- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, a monthly effluent report shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be reported on an approved self-report form that is signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

- 2. Test Procedures
 - a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
 - b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.
- 3. Records of Results

Į

- a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.
- b. Except for records of inonitoring information required by this permit related to the _s permittee's sewage sludge use and disposal activities, which shall be retained for a period.

of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.

- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Report of such information shall be provided or ally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. The written submission shall contain a description of the noncompliance and its canse; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed , specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":

- i. One hundred micrograms per liter (100 μ g/L);
- ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
- iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
- iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- 10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All Publicly Owned Treatment Works (POTWs) must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

- 1. General
 - a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.

Green Valley Special Utility District

- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.
- 2. Compliance
 - a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions emhodied in the permit, and the rules and other orders of the Commission.
 - b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
 - c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
 - d. The permittee shall take all reasonable steps to minimize or provent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
 - e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
 - f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
 - g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.

- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 - 7.075 (relating to Administrative Penalties), 7.101 - 7.111 (relating to Civil Penalties), and 7.141 - 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).
- 3. Inspections and Entry
 - a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
 - b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.
- 4. Permit Amendment and/or Renewal
 - a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or

- ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9;
- iii. The alteration of addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate upon the effective shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, iu accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.

ą

- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).
- 6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

- 11. Notice of Bankruptcy
 - a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.
 - b. This notification must indicate:
 - i. the name of the permittee and the permit number(s);
 - ii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iii. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry. standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal. Permits Team; Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, snrface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).
- 7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not

confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be scrved will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 169) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

- b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.
- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and

related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.

- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Environmental Cleanup Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Registration, Review, and Reporting Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid wastc.
 - f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;

- iii. Date(s) of disposal;
- iv. Identity of hauler or transporter;
- v. Location of disposal site; and
- vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 08/2008

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site or co-disposal landfill. The disposal of sludge by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of sludge. This provision does not authorize land application of Class A or Class AB Sewage Sludge. This provision does not authorize the permittee to land apply sludge on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.

B. Testing Requirements

- Sewage sludge shall be tested once during the term of this permit in the Interim phase; annually in the Interim II and Final phases in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior
- approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division and the Regional Director (MC Region 13) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Registration, Review, and Reporting Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 13) and the Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year.

2. Sewage sludge shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C.

<u>Pollutant</u>	<u>Ceiling Concentration</u> (<u>Milligrams per kilogram</u>)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zine	7500

TABLE 1

* Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B pathogen requirements.

a. For sewage sludge to be classified as Class A with respect to pathogens, the density of fecal coliform in the sewage sludge be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met.

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information.

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion.

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB with respect to pathogens, the density of fecal coliform in the sewage sludge be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met.

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%.

<u>Alternative 3</u> - The scwage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information.

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB sewage sludge may be classified a Class A sewage sludge if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for
- reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B criteria for sewage sludge.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u>.- Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>In addition</u>, the following site restrictions must be met if Class B sludge is land applied:

- i. Food crops with harvested parts that touch the sewage sludge/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of sewage sludge.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of sewage sludge when the sewage sludge remains on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of sewage sludge when the sewage sludge remains on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of sewage sludge.
- v. Animals shall not be allowed to graze on the land for 30 days after application of sewage sludge.
- vi. Turf grown on land where sewage sludge is applied shall not be barvested for 1 year after application of the sewage sludge when the harvested turf is placed on
 either land with a bigh potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of sewage sludge.

ŀ

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of sewage sludge.
- ix. Land application of sludge shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.
- 4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- <u>Alternative 2</u> If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- <u>Alternative 3</u> If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- <u>Alternative 4</u> The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- <u>Alternative 5</u> Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- <u>Alternative 6</u> The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- <u>Alternative 7</u> The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Green Valley Special Utility District

	*	1
<u>Alternative 8</u> -	The gen or g prid Un tha pro	e percent solids of sewage sludge that contains unstabilized solids herated in a primary wastewater treatment process shall be equal to greater than 90% based on the moisture content and total solids or to mixing with other materials at the time the sludge is used. stabilized solids are defined as organic materials in sewage sludge t have not been treated in either an aerobic or anaerobic treatment press.
<u>Alternative 9</u> -	i.	Sewage sludge shall be injected below the surface of the land.
£	ii.	No significant amount of the sewage sludge shall be present on the land surface within one hour after the sewage sludge is injected.
	iii.	When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the sewage sludge shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.
<u>Alternative 10</u> -	i.	Sewage sludge applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
	ii.	When sewage sludge that is incorporated into the soil is Class A or Class AB with respect to pathogens, the sewage sludge shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure	- once during the term of this permit in the
(TCLP) Test	Interim phase; annually in Interim II and
	the Final phase
PCBs	- once during the term of this permit in the
	Interim phase; annually in Interim II and
	the Final phase

All metal constituents and fecal coliform or <u>Salmonella</u> sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC 312.46(a)(1):

Amount of sewage sludge (*) metric tons per 365-day period	Monitoring Frequency
o to less than 290	Once/Year
290 to less than 1,500	Once/Quarter
1,500 to less than 15,000	Once/Two Months
15,000 or greater	Once/Month

(*) The amount of bulk sewage sludge applied to the land (dry wt. basis).

