2790 1600 2420 2082.5	Chlori Samples at 301 2850 1480 1480 1460 1500 1822.5 Chlori	ide Increase to report for 001 -1330 1310 -140 -140 -220 -260 -260	4139 Samples at 001 5648 5436 2490 6304 4969.5	3166.5 TDS Samples at 301 2916 2968 2940 5264 3522 TDS	972.5 increase to report for 001 2732 2468 -450 1040 1447.5
average	1 2 3 4 5	ampies t 001 1520 2790 1600 2420 2082.5 ampies	Chlori Samples at 301 2850 1480 1460 1500 1822.5 Chlori Samples at 301	ide increase to report for 001) -1330) 1310) 140) 920 5 260 ide increase to report for 001	4139 Samples at 001 5648 5436 2490 6304 4969.5 Samples at 001	3166.5 TDS Samples at 301 2916 2968 2940 5264 3522 3522 TDS Samples	972.5 increase to report for 001 2732 2468 -450 1040 1447.5 increase to
average	1 2 3 4 Si	amples t 001 1520 2790 1600 2420 2082.5 amples t 001	Chlori Samples at 301 2850 1480 1460 1500 5 1822.5 Chlori Samples at 301 1440	ide increase to report for 001] -1330] 1310] 1310] 230] 260]	4139 Samples at 001 5648 5436 2490 6304 4969.5 Samples at 001	3166.5 TDS Samples at 301 2916 2968 2940 5264 3522 TDS Samples at 301	972.5 increase to report for 001 2732 2468 -450 1040 1447.5 increase to report for 001
average	a 1 2 3 4 Si a 1	amples t 001 1520 2790 1600 2420 2082.5 amples t 001 1500	Chlori Samples at 301 2850 1480 1480 1480 1480 1822.5 Chlori Samples at 301 1440 1490	ide increase to report for 001 1310 140 920 260 260 140 920 260 260 260 260 260 260 260 260 260 2	4139 Samples at 001 5648 5436 2490 6304 4969.5 Samples at 001 3092	3166.5 TDS Samples at 301 2916 2958 2940 5264 3522 TDS Samples at 301 2976	972.5 increase to report for 001 2732 2468 -450 1040 1447.5 increase to report for 001 116
April 2015 Samples average May 2015 Samples	a 1 2 3 4 5 a 1 2	amples t 001 1520 2790 1600 2420 2082.5 amples t 001 1500 1710	Chlori Samples at 301 2850 1480 1480 1480 1822.5 Chlori Samples at 301 1440 1440 1450 1450	ide increase to report for 001 1310 140 220 260 260 260 260 260 200 200 200 20	4139 Samples at 001 5648 5436 2490 6304 4969.5 Samples at 001 3092 3552 2212	3166.5 TDS Samples at 301 2916 2956 2940 5264 3522 3522 TDS Samples at 301 2976 2864	972.5 increase to report for 001 2732 2468 -450 1040 1447.5 increase to report for 001 116 688

Legend

Daily Avg					
Daily max	-	-	-	-	

Violation

To be corrected in DMR

		SURFACE WATER	R MONTHLY OPER	ATING REPORT		
			TEMS THAT ARE USING SURFA			
			Summary Page			
PUBLIC I			PLANT NAM OR NUMBER	1820061		
		3		the information contained in this report and he information is true, complete, and accurate the information is true, complete, and accurate the information is the information of the i		
PWS ID N Report fo	· _ hu 1 7	Operator's Signature:	- fut Alla	γ		
the Mont	nof: - toty 2014 AUGUST 2	Certificate No. & Grade			September 8, 2014	
Total r	umber of turbidity readings:	31	IT PLANT PERFORMANCE Number of 4-hour periods whe	n plant was off-line:	0	• • • • • • • • • • • • •
Numb	r of readings above 0.10 NTU: r of readings above 0.3 NTU:	0	Number of 4-hour periods whe	n plant was on-line		
Numbe	r of readings above 0.5 NTU:	<u>0</u>	but turbidity data was not colle Number of days when plant wa	s on-line	0	
	r of readings above 1.0 NTU: um allowable turbidity level:	0.3	but individual filter turbidity da Number of days with readings		0 (2)	
	tage of readings above this limit:	0.0 % (1)	Number of days with readings		0 (3)	
		m turbidity reading: m turbidity reading:	0.05 NTU 0.04 NTU	Average turbidity value: Standard deviation:	0.05 NTU 0.005 NTU	
		n turbicity wading: • percentile value:	0.05 NTU	IFE 95 ^m percentile:	0.960 NTU	ا ا
	r of days with a low CT nore than 4.0 consecutive hours:	0	Average log inactivation for Gi Average log inactivation for vir		<u> </u>	
Numbe	r of days with a low CT		Number of days when profiling	data was not collected:	0	
	e than 4.0 consecutive hours:	0 (4)	Number of days when CT data		0	
	m disinfectant residual required leavin r of days with a low residual	g the plant:	0.2 mg/L, measured as F	ree Chlorine		
	nore than 4.0 consecutive hours: of days with a low residual	0				
	e than 4.0 consecutive hours:	0 (5)	Number of days when disinfect leaving the plant was not prop		0	
19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		DIST	RIBUTION SYSTEM			
1	disinfectant residual required in distril		0.2 mg/L, measured as F			
	ber of readings this month:	31 (at least 31 i	required) (8)			
INVELSTS (fisinfectant residual value:	0.84	Percentage of readings with a l	ow residual this month:	0.0 % (6A)	
Number o	isinfectant residual value: readings with a low residual:	<u>0.84</u> 0	Percentage of readings with a		0.0 % (6A)	
Number o)		Percentage of readings with a Percentage of readings with a		0.0 % (6A)	
Number o Number o	f readings with a low residual:	<u> </u>		ow residual last month:	0.0 % (6B)	
Number of Number of The Pa	f readings with a low residual: f readings with no detectable residual: https://www.secondectable.com/ set Addendum (Public Notices) is not	O O	Percentage of readings with a in REPORTS & WORKSHEET o treatment technique or monitor	ow residual last month: S Birly the second sec	0.0 % (6B)	
Number o Number o The Pa Additio Additio	f readings with a low residual: f readings with no detectable residual: the state of the state of the state of the state of 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito	ADDITIONAL required because there were no ring required: @ ring submitted: @	Percentage of readings with a l	ow residual last month: S Example for the second se	0.0 % (6B)	
Number of Number of The Pa Addition Addition No a	f readings with a low residual: f readings with no detectable residual: https://www.commons.com/ and/action/action/action/ pe 1 Addendum (Public Notices) is not nal report(s) for individual filter monito	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monito 0 NONE O Filter Profile 0 NONE O Filter Profile (9)	ow residual last month: S Experience of the second	0.0 % (6B)	
Number of Number of The Pa Addition Addition No a	f readings with a low residual: f readings with no detectable residual: and the second	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monito 0 NONE O Filter Profile 0 NONE O Filter Profile (9)	ow residual last month: S Experience of the second	0.0 % (6B)	
Number of Number of The Pa Addition Addition No a	f readings with a low residual: f readings with no detectable residual: and the second	O O	Percentage of readings with a l REPORTS & WORKSHEET o treatment technique or monito) NONE	ow residual last month: S Different Constraints (Constraints) O Filter Assessment (10)	0.0 % (6B)	
Number of Number of The Pa Addition Addition No a	f readings with a low residual: f readings with no detectable residual: and the second	O O	Percentage of readings with a l REPORTS & WORKSHEET o treatment technique or monito > NONE	ow residual last month: S Example of the second se	0.0 % (6B)	
Number of Number of The Pa Addition Addition No a	f readings with a low residual: f readings with no detectable residual: and the second	O O	Percentage of readings with a l REPORTS & WORKSHEET o treatment technique or monito) NONE O Filter Profile) NONE O Filter Profile (9) :true Action Plan. ER MONTHLY OPERATI	ow residual last month: S Bit is a second s	0.0 % (6B)	
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: and the second	O O	Percentage of readings with a l REPORTS & WORKSHEET o treatment technique or monito) NONE Filter Profile) NONE Filter Profile (9) :tuve Action Plan. ER MONTHLY OPERATION DN/PUBLIC DRINKING WATER	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	XS21
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	OST
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR
Number of Number of The Pa Addition Addition No a One or	f readings with a low residual: f readings with no detectable residual: se 1 Addendum (Public Notices) is not nal report(s) for individual filter monito nal report(s) for individual filter monito diditional IFE Reports are required this more additional reports have been wai	O O	Percentage of readings with a I REPORTS & WORKSHEET o treatment technique or monitue) NONE	ow residual last month: S Bit is a second s	0.0 % (6B)	WMOR

Date (MGD) NTU Ait. 1 2 3 4 5 6 NTU1 NTU3 NTU4 NTU6									CES UND		INFLUE Jata Pag	7e	SURFAC						
Anoth: August Yes: 2014 Population: 64 Status Vesc SetTLe Data SetTLe Data SetTLe Data SetTLe Data SetTLe Data Wesc Vesc Vesc SetTLe Data SetTLe Data SetTLe Data SetTLe Data User Pumpage Pumpage Nt AuALYSES SetTLe Data Total Number Data 1 0.366 0.261 1 02 2 4 5 4 0.04 1 10			The Cliffs Re	sort										182006	1				
Rave Weater Treated Period (MCD) RAW WATER AMALYSES SETTLED WATER TURBIDITY (Optional Data) FailSHED WATER QUALITY Date 0.061 1 2 4 5 0.011 NUL N	ws ID	No.:	1820061		6)						C	onnection	s:	273					
Raw Trested With RAW // FER AUA // VER SETTLED WATER TURBIDITY (Optional Deta) Description (MGD) FMUSALED VIATER TURBIDITY Entit Mon- trest Mon- set	Aonth:	-	my Aug	ius+	Q.		Year:	2014			Po	opulation:		64					
Rav Trested Weter RAW WITER AVALYEES SETTLED WATER TURBIDITY (Optional Data) Discriptional Data Date (MGD) MIU ANA. 1 2 3 4 5 6 NTU NTU NTU NTU 1 2 3 4 5 6 NTU NTUS								DEDEC	DMANC	E DAT	4	-							
Witer Witer MAL Contractor Contractor <thcontractor< th=""> Contractor <</thcontractor<>			Treated	RAW	VATER	A COCCI				_	<u> </u>					WATER	JUALITY		
Date (MGD) NTU Alk. 1 2 3 4 5 6 NTU1 NTU3 NTU3 NTU6				ANAL	Y\$ES			_						Turt		Lowest			
1 0.396 0.261 1 92 0 0.04 0.04 0 0 2 0.465 0.276 1 98 0.04 0.04 0 0 3 0.373 0.228 1 104 0.04 0.04 0 0 4 0.355 0.224 2 107 0.04 0.04 0 0 5 0.359 0.224 2 104 0.04 0.04 0 0 6 0.383 0.247 2 104 0.04 0.04 0 0 0 8 0.376 0.242 2 90 0.04 0.04 0.04 0 0 0 10 0.382 0.238 3 90 0.05 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 <	Date			NTU	Alk.	1	2	T	T 1	5	\$	NTU1	NTU2		1	NTU5	NTU6	Residual	Timeli
3 0.373 0.229 1 104 0.04 0.04 0.04 0.04 4 0.385 0.214 1 100 0.04 0.04 0.04 0.04 6 0.383 0.247 2 107 0.04 0.04 0.04 0.04 7 0.383 0.247 2 100 0.04 0.04 0.04 0.04 8 0.376 0.242 2 80 0.04 0.04 0.04 0.04 0.04 9 0.388 0.239 2 80 0.05 0.04 0.05 0.05 0.05 10 0.382 0.239 2 80 0.05 <t< td=""><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.5</td><td></td></t<>				_	_			1		-								0.5	
4 0.356 0.214 1 103 0.04 0.04 0.04 0.04 5 0.336 0.224 2 107 0.04 0.04 0.04 0.04 6 0.388 0.224 2 104 0.04 0.04 0.04 0.04 7 0.383 0.242 2 90 0.04 0.04 0.04 0.04 9 0.386 0.226 3 90 0.04 0.04 0.04 0.04 10 0.382 0.226 2 93 0.05 0.05 0.05 0.05 12 0.362 0.222 2 93 0.05 0.05 0.05 0.05 13 0.356 0.173 2 95 0.055 0.05 0.05 0.05 0.05 14 0.270 0.210 2 97 0.055 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 <td>2</td> <td>0.465</td> <td>0.276</td> <td>1</td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.04</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.6</td> <td></td>	2	0.465	0.276	1	98							0.04						0.6	
5 0.355 0.224 2 107 0.04 0.04 0.04 0.04 6 0.383 0.247 2 104 0.04 0.04 0.04 0.04 7 0.383 0.242 2 113 0.04 0.04 0.04 0.04 8 0.376 0.242 2 90 0.04 0.04 0.04 0.04 9 0.386 0.236 2 90 0.05 0.05 0.05 0.05 10 0.382 0.224 2 92 0.05 0.05 0.05 0.05 12 0.365 0.224 2 95 0.05 0.05 0.05 0.05 14 0.270 0.210 2 97 0.05 0.05 0.05 0.05 0.05 14 0.270 0.210 2 97 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	3	0.373	0.229	1	104							0.04						0.7	
6 0.383 0.247 2 104 0.04 0.04 0.04 7 0.383 0.242 2 90 0.04 0.04 0.04 0.04 8 0.376 0.242 2 90 0.04 0.04 0.04 0.04 9 0.388 0.239 2 90 0.06 0.04 0.04 0.04 10 0.382 0.229 2 90 0.05 0.05 0.05 0.05 12 0.362 0.224 2 92 0.05 0.05 0.05 0.05 13 0.356 0.173 2 95 0.05 0.05 0.05 0.05 14 0.270 0.210 2 97 0.05 0.05 0.05 0.05 0.05 15 0.326 0.200 2 100 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	4	0.356	0 214	1	103							0.04						10	
7 0.983 0.245 2 113 0 0.04 0.04 0 0 8 0.376 0.242 2 90 0 0.04 0.04 0 0 9 0.385 0.238 2 90 0 0.04 0.04 0 0 10 0.382 0.238 2 90 0.05 0.05 0 0 11 0.354 0.224 2 92 0.05 0.05 0.05 0 0 12 0.362 0.224 2 95 0.05 0.05 0.05 0.05 0 0 0.05 <	5	0 358	0.224	2	107				ļ			0.04				ļ		12	
• 0.376 0.242 2 90 0.04 0.04 0.04 0.04 • 0.388 0.236 3 90 0.04 0.04 0.04 0.04 10 0.382 0.239 2 90 0.05 0.05 0.05 0.05 11 0.364 0.222 2 93 0.05 0.05 0.05 0.05 12 0.382 0.222 2 95 0.05 0.05 0.05 0.05 13 0.385 0.177 2 95 0.05 0.05 0.05 0.05 14 0.270 0.210 2 97 0.05 0.05 0.05 0.05 15 0.328 0.200 2 100 0.05 0.05 0.05 0.05 16 0.296 0.177 3 105 0.05 0.05 0.05 17 0.260 0.177 3 106 0.05 0.05								ļ	ļ			<u> </u>						0.7	
0 0.388 0.239 3 90 0 0 0.04 0 0 0 10 0.382 0.239 2 90 0.05 </td <td></td> <td><u> </u></td> <td></td> <td>0.8</td> <td></td>																<u> </u>		0.8	
10 0.382 0.239 2 90 0 0 0.05 0 0 0 11 0.364 0.222 2 93 0 0.05 0 0 0 12 0.362 0.224 2 92 0 0.05 0 0 0 13 0.356 0.173 2 95 0 0.05 0 0 0 14 0.270 0.210 2 97 0.05 0.05 0 0 0 15 0.328 0.200 2 100 0.05 0.05 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td>1.1</td><td></td></td<>																		1.1	
11 0.054 0.222 2 93 0 0.05 0 0 0 12 0.362 0.224 2 92 0 0.05 0 0 0 13 0.356 0.173 2 95 0 0.05 0 0 0 14 0.270 0.210 2 97 0 0.05 0 0 0 15 0.328 0.200 2 100 0.05 0.05 0 0 0 16 0.289 0.177 3 105 0.05 0.05 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.0</td><td></td></t<>																		1.0	