٦,

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § $_{312.7}$

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

-	Cumulative Pollutant Loading
	Rate (<u>pounds per acre</u>)* 36 35 2677 1339 ,268 15 Report Only 375 89 2500
Table 3	
Dry weight	Monthly Average Concentration (milligrams per kilogram) 41 39 1200 1500 300 17 Report Only 420 36 2800
	Table 3

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk sewage sludge shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk sewage sludge not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk sewage sludge shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk sewage sludge sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the sewage sludge that is sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the sewage sludge to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the sewage sludge application rate for the sewage sludge that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk sewage sludge is applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk sewage sludge is proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk sewage sludge will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk sewage sludge.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.

E. Record keeping Requirements

The sludge documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information at

3

the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), <u>or</u> the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B sludge, if applicable).
- 3. A description of how the vector attraction reduction requirements are met:
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:

"I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii)or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which sludge is applied.
 - c. The number of acres in each site on which bulk sludge is applied.
 - d. The date and time sludge is applied to each site.

- e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
- f. The total amount of sludge applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 13) and Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information:

- 1. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 2. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 3. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 4. Identity of hauler(s) and TCEQ transporter number.
- 5. PCB concentration in sludge in mg/kg.
- 6. Date(s) of disposal.
- 7. Owner of disposal site(s).
- 8. Texas Commission on Environmental Quality registration number, if applicable.
- 9. Amount of sludge disposal dry weight (lbs/acre) at each disposal site.
- 10. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 11. Level of pathogen reduction achieved (Class A. Class AB or Class B).
- 12. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B sludge, include information on how site restrictions were met.
- 13. Vector attraction reduction alternative used as listed in Section I.B.4.
- 14. Annual slndge production in dry tons/year.
- 15. Amount of sludge land applied in dry tons/year.
- 16. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge treatment activities, shall be attached to the annual reporting form.

- 17. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk sewage sludge is applied.
 - c. The date and time bulk sewage sludge is applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk sewage sludge applied to each site.
 - e. The amount of sewage sludge (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.
- D. Sewage sludge shall be tested once during the term of this permit in the Interim phase; annually in Interim II and the Final phase in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division and the Regional Director (MC Region 13) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hażardous waste. The report shall be addressed to: Director, Registration, Review, and Reporting Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 13) and the Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30 of each year.

- E. Sewage sludge shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- F. Record keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

Green Valley Special Utility District

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 13) and Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information:

- 1. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 2. Annual sludge production in dry tons/year.
- 3. Amount of sludge disposed in a municipal solid waste landfill in dry tons/year.
- 4. Amount of sludge transported interstate in dry tons/year.
- 5. A certification that the sewage sludge meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 6. Identity of hauler(s) and transporter registration number.
- 7. Owner of disposal site(s).
- 8. Location of disposal site(s).
- 9. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge that is transported to another wastewater treatment facility or facility that further processes sludge. These provisions are intended to allow transport of sludge to facilities that have been authorized to accept sludge. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge.
- 2. For sludge transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

Green Valley Special Utility District

J,

u.

C. Reporting Requirements

The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 13) and Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year:

. .£

- 1. the annual sludge production;
- 2. the amount of sludge transported;
- 3. the owner of each receiving facility;

: ر ي ا

а

- 4. the location of each receiving facility; and .
- 5. the date(s) of disposal at each receiving facility.

TCEQ Revision 6/2015

ł

OTHER REQUIREMENTS

1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and, in particular, 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.

This Category C Interim I phase facility must be operated by a chief operator or an operator holding a Category C license or higher. This Category B Interim II and Final phase facility must be operated by a chief operator or an operator holding a Category B license or higher in the Interim II and Final phases. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.

- 2. The facility is not located in the Coastal Management Program boundary.
- 3. Chronic toxic criteria apply at the edge of the mixing zone. The mixing zone is defined as 300 feet downstream and 100 feet upstream from the point of discharge.
- 4. The permittee is hereby placed on notice that this permit may be reviewed by the TCEQ after the completion of any new intensive water quality survey on Segment No. 1902 of the Guadalupe River Basin and any subsequent updating of the water quality model for Segment No. 1902 to determine if the limitations and conditions contained herein are consistent with any such revised model. The permit may be amended, pursuant to 30 TAC § 305.62, as a result of such review. The permittee is also hereby placed on notice that effluent limits may be made more stringent at renewal based on, for example, any change to modeling protocol approved in the TCEQ Continuing Planning Process.
- 5. The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).
- 6. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 7. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, 1/month may be reduced to 1/quarter in the Interim I phase and daily may be reduced to 5/week in the Interim II and Final phases. A violation of any bacteria limit

4. -

}

by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEQ Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.