12 0.362 0.224 2 92 0 0.05 0 0 0 13 0.356 0.173 2 95 0 0.05 0 0 0 14 0.270 0.210 2 97 0.05 0.05 0 0 0 15 0.328 0.200 2 100 0.05 0.05 0 0 0 16 0.209 0.117 3 105 0.05 0.05 0									$\left \right $									1.0	
13 0.355 0.173 2 95 0 0.05 0 0 0 14 0 270 0.210 2 97 0 0.05 0 0 0 15 0 328 0 200 2 100 0.05 0.05 0 0 0 16 0 299 0.177 3 105 0.05 0.05 0 0 0 17 0.250 0.147 3 190 0.05 0.05 0 0 0 18 0.316 0.199 2 150 0 0.05 0 0 0 19 0.354 0.214 2 93 0 0.05 0 0 0 20 0.338 0.209 2 94 0.05 0.05 0 0 0 21 0.366 0.221 2 95 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • •																	1.1	
14 0 270 0 210 2 97 0 0.05 0 0 0 15 0 328 0 200 2 100 0.05 0.05 0 0 0 16 0 299 0.177 3 105 0.05 0.05 0 0 0 17 0 250 0.147 3 190 0.05 0.05 0 0 0 18 0.316 0.199 2 150 0.05 0.05 0 <td></td> <td>0.8</td> <td></td>																		0.8	
16 0.299 0.177 3 105 0 0.05 0 0 0 17 0.250 0.147 3 190 0 0.05 0 0 0 18 0.316 0.199 2 150 0.05 0.05 0 0 0 19 0.354 0.214 2 93 0 0.05 0.05 0 0 0 20 0.338 0.209 2 94 0.05 0.05 0	14		0.210	2	: 97							0.05						12	
17 0.250 0.147 3 190 0 0.05 0 0 0 18 0.316 0.199 2 150 0.05 0.05 0 0 0 19 0.354 0.214 2 93 0 0.05 0 0 0 0 20 0.338 0.209 2 94 0 0.05 0 <	15	0 328	0.200	2	100							0.05						1.3	
18 0.316 0.199 2 150 0 0.05 0 0 19 0.354 0.214 2 93 0 0.05 0 0 0 20 0.338 0.209 2 94 0 0.05 0 0 0 21 0.366 0.221 2 95 0 0.05 0 0 0 22 0.275 0.170 3 96 0.05 0.05 0 0 0 23 0.376 0.235 3 99 0 0.05 0<	16	0.299	0.177	3	105							0.05						13	
19 0.354 0.214 2 93 0 0.05 0 0 0 20 0.338 0.209 2 94 0 0.05 0 0 0 21 0.366 0.221 2 95 0 0.05 0 0 0 22 0.275 0.170 3 96 0.05 0.05 0 0 0 23 0.376 0.235 3 99 0.05 0.05 0 0 0 24 0.377 0.232 3 91 0.05 0.05 0 <	17	0.250	0.147	3	190							0 05						1.6	
20 0.338 0.209 2 94 0 0.05 0 0 0 21 0.366 0.221 2 95 0 0.05 0 0 0 22 0.276 0.170 3 96 0 0.05 0 0 0 23 0.376 0.225 3 99 0 0.05 0 0 0 24 0.377 0.232 3 91 0 0.05 0 0 0 26 0.343 0.207 2 97 0 0.05 0	18	0.316	0.199	2	150							0.05						1.0	
21 0.366 0.221 2 95 0 0.05 0 0 0 22 0.276 0.170 3 96 0 0.05 0 0 0 23 0.376 0.235 3 99 0 0.05 0 0 0 24 0.377 0.232 3 91 0 0.05 0 0 0 25 0.343 0.207 2 97 0 0.05 0 0 0 0 26 0.315 0.192 3 99 0 0.05 0	19	0.354	0.214		93			ļ	ļ			0.05						0.5	
22 0.276 0.170 3 96 0 0.05 0 0 0 23 0.376 0.235 3 99 0 0.05 0 0 0 24 0.377 0.232 3 91 0 0.05 0 0 0 25 0.343 0.207 2 97 0 0.05 0 0 0 26 0.315 0.192 3 99 0 0.05 0 0 0 27 0.346 0.200 3 91 0 0.05 0 0 0 0 28 0.349 0.199 2 97 0 0.05 0									<u> </u>									0.9	
23 0.376 0.235 3 99 0 005 0 0 24 0.377 0.232 3 91 0.05 0.05 0 0 25 0.343 0.207 2 97 0 0.05 0 0 0 26 0.315 0.192 3 99 0 0.05 0 0 0 27 0.346 0.200 3 91 0.05 0.05 0 0 0 28 0.349 0.199 2 97 0 0.05 0					_			 	ļ									0.4	
24 0.377 0.232 3 91 0 0.05 0 0 0 25 0.343 0.207 2 97 0 0.05 0 0 0 26 0.315 0.192 3 99 0 0.05 0 0 0 27 0.346 0.200 3 91 0 0.05 0 0 0 28 0.349 0.199 2 97 0 0.05 0 0 0 29 0.339 0.203 3 99 0 0.04 0.04 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>┼╌╌┤</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td></td> <td>0.6</td> <td></td>									┼╌╌┤									0.6	
25 0.343 0.207 2 97 0 0.05 0 0 0 26 0.315 0.192 3 99 0.05 0.05 0 0 0 27 0.346 0.200 3 91 0.05 0.05 0 0 0 28 0.349 0.199 2 97 0 0.05 0									┼──┤									04	,,
26 0.315 0.192 3 99 0.05 0.05 0.05 0.05 27 0.346 0.200 3 91 0.05 0.05 0.05 0.05 28 0.349 0.199 2 97 0.05 0.05 0.05 0.05 0.05 29 0.339 0.203 3 99 0.04 0.04 0.04 0.05 0.04 30 0.274 0.166 3 97 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.04								<u> </u>	┼									0.6	
27 0.346 0.200 3 91 0.05 0.05 0.05 0.05 28 0.349 0.199 2 97 0.05 0.05 0.05 0.05 29 0.339 0.203 3 99 0.04 0.04 0.04 0.05 30 0.274 0.166 3 97 0.04 0.04 0.04 0.04 31 0.342 0.207 2 95 0.04 0.04 0.04 0.04 Total 10.772 6.619 6.619 0.214 0.214 NOTE: ONLY use the "Time" column to show the length distribution system for acceptable level.				<u> </u>	_			<u> </u>										0.8	
29 0.339 0.203 3 99 0.04 0.04 0.04 30 0.274 0.166 3 97 0.04 0.04 0.04 0.04 31 0.342 0.207 2 95 0.04 0.04 0.04 0.04 Total 10.772 6.619 0.214 NOTE: ONLY use the "Time" column to show the length disinfectant residual entering the distribution system for acceptable level. 0.214								1										07	
30 0.274 0.166 3 97 0.04	28	0 349	0.199	2	97							0 05						0.8	
31 0.342 0.207 2 95 0.04 0.04 Total 10.772 6.619 Avg 0.347 0.214	29	0.339	0.203	3	99							0.04						0.7	
Total 10 772 6.619 NOTE: ONLY use the "Time" column to show the length Avg 0.347 0.214 disinfectant residual entering the distribution system fe acceptable level.												0.04						0.6	
Avg 0.347 D.214 disinfectant residual entering the distribution system fe acceptable level.				2	· 95							·····						0.3	
acceptable level.																			
												accept	able leve	el.			on syste		
Max 0 465 0.276																			
Min 0 250 0.147	Min	0 250	0.147	ļ	~														
UBMITTED BY:			A	Å	./	1			Certific	ate No									

SURFACE WATER MONTHLY OPER FOR PUBLIC WATER SYSTEMS THAT ARE USING SURF OR GROUND WATER SOURCES UNDER THE INFLUENC Filter Data Page	FACE WATER SOURCES
PUBLIC WATER SYSTEM NAME: The Cliffs Resort	PLANT NAME OR NUMBER: 1820061
PWS ID No.: 1820061	Month: August Year: 2014
PERFORMANCE DATA	

}

					ĩ				INDIVI	DUAL FIL	TER TU	RBIDITY								
				Filter	No. 5	Filter	No. 6	Filter	No. 7	Filter	r No. 8	Filter	r No. 9	Filter	No. 10					
Date	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs	Max	4 Hrs
1	0.67				┣_┿_						ļ		ļ			'	L			-
2	0.77				<u> </u>															
- 4	0.67							<u> </u>								<u> </u>			<u> </u>	╂────
	0.01										┣		L				<u> </u>			
- 6	0.74																			
	0.61																			
8	0 60																			
9	0.62				1															
10	0 69				1															
11	0 6 1														_					
12	0.79				,						L							<u> </u>	ļ	
13	0.89				, 	L		ļ					L		ļ			ļ		
14 15	0 98								ļ		<u> </u>	ļ			ļ		L			<u> </u>
15	0.44				<u> </u>		. <u> </u>										L			
17	0.49												<u> </u>			}				
18	0.70				\vdash						 				<u> </u>		·			
19	0.67																			<u> </u>
20	0.88										————		 						<u> </u>	<u> </u>
21	0 89																			
22	0.74																			
23	0.66				+															
24	0 77	_										-								
25	0.89						— <u> </u>			L	L									
26	0.64						L													ļ
27	0 94										<u> </u>		L							<u> </u>
28 29	0 99																			
29 30	0.67																			
31	0.77																			
				ليبيي						<u> </u>			<u> </u>	Filte	r No.	ليبيها		ليا	<u> </u>	<u> </u>
ŝ					Criteria					1	2	3	4	5	6	7	8	•	10	Plant
Ň	Numbe	r of days	with eve	nt(s) abo	ove 0.5 N	TU at 4.0	hrs this	month												1114
Ş	Number	r of days	with eve	nt(s) abo	ve 1.0 N	TU this n	nonth			0										6MI
Ш	Numbe	r of days	with eve	nt(s) abo	ove 1.0 N	TU last n	nonth			2										White
NY I	Number	Number of days with event(s) above 1.0 NTU two months ago Total number of days with event(s) above 1.0 NTU in three months								7										144
T dw	Total n	umber of	days wil	th event(s) above	1.0 NTU	in three	months		9										UH.
8	Number	r of days	with eve	nt(s) abc	ve 2.0 N	TU this n	nonth			1.11.24			1944	Sec. 1	144		1911	dillo.	HI	0
SUMMARY & COMPLIANCE ACTIONS	Number	r of days	with eve	nt(s) abo	ve 2.0 N	TU last n	nonth			1.11	1.1.4		11.14	113.	4.14	1.1.1	1914	MA	1199	0
š [Does th	e filter/p	lant have	an appr	oved Co	rrective /	Action Pl	an?		Y										Y
5	is the p	lant requ	ired to s	ubmit a F	ilter Pro	file Repo	rt?			N										134
υ Ν						essment				N										1441
	is the p	lant requ	ired to s	ubmit a f	Request	for Comp	liance C	PE?		·• :	· · · · · · · · ·		29578	i	1.19	1.14	Will.	in.	SHU S	N

Suile flom Certificate No. SUBMITTED BY: W\$0011620, B and Grade: Date: September 8, 2014 TCEQ - 0102C (07-19-10) PAGE 3 SWMOR

SURFACE WATER MONTHLY OPERATING REPORT

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER (cont.) Disinfection Data Page

		ATER NAME:	The Clif	fs Resort	1							PLANT NA OR NUMB		1820061						
ws	ID N	p.:	1820061	I		•						Month:	-		Pr go	st	2	Year:	2014	
- 14	av i Ç	计和情况加	si ng kaling		ri ka			DISINFE	CTIO	PROCI	ESS PA	RAMETERS		k krynd	inge døj	بې بېړېږو	tinin (東注意	A. H.	
					APPRO	VED C1	STUDY P	ARAMETI	ERS						PERF	ORMAN	CE STAN	DARDS		
				-		•		Disinfecti	on Zone							Log in	ctivation			
Para	met	rs		D	1	:	D2	D		 D4		D5	G	lardia lam	blia Cys			Viru	585	
Flov	v Rat	(MGD)		0.1	73	ļ								0.1	n			4.		
T ₁₀ ((mini	ites)		83	.0									0.1				۹.	, 	
		en egenere	P	ERFOR	MANC	E DA	ТΔ	Power and	1	Xeen and	BROCK			PERFOR	MANC	E DA	ΓΔ			
							ESS DATA						· · · ·				SS DATA			
			C	Flow	Temp	1	Glardia	Virus	Inact.				С	Flow	Temp		Giardia	Virus	Inact.	
ate	-	Infectant	(mg/L)	(MGD)	(°C)	, pH	Log	Log	Ratio	Time	Date	Disinfectant	(mg/L)	(MGD)	(°C)	рH	Log	Log	Ratio	Timei
		FCL D1	0.5	0.261	26.1	72						FCL D1	1.0	0 236	27 1	70	111		1110	111
1		D3					221	58 28	14.57	312 A		D3					5.92	151.93	37 98	1499
		D4				1		13.	ι (Ń	19.1.1		D4					WH !!!	14H	10	11
		D5					11/10	ander	Buch	1167		D5					46.4	11.Un	11111	44
		FCL D1	06	0,276	27.1	7.4	1.4		244	1.1		FCL D1	1.0	0.239	27.1	7.0		119		14
2		D2 D3					2.60	74,31	18.58	Sugar	10	D2 D3					5.83	149.58	37.40	122
-		D4					197777		M.	524		D4					1.160	11.	1.00%	111
		D5				i			111			D5					dig He	2.44	H.D.	14
		FCL D1	0.7	0.229	26 9	74	12 1	1	in the second	1.1		FCL D1	11	0.222	27.2	7.0	ind.	194	111	14
3		D2					41.2.	1. dente	ين کرنو موجود	alle i	11	D2		· · · · ·			6416	1111	111h	9111
*		D3 D4					3 84	107.62	26.91	Sec. 1	1"	D3 D4		· · · · ·	<u> </u>		6.77	174 58	43.65	1115
		D5				1	an a	4. 7	1.1			D5					110	am	144	111
		FCL D1	1.0	0.214	27.1	1 7.4	i far	i inte	1.1	1999		FCL D1	1.1	0.224	26 6	7.0	141.9	91111	UHA.	1110
		D2					1.1.1	1.1.0	140	See.		D2					9140.	1999	HII.	11.
1		D3 D4					5.46	165 34	41.33		12	D3 D4					6.21	164.70	41.18	11:11
	-	D5					11. 1	4.1.1	. (M)	1.1		D5					1MB	119	11H	
		FCL D1	1.2	0.224	27.0	7.6	9.44.1	16.11.1	1411	Sec. Oak		FCL D1	0.8	0.173	26.7	7.0	11111	11111	11112	111
		D2					1.1.1.	1.11.11	22	1.12		D2					alle.	2HZ	194	319
5		D3					5.80	191 31	47.83	dia	13	D3					5.73	146.39	36.60	700
		D4 D5					1.1.1		Ś	11.		D4 					4ho	144	1111	
		FCL D1	07	0.247	27 2	• 75	11.5	1.	1. 1. 1. 1. 1. 1.	22.00		FCL D1	1.2	0 210	26 7	7.0	11115	11111	7.970	111
		D2				1	کر کر کرد. ان د د د د د		11.	2.2		D2					144	1999	Mia.	
•		D3					3.13	93 47	23.37	1.2 2	14	D3]	7.44	194.68	48.67	Ser 10
		D4 D5	<u>├</u>		-		11	1.	. (v)	14		D4 					11/10	1994	99 <i>1</i> 7	
		FCL D1	0.8	0.245	27 3	, 7.5	1.9 4.94	2	5	1.11		FCL D1	1.3	0,200	27.4	7.0	1111	1646	11112	1111
		D2							1.1	1.12		D2						Mai		
7		D3					3.79	113.76	28.44		15	D3					8.81	235.98	58.99	
	ļ	D4	 			,	de la		M			D4					1.11	MAG.	99/1	11/1
-		D5 FCL D1	11	0 242	27.8	71	anna an	Call St.	1	Sec.		D5 FCL D1	13	0 177	28.4	70	1111	141111	121111. STITU	1111
		D2				+			16.			D2					1990	UM)	999	99
•		D3					6.03	164.11	41.03		16	D3					10.02	268.30	67.08	، من موجف مار م. ا
		D4						,	Μ,			D4					11.1	4111	-0)/-	
ΟΤΕ	. = (D5 ONLY use	the "Time	r=" colum	n to sho	withe le		me that th	e total in	activation	ratio was	D5 Jess than 1.00.						1.11	1.10.10	27
			/	21	/		-													
			Ł	Juli		'n	~	_		Certifica		W00044000 -				n-4	Cant.			
		ED BY:		KIN -	\mathcal{V}			\sim		and Gra		WS0011620, B				Date:	Sebteu	nber 8, 20	14	
CEQ	- 010	¢C (07-19-	10)				6	/		PA	GE 4									SWMO

SURFACE WATER MONTHLY	OPERATING REPORT
-----------------------	-------------------------

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER (cont.) Disinfection Data Page (cont.)

YSTE WS II		AME:	The Clif	is Resor	t	•		*****	****			OR NUMB Month:	ER.	1820061	76115			Year:	2014	
•• it												monta.	~	<u>uny</u> 710	9423	Ċ				
•	ý	affa ∰	i san an a	is it were	er stir	<u>∳</u> ~•,,, ••	<u>1</u>	DISINFE	CTION	PROCE	SS P/	RAMETERS		'-, + X ⁴ , ,	: ** } .	: : : V ₁ -	1. 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			523. 4 7
				I	APPROV	ED CT	STUDY PA	RAMETE	RS						PERF	ORMAN	ICE STAN	DARDS		
		_				; r		Disinfecte									activation:			
low	_	(MGD)		0.1			D2	0	3	D4		D5	G	ardia lam	blia Cys	us		Vin	u s	
10 (П				83	.0	ļ								0.0	D			4.	0	
12.643	64.11		i 1	ERFOR			ТА	Leider Mil	I CENTER CAR	the tails of the	and he	er-station. Dat		EDEOE		EDA	TA			
5 D D		<u> </u>					ESS DATA			1000-176-196	754.472		<u> </u>	ERFOR			ESS DATA			
									8										H	
ate	D	sinfectant	C (mg/L)	Flow (MGD)	Temp (°C)	pH	Giardia Log	Virus Log	Inect. Ratio	Time	Date	Disinfectant	C (mg/L)	Flow (MGD)	Temp (*C)	рH	Giardia Log	Virus Log	Ratio	Time
		FCL D1	1.6	0,147	27.9	7.6		1. 224		2.12		FCL D1	0.8	0.207	29.1	6.9	1940	1444	1111	11
17		D2 D3					11.92	409 65	100 A	1.5	25	D2 D3	<u> </u>				1993	151.99	///// 38.00	ţŰ.
		D4				1	11.52	409 05	102.41 (V)	· • • • • •	25	D3 D4					6.12 20192	101.99	38.00	10
		D6							di parti j			D5					9992	Mult	4140	1110
	-	FCL D1 D2	1.0	0 199	28.1	7.2						FCL D1 D2	0.8	0 192	29 2	7.0	143	11.11		
18		D3				l	6.56	181.93	45.48	2.20%	26	D3					6.24	156 63	39.16	1.2.5
		D4 D5	ļ			1			Ń			D4					1993	1920	N)	11
-	-	FCL D1	0.5	0.214	26.1	72			1999, 24 1997, 24	2 2 - 5		D5 FCL D1	0,7	0.200	29,4	73	det ers	911210 91124/2	1111	111
		D2				i.				11.		D2					illes.	an a		XII.
19		D3 D4				1	2 72	72.53	18 13 (V),		27	D3 D4					4 81	136.35	34 09 (V)/	210
	-	D5					1.11					D4 D5					14		Ma	14
		FCL D1	0.9	0.209	27.2	7.3			1.1	1. A. A.		FCL D1	08	0 199	29 7	7.5		1.11	14.	
20		D2 D3					5 24	152 59	38.15	/	28	D2 D3					5 33	161.28	40.32	1011
		D4							. M	14		D4						1.11	-99/	17/1
		D5 FCL D1	04	0.221	26 2	73		i en feri Distanti		11.00		D5 FCL D1	07	0 203	28 9	73	191914	11114	16.1.	111
		D2		0.221	202							D2	0,	0 200	20 0					
21		D3				·	2 43	64,98	16.24		29	D3					5.09	143 67	35 92	1117
		D4 D5				1	14		<u>,</u>	1997		D4 D5						111	())/	
		FCL D1	0.6	0.170	28.7	7.0	14.17		1.11	147		FCL D1	0.6	0.166	27.8	6.8	State 6	11.14	114	111
22		D2 D3				1	5 12	127,70	31.93	5.322	30	D2 D3			\vdash		6.12	140.84	35.21	VII)
		D4						inter	:(v) ;	3		D4					1. Chi	14	100	16
	Н	DS FCL D1	0.4	0.235	27.7	6.9				1. a. 1. 1.		D5		0.007	27.4		26.76	1144	1111	4//
	Η	D2		0.200	£1.1	0.3						FCL D1 D2	0.3	0.207	27.4	6.7		UMP)	24	
23		D3				1	2.48	57 11	14 28		31	D3					1 99	42.81	10 70	
		D4 D5					1. 11		, M		I	D4							i (v)	
	Η	FCL D1	0.6	0 232	28.5	6.9	14.			1997 - C. 1997 - C.		D5				Max	11.92	409 65	14 5.30	4494
		D2							1.00							Min	1 99	42 81		
24	\vdash	D3 D4			-		3 80	90.78	22.70 . (V)	-5,						Avg SD	5 33 2 23	146 62 70 19		
		D5							9 : :											
TE:	-	VINLY USE D	ie "Time:	⊷coiumn ∕∕	to show	r the ler	igth of tim	e that the	total ina	ctivation ra	atio was	less than 1,00,								
			4	L. 1.	- 1/	<i>.</i>	\mathcal{X}			Certifica										
BMI	m	D BY:		Jun	_AV	m	-b	-		and Grad	te:	W50011620, E	1			Date:	Septen	iber 8, 20	14	

Bryan W. Shaw, Ph.D, P.E., Chairman Toby Baker, Commissioner Jon Niermann, Commissioner Richard A. Hyde, P.E., Executive Director

PWS_1820061_CO_20151118_NOV PBCU

Texas Commission on Environmental Quality

Protecting Texas by Reducing and Preventing Pollution

November 18, 2015

REC'D NOV 3 3 2015

RANDY GRACY, PRESIDENT CLIFFS THE 5495 BELT LINE RD STE 200 DALLAS, TX 75254-7658

Subject: NOTICE OF LEAD AND COPPER RULE MONITORING & REPORTING VIOLATION CLIFFS THE - PWS ID No. 1820061 PALO PINTO COUNTY, TEXAS

Attention: Public Water System Owner / Official / Manager

The Texas Commission on Environmental Quality (TCEQ) requires Community and Non Transient Non Community public water systems (PWS) to monitor for lead and copper samples in accordance with Title 30 Texas Administrative Code (30 TAC), Chapter 290, Section 290.117. In addition, the PWS is required to report any sample results in accordance with 30 TAC §290.117(i). Based on our most recent records, the PWS has a Monitoring & Reporting violation(s) for the following periods:

[January 1 - December 31, 2015]

The PWS is required to issue public notification to customers for Monitoring & Reporting violations as soon as the violation has been identified in accordance with 30 TAC §290.122(c). Enclosed is the mandatory language required for the public notice of the violations.

The PWS is required to submit to the TCEQ a copy of the public notice that was issued within ten days of its distribution, along with a completed Certification of Delivery for Public Notice form (enclosed) as proof of public notification. Failure to properly notify the TCEQ and your customers will result in an additional violation for your PWS. Drinking water violations can result in an enforcement action against your PWS.

To view your water system information and public notice schedule, please visit our Drinking Water Watch website at the following link: <u>http://dww2.tceg.texas.gov/DWW/</u>.

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • www.tceq.texas.gov How is our customer service? www.tceq.texas.gov/goto/customersurvey printed on recycled paper RANDY GRACY Page 2 November 18, 2015

If you have questions about your Monitoring & Reporting lead/copper violations please contact Laurie Gehlsen at Laurie.Gehlsen@tceq.texas.gov or by telephone at (512) 239-4660.

Should you have questions concerning public notification requirements, please contact our Public Notice Rule Coordinator <u>PWSPN@tceq.texas.gov</u> or by telephone at (512) 239-5723.

Sincerely,

Gary Chauvin, Manager Public Drinking Water Section (MC-155) Water Supply Division Texas Commission on Environmental Quality

Enclosures: Mandatory Public Notice Language Certification of Delivery for Public Notice

cc: TCEQ Region 4

LEAD & COPPER RULE MONITORING AND REPORTING VIOLATION MANDATORY LANGUAGE - TIER III

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

[system name] has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290, Subchapter F. Even though these were not emergencies, as our customers, you have the right to know what happened and what we are doing (or did) to correct these situations.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During [compliance period] we [did not monitor or test - or - did not complete all monitoring or testing] for [contaminant(s)] and therefore cannot be sure of the quality of your drinking water during that time.

The table below lists the contaminant(s) we did not properly test for during the last year, how often we are supposed to sample for [these contaminants], how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date on which the follow-up samples were [or will be] taken.

Contaminant	Required sampling frequency	Number of samples taken	When samples should have been taken	When samples were or will be taken
Lead & Copper tap water sampling (example)	10 samples every three years	o	June 1 – Sept 30, 2014	June 1 – Sept 30, 2015

What is being done?

We are working to correct the problem. For more information, please contact [name of contact] at [phone number] or [mailing address].

[corrective actions]

Please share this information with all other people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by [system]. Public Water System Number: [TX_____]

Date Distributed: _____

Instructions for preparing the required Public Notice: Recopy the mandatory language above and insert the underlined information in the spaces indicated.

Public Notice delivery timelines: The initial public notice shall be issued as soon as possible, but in no case later than 90 days following the initial violation. All notifications require the attached Certificate of Delivery due 10 days from the posting date of the above notice.

Refer to 30 TAC §290.122 for additional information on Public Notification.

.

Texas Commission on Environmental Quality CERTIFICATE OF DELIVERY OF PUBLIC NOTICE TO CUSTOMERS: TIER III Public Notice (PN) to be posted within **90 days** of initial violation notification

Public Water System (PWS) name:______ PWS ID: ______ Month / Year of violation(s): ______

Type of violation(s):

Lead and Copper Initial Monitoring Lead and Copper Reduced Monitoring

30 TAC 290.122(c) requires that your PWS make an adequate, good-faith effort to reach all consumers served by the system by appropriate methods (check all below that apply):

COMMUNITY WATER SYSTEM:

_____Mail or directly distribute PN to each customer receiving a bill and to other service connections to which water is delivered by the public water system;

and at least one of the following methods if direct delivery may not reach all persons regularly served by the system:

____Publish PN in local newspaper

Deliver multiple PNs for distribution by customers that provide their drinking water to others (e.g. apartment building owners or large private employers)

____Post PN in public places

____Deliver PN to community organizations

Post PN on the Internet at: www._____

NONCOMMUNITY WATER SYSTEM:

____Mail or directly deliver PN to each customer and service connection, or ____Post PN in conspicuous places within the water system;

and at least one of the following methods if direct delivery or public posting may not reach all persons regularly served by the system:

_____Publish PN in local newspaper

Deliver multiple PNs for distribution by customers that provide their drinking water to others (e.g. apartment building owners or large private employers) Post PN in public places

_____Deliver PN to community organizations

Post PN on the Internet at: www.

REQUIRED SIGNATURE ON REVERSE SIDE

_PN

со

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations."

Certified by: (print name):	Title:
Date of Delivery to Customers:	Phone:
Signature:	Date:

Mail a copy of this completed form, AND copies of the Public Notices given to your customers to:

TCEQ – Public Drinking Water Section MC – 155 Attn: Public Notice P. O. Box 13087 Austin, TX 78711-3087

BOTH SIDES OF THIS FORM, PLUS THE COMPLETED MANDITORY LANGUAGE, MUST BE DELIVERED TO THE TCEQ FOR PUBLIC NOTICE COMPLIANCE.

Bryan W. Shaw, Ph.D., P.E., Chairman Toby Baker, Commissioner Zak Covar, Commissioner Richard A. Hyde, P.E., Executive Director

PWS_1820061_CO_20150115_NOV RN101265213 CN600672349

Texas Commission on Environmental Quality Protecting Texas by Reducing and Preventing Pollution

January 15, 2015

Delivered Via Regular Mail DOUBLE DIAMOND UTILITIES CO RANDY GRACY, PRESIDENT 5495 BELT LINE RD STE 200

DALLAS, TX 75254-7658

RECT JAN 2 0 2015

SUBJECT: Notice of Violation: SURFACE WATER MONITORING, ROUTINE MAJOR CLIFFS THE - PWSID: 1820061 PALO PINTO County, TX

This letter contains important information about compliance requirements for your public water system.

Attention: Public Water System Owner / Manager / Operator

The Texas Commission on Environmental Quality (TCEQ) has determined that CLIFFS THE has a surface water monitoring and reporting violation for failing to submit a Surface Water Monthly Operating Report (SWMOR) in August 2014 for TP18486 SH 16 1 MI SW OF BRAZOS RIVER BRIDGE. The SWMOR is to be submitted monthly by the tenth day of the month following the end of each month as required in Title 30, Texas Administrative Code (30 TAC), §290, Subchapter F. The attached report summarizes each violation by monitoring period and rule.

The public notification requirements are described in 30 TAC §290.122 and include the following:

Within 90 days of identification of the violation, at a minimum, you must notify people served by the system by mail/direct delivery to bill-paying customers and continuous posting throughout the distribution system for non bill-paying customers. The public notice must use the enclosed mandatory language for every notice, and include a brief statement about what you plan to do, as described in 30 TAC §290.122(d), to fix the problem. This statement must describe what actions the water system is taking to correct the violation, and when the water system expects to return to compliance.

Please send a copy of the public notification and a signed Certificate of Delivery for Public Notice to this office within 10 days after it has been delivered. Mail to:

TCEQ - Drinking Water Inventory & Enforcement Team Attn: Public Notice (MC-155) P.O. Box 13087 Austin, TX 78711-3087

Enforcement actions due to noncompliance may result in fines for each violation.

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • www.tceq.texas.gov How is our customer service? www.tceq.texas.gov/goto/customersurvey pnnted on reveled paper RANDY GRACY, PRESIDENT CLIFFS THE - PWS ID # 1820061 01/15/2015 Page 2

Please ensure you are using the most updated version of the SWMOR form for your system. Forms and instructions are available for download at:

http://www.tceq.texas.gov/drinkingwater/swmor/swmor/swmor-forms-and-instructions/#versions

To view your public water system information at any time, visit Texas Drinking Water Watch at: <u>http://dww.tceq.texas.gov/DWW/</u>

If you have questions regarding this monitoring and reporting violation, please contact:

Amy Jean Katterjohn, Surface Water M&R Compliance Coordinator Email: AmyJean.Katterjohn@tceq.texas.gov Phone: (512) 239-6141 Fax: (512) 239-6050

If you have questions regarding public notice requirements, please contact:

Kristine Krieg, Public Notice Compliance Coordinator Phone: (512) 239-5723 Fax: (512) 239-3666 Email: Kristine.Krieg@tceq.texas.gov

Pag 2

Gary Chauvin, Manager Public Drinking Water Section (MC-155) Water Supply Division Texas Commission on Environmental Quality

GC/av

Enclosures

cc: TCEQ Region 4

Monitoring and Reporting Violation Report: CLIFFS THE PWS ID: TX1820061

ailure to Su SWMOR - TP		PACKAGED	
			August 2014 08/01/2014 - 08/31/2014
Analyte Code SWMOR	<u>Violation ID</u> 1334	<u>Analvte</u> SWMOR	Rule Citation 30 TAC §290.111(h)(2), §290.111(h)(3), and §290.111(h)(12) - Monitoring/Reporting Violation; Individual/Combined Filter Effluent

PWS_1820061_CO_

Texas Commission on Environmental Quality Protecting Texas by Reducing and Preventing Pollution

CERTIFICATE OF DELIVERY OF PUBLIC NOTICE TO CUSTOMERS

Public Water System (PWS) name: **CLIFFS THE** PWS ID (7-digit number required): **1820061** Type violation: **Surface Water Monitoring, Routine Major** Time Period of violation: **AUGUST 2014**

The PWS named above has distributed the Public Notice (PN) for the type of violation and time period listed above by:

Mail or direct delivery, to bill-paying customers as required by 30 TAC §290.122(c)(2) (A); and

The information contained in this public notification is correct and complies with required public notification content in accordance with 30 TAC §290.122

and; Make an adequate good-faith effort to reach non-bill-paying consumers by appropriate methods (check all below that apply):

- _____ Posting the PN on the internet at www.
- Mailing the PN to postal patrons within the service area that do not receive a bill
- _____ Advertising the PN in news media
- Publication of PN in local newspaper
- _____ Posting the PN in public places
- _____ Delivery of multiple copies to single bill addresses serving several persons
- _____ Delivery to community organizations
- _____ Email notification

Date of Delivery to Customers _

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations."

Certified by:	Name (print):	Title:
	Phone:	Email:
	Signature:	Date Signed:

Mail a copy of this completed form <u>and</u> a copy of the Public Notice that was delivered to your customers to:

TCEQ - Drinking Water Inventory & Enforcement Team Attn: Public Notice (MC-155) P. O. Box 13087 Austin, TX 78711-3087

Mandatory Language for Monitoring and Reporting Violation SURFACE WATER MONITORING, ROUTINE MAJOR

The **CLIFFS THE** water system PWS ID **TX1820061** has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290, Subchapter F. Public water systems that treat surface water and/or ground water under the direct influence of surface water are required to submit monthly operating reports with operational data of the water provided to their customers.

We failed to monitor and/or report the following constituents _____

This/These violation(s) occurred in the monitoring period(s)

<monitoring period of violation>

Results of regular monitoring are an indicator of whether or not your drinking water is safe. We did not complete all monitoring and/or reporting for surface water constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during that time.

We are taking the following actions to address this issue:

<corrective actions>

Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Instructions for preparing the required Public Notice:

Recopy the mandatory language above and insert the underlined information in the spaces indicated.

Public Notice delivery timelines:

The initial public notice shall be issued as soon as possible, but in no case later than **90** days after the violation was identified. Repeat public notice shall be issued every twelve months for as long as the violation persists. All notifications require the attached Certificate of Delivery due 10 days from the posting date of the above notice.

Refer to 30 TAC §290.122 for additional information on Public Notification.

DDU16 - 015525 Page 50 of 73

<Date Posted>

RESPONSIVE TO TCUC NO. 2-10

CONSUMER CONFIDENCE REPORT

TCEQ CERTIFICATION of DELIVERY

For Calendar year 2016

Public Water System(PWS) Name : CLIFFS THE

PWS ID Number : TX1820061

I certify that the community water system named above has distributed the Consumer Confidence Report (CCR) for the calendar year of 2016 and that the information in the report is correct and consistent with the compliance monitoring data previously submitted to the TCEQ. Public Water Systems serving 500 or fewer persons are not required to mail the entire CCR to their customers as long as the system provides notice at least once per year by July 1 to its customers by mail, door-to-door delivery, or by posting in an appropriate location that the report is available upon request.

Date of Delivery:	61012017	
Certified By:	Name (print): Row (ANNO	\sim
	Title: Utilities MANSEN	
(Phone Number: (103) 523-4313	Email: <u>ACANWON & POCK STECK</u> OF texOMA. COM
Signature:	200	Date: 6/10/20/7

Direct delivery methods-You must use at least one direct delivery method (check all that apply): K Mail a paper copy of the CCR

Electronic Delivery:

- Mail notification that CCR is available on-line at http://____
- 2 Email direct web address of the CCR, available at http://
- Email CCR as an attachment to an email.
- Email CCR as an embedded image in an email.

Other direct delivery (for example, door hangers or additional electronic delivery method). Please specify:

Good-faith delivery methods - To reach people who do not receive bills (check all that apply):

- Posting the CCR on the Internet at http://_
 - Mailing the CCR to people who receive mail, but who do not receive bills.
 - Advertising the availability of the CCR in news media.
- Posting the CCR in public places.
 - Delivering multiple copies to single billing addresses serving multiple persons.
 - Delivering multiple copies of the CCR to community organizations.

*Systems serving 100,000 or more people are required to post the CCR on a publicly available web site and provide the URL here: http://

All systems are required to mail by July 1the certification of delivery and complete Consumer Confidence Report to: TCEQ recommends the use of certified mail.

Sending by certified mail:	Sending by regular mail:
TCEQ	TCEQ
PDW, MC-155, Attn: CCR,	PDW, MC-155, Attn: CCR,
12100 Park 35 Circle	PO Box 13087
Austin, TX 78753	Austin, TX 78711-3087

TCEQ-20652 (03-24-13)

Annual Drinking Water Quality Report

TX1820061

CLIFFS THE is Surface Water

CLIFFS THE

Annual Water Quality Report for the period of January 1 to December 31, 2016

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water

For more information regarding this report contact:

Name RON CANNON Phone 903-523-4313

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (___) ___-.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

05/25/2017 - TX1820061_2016_2017-05-25_10-57-00.PDF

7 of 14

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL' http://dww.tceq.texas.gov/DWW

Source Water Name		Type of Water	Report Status	Location
1 - 5	5	sw		Passum Kingdom

2016 Regulated Contaminants Detected

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	2		0	N	Naturally present in the environment.

Lead and Copper

Definitions.

Action Level Goal (ALG). The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety Action Level. The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	09/25/2014	1.3	13	0.72	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives, Corrosion of household plumbing systems.
Lead	09/25/2014	0	15	6	0	ррр	N	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Test Results

Definitions:	The following tables contain scientific terms and measures, some of which may require explanation.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Maximum Contaminant Level Goal or MCLG	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

10 of 14

Water Quality Test Results

Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
na:	not applicable
mrem:	millirems per year (a measure of radiation absorbed by the body)
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)
ррв	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm:	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
Treatment Technique or TT [.]	A required process intended to reduce the level of a contaminant in drinking water.
ppt	parts per trillion, or nanograms per liter (ng/L)
pqq	parts per quadrillion, or picograms per liter (pg/L)

05/25/2017 - TX1820061_2016_2017-05-25_10-57-00.PDF

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2016	2	0-55	No goal for the total	60	ррь	N	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	2016	8	0 - 23	No goal for the total	80	qqq	N	By-product of drinking water disinfection
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2016	0.0042	0.0042 - 0.0042	2	2	ppm	N	Discharge of drilling wastes, Discharge from metal refineries; Erosion of natural deposits.
Nitrate (measured as Nitrogen]	2016	0 097	0 097 - 0.097	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic lanks, sewage; Erosion of natural deposits.

Turbidity

05/25/2017

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.12 NTU	N	Soil runoff.
Lowest monthly % meeting limit	0 3 NTU	100%	N	Soil runott.

Information Statement Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration

Interim Enhanced SWTR			
The Interim Enhanced Surface Water Treatme surface water The rule builds upon the treatm	ent Rule improves con nent technique require	trol of microbial conta ments of the Surface	minants, particularly Cryptosporidium, in systems using surface water, or ground water under the direct influence of Water Treatment Rule.
Violation Type	Violation Begin	Violation End	Violation Explanation
MONITORING, ROUTINE (IESWTR/LT1), MAJOR	03/01/2016	03/31/2016	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sur of the quality of our drinking water during the period indicated.
MONITORING, ROUTINE (IESWTR/LT1), MAJOR	04/01/2016	04/30/2016	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sur of the quality of our drinking water during the period indicated
Lead and Copper Rule			
The Lead and Copper Rule protects public he lead and copper containing plumbing material		d and copper levels in	drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of
Violation Type	Violation Begin	Violation End	Violation Explanation
FOLLOW-UP OR ROUTINE TAP M/R (LCR)	10/01/2015	2016	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sur- of the quality of our drinking water during the period indicated
FOLLOW-UP OR ROUTINE TAP M/R (LCR)	10/01/2016	2016	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be surror of the quality of our drinking water during the period indicated
Public Notification Rule			
The Public Notification Rule helps to ensure th drinking water (e.g., a boil water emergency).	at consumers will alwa	ays know if there is a	problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their
Violation Type	Violation Begin	Violation End	Violation Explanation
PUBLIC NOTICE RULE LINKED TO VIOLATION	02/08/2016	2016	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations.
PUBLIC NOTICE RULE LINKED TO VIOLATION	08/11/2016	05/26/2017	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations.
PUBLIC NOTICE RULE LINKED TO VIOLATION	08/11/2016	2016	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations
PUBLIC NOTICE RULE LINKED TO VIOLATION	09/19/2016	2016	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations

05/25/2017 - TX1820061_2016_2017-05-25_10-57-00.PDF

Violations Table

Surface Water Treatment Rule (SWTR)								
The Surface Water Treatment Rule seeks to prevent waterborne diseases caused by viruses, Legionella, and Giardia lamblia. The rule requires that water systems filter and disinfect water from surface water sources to reduce the occurrence of unsafe levels of these microbes.								
Violation Type Violation Begin Violation End Violation Explanation								
MONITORING, RTN/RPT MAJOR (SWTR- FILTER)	03/01/2016	03/31/2016	We failed to test our drinking water for the contaminant and period indicated Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.					
MONITORING, RTN/RPT MAJOR (SWTR- FILTER) 04/01/2016 04/30/2016 We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.								

05/25/2017 - TX1820061_2016_2017-05-25_10-57-00.PDF

Annual Drinking Water Quality Report

Annual Water Quality Report for the period of January 1 to December 31, 2014

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water

CLIFFS THE

For more information regarding this report contact

Name _Josh Nolte_____

Phone _940-779-2734_____

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (___) _____

CLIFFS THE is Surface Water

TX1820061

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

05/19/2015 - TX1820061_2014_2015-05-19_09-59-20.DOC

DDU16 - 015535 Page 61 of 73

of

13

7

Information about Source Water Assessments

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system, contact Josh Nolte

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL http://www.tceq.texas.gov/gis/swaview

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL http://dww.tccq.state.tx.us/DWW/

Source Water Name		Type of Water	Report Status	Location
1 - 5	5	SW		_Possum Kingdom Lakc

05/19/2015 - TX1820061 2014 2015-05-19 09-59-20.DOC

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

2014 Regulated Contaminants Detected

Lead and Copper

Definitions

Action Level Goal (ALG) The level of a contaminant in drinking water below which there is no known or expected risk to health ALGs allow for a margin of safety Action Level. The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2014	13	13	0 72	0	ppm	N	Erosion of natural deposits, Leaching from wood preservatives, Corrosion of household plumbing systems.
Lead	2014	0	15	6	0	ррb	N	Corrosion of household plumbing systems, Erosion of natural deposits.

Disinfecta	nt Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Likely Source of Contamination
CL2	2014	1.13	.20	2.2	4.0	4.0	ppm	No	Water additive used to control microbes.

Water Quality Test Results

Definitions	The following tables contain scientific terms and measures, some of which may require explanation.
Avg.	Regulatory compliance with some MCLs are based on running annual average of monthly samples
Maximum Contaminant Level or MCL	The highest level of a contaminant that is allowed in drinking water MCLs are set as close to the MCLGs as feasible using the best available treatment technology
Maximum Contaminant Level Goal or MCLG	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety
Maximum residual disinfectant level or MRDL	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants
Maximum residual disinfectant level goal or MRDLG-	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants
MFL	million fibers per liter (a measure of asbestos)
na	not applicable.
NTU	nephelometric turbidity units (a measure of turbidity)
pCı/L	picocuries per liter (a measure of radioactivity)

05/19/2015 - TX1820061_2014_2015-05-19_09-59-20 DOC

Water Quality Test Results

րրե	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water
ppm	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water
ppt	parts per trillion, or nanograms per liter (ng/L)
ррч	parts per quadrillion, or picograms per liter (pg/L)

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2014	1	0-35	No goal for the total	60	քրԵ	N	By-product of drinking water disinfection
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MC1.	Units	Violation	Likely Source of Contamination
Barium	2014	0.00344	0.00344 - 0.00344	2	2	ppm	N	Discharge of drilling wastes, Discharge from metal refineries, Erosion of natural deposits.
Nitrate [measured as Nitrogen]	2014	0 072	0 072 - 0 072	10	10	ррт	N	Runoff from fertilizer use, Leaching from septic tanks, sewage, Erosion of natural deposits

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0 06 NTU	N	Soil runoff.
Lowest monthly % meeting limit	0 3 NTU	100%	N	Soil runoff.

Information Statement Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration

Violations Table

The Interim Enhanced Surface Water Treatment Rule improves control of microbial contaminants, particularly Cryptosportdium, in systems using surface water, or ground water under the direct influence of surface water. The rule builds upon the treatment technique requirements of the Surface Water Treatment Rule					
iolation Type	Violation Begin	Violation End	Violation Explanation		
IONITORING, ROUTINE (IESW1R/LT1), IAIOR	08/01/2014	08/31/2014	We failed to test our drinking water for the contaminant and period indicated Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated		

Violation Type	Violation Begin	Violation End	Violation Explanation
MONITORING, RTN/RPT MAJOR (SWTR- FILTFR)	08/01/2014		We failed to test our drinking water for the contaminant and period indicated Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated

Annual Drinking Water Quality Report

TX1820061	CLIFFS THE	
Annual Water Quality Report	for the period of January 1 to December 31, 2015	For more information regarding this report contact
	ride you with important information about your drinking the water system to provide safe drinking water.	NameBuck Nunley
		Phone <u>940-521-6268</u>
CLIFFS THE IS Surface Wate	r	Este reporte incluye información importante sobre el agua para tomar Para asistencia en español, favor de llamar al telefono (940)779-4554.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergoine organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL. http://www.tccq.tcvas.gov/gis_swaview

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tccq.tcxas.gov_DWW_

Source Water Name		Type of Water	Report Status	Location
1 - 5	5	sw	A	Possum Kingdom Lake, Palo Pinto County

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system, contact Buck Nunley (# 940-521-6268

06/27/2016 - TX1820061_2015_2016-06-27_11-46-53.DOC

2015 Regulated Contaminants Detected

Lead and Copper

Definitions:

Action Level Goal (ALG) The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level. The concentration of a contaminant which, if exceeded, inggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	09/25/2014	13	1.3	0.72	0	ppin	N	Erosion of natural deposits, Leaching from wood preservatives, Corrosion of household plumbing systems.
Lead	09/25/2014	0	15	6	0	ррЬ	N	Corrosion of household plumbing systems; Erosion of natural deposits.

Water Quality Test Results

Definitions:	The following tables contain scientific terms and measures, some of which may require explanation
Avg.	Regulatory comphance with some MCLs are based on running annual average of monthly samples
Maximum Contaminant Level or MCL	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health MCLGs allow for a margin of safety
Maximum residual disinfectant level or MRDL	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
na:	not applicable.
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)

06/27/2016 - TX1820061_2015_2016-06-27_11-46-53.DOC

Water Quality Test Results

ppb:	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water
ppm	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water
ppt	parts per trillion, or nanograms per liter (ng/L)
ppq	parts per quadrillion, or picograms per liter (pg/L)

06/27/2016 - TX1820061_2015_2016-06-27_11-46-53.DOC

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2015		0 - 1 2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Tribalomethanes (TTHM)	2015	2	0 - 3.29	No goal for the total	80	ppb	N	By-product of drinking water disinfection
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2015	0.004	0 004 - 0 004	2	2	ppm	N	Discharge of drilling wastes, Discharge from metal refineries; Erosion of natural deposits.
Nitrate measured as Nitrogen	2015	0.0195	0 0195 - 0.0195	10	10	ppm	N	Runoff from fertilizer use, Leaching from septic tanks, sewage; Erosion of natural deposits

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	I NTU	0 04 NTU	N	Soil runoff.
Lowest monthly % meeting limit	0.3 NTU	100%	N	Soil runoff.

Information Statement Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration

Violations Table

Lead and Copper Rule						
The Lead and Copper Rule protects public health I containing plumbing materials.	by minimizing lead and co	opper levels in drinkin	g water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper			
Violation Type Violation Begin Violation End Violation Explanation						
FOLLOW-UP OR ROUTINE TAP M/R (LCR)	LOW-UP OR ROUTINE TAP M/R (LCR) 10/01/2015 2015 We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we quality of our drinking water during the period indicated					
Total Coliform						
Coliforms are bacteria that are naturally present in potential problems.	the environment and are	used as an indicator th	at other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning o			
Violation Type Violation Begi		Violation End	Violation Explanation			
MONITORING (TCR), ROUTINE MAJOR	10/01/2015	10/31/2015	We failed to test our drinking water for the contaminant and period indicated Because of this failure, we cannot be sure of the guality of our drinking water during the period indicated.			

Disinfectant	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Likely Source of Contamination
Sodium Hypo	2015	1.23	0.25	2.80	0.2	4.0	ppm	N	Water additive used to control microbes.