- 8.. Within 120 days from the start-up of the facility, the permittee shall complete Attachment A with the analytical results for Outfall 001. The completed tables with the results of these analysis and laboratory reports shall be submitted to the Municipal Permits Team, Wastewater Permitting Section MC 148, TCEQ Water Quality Division. Based on a technical review of the submitted analytical results, an amendment may be initiated by TCEQ staff to include additional effluent limitations and/or monitoring requirements. Test methods utilized to complete the tables shall be according to the test procedures specified in the Definitions and Standard Permit Conditions section of this permit and sensitive enough to detect the parameters listed in Attachment A at the minimum analytical level (MAL).
- 9. Prior to construction of the Interim I, Interim II, and Final phase treatment facilities, the permittee shall submit to the TCEQ Wastewater Permitting Section (MC 148) a summary transmittal letter in accordance with the requirements in 30 TAC § 217.6(c). If requested by the Wastewater Permitting Section, the permittee shall submit plans, specifications, and a final engineering design report which comply with 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems. The permittee shall clearly show how the treatment system will meet the effluent limitations required on Page 2, Page 2a, and Page 2b of this permit.
- 10. Reporting requirements according to 30 TAC §§ 319.1-319.11 and any additional effluent reporting requirements contained in this permit are suspended from the effective date of the permit until plant startup or discharge from the facility described by this permit, whichever occurs first. The permittee shall provide written notice to the TCEQ Regional Office (MC Region 13) and the Applications Review and Processing Team (MC 148) of the Water Quality Division at least forty-five (45) days prior to plant startup or anticipated discharge, whichever occurs first, and prior to completion of each additional phase on Notification of Completion Form 20007.

.5

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The following pollutants may not be introduced into the treatment facility:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, waste streams with a closed cup flash point of less than 140° Fahrenheit (60° Celsius) using the test methods specified in 40 CFR § 261.21;
 - b. Pollutants which will cause corrosive structural damage to the POTW, but in no case shall there be discharges with a pH lower than 5.0 standard units, unless the works are specifically designed to accommodate such discharges;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference;
 - d. Any pollutant, including oxygen demanding pollutants (e.g., biological oxygen demand), released in a discharge at a flow rate and/or pollutant concentration which will cause Interference with the POTW;
 - e. Heat in amounts which will inhibit biological activity in the POTW, resulting in Interference, but in no case shall there be heat in such quantities that the temperature at the POTW treatment plant exceeds 104° Fahrenheit (40° Celsius) unless the Executive Director, upon request of the POTW, approves alternate temperature limits;
 - f. Petroleum oil, non-biodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - g. Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - h. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- 2. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act, including any requirements established under 40 CFR Part 403 [rev. Federal Register/Vol. 70/No. 198/Friday, October 14, 2005/Rules and Regulations, pages 60134-60798].
- 3. The permittee shall provide adequate notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days subsequent to the permittee's knowledge of either of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

·.,

b=.

.

Any notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

ŧ

-1

Revised July 2007

. :

٩,

ŧ

۲

.

ł

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

1. <u>Scope. Frequency, and Methodology</u>

- a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
- b. Within 90 days of initial discharge of the 2.5 MGD facility, the permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 31%, 42%, 56%, 74%, and 99% effluent. The critical dilution, defined as 98% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing and, upon approval, reduce the testing frequency to once per six months

for the invertebrate test species and once per year for the vertebrate test species.

2) If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. <u>Required Toxicity Testing Conditions</u>

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - 3) a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - 4) a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;

5) a critical dilution CV% of 40 or less for the young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution; a CV% greater than 40 shall not invalidate the test:

- 6) a percent minimum significant difference of 47 or less for water flea reproduction; and
- 7) a percent minimum significant difference of 30 or less for fathead minnow growth.
- b. Statistical Interpretation
 - 1) For the water flea survival test, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be the Fisher's exact test as described in the manual referenced in in Part 1.b.
 - 2) For the water flea reproduction test and the fathead minnow larval survival and growth tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.

- 3) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 4) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 5) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution when compared to the survival, reproduction, or growth of the test organism in the control.
- 6) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 3.
- 7) Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 3 will be used when making a determination of test acceptability.
- 8) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.
- c. Dilution Water
 - 1) Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
- a) substitute a synthetic dilution water that has a pH; hardness, and alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
- b) use the closest downstream perennial water unaffected by the discharge.
- 2) Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.); the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days); and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.
- d. Samples and Composites

3

I

F

2

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the reuewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall oo1 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the

3

effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.

5) The effluent samples shall not be dechlorinated after sample collection.

3. <u>Reporting</u>

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
 - 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TLP3B, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOP3B, report the NOEC for survival.
 - 3) For the water flea, Parameter TXP3B, report the LOEC for survival.
 - 4) For the water flea, Parameter TWP3B, enter a "1" if the NOEC for reproduction is less than the critical dilution; otherwise, enter a "0."
 - 5) For the water flea, Parameter TPP3B, report the NOEC for reproduction.
 - 6) For the water flea, Parameter TYP3B, report the LOEC for reproduction.

Green Valley Special Utility District

- 7) For the fathead minnow, Parameter TLP6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
- 8) For the fathead minnow, Parameter TOP6C, report the NOEC for survival.
- 9) For the fathead minnow, Parameter TXP6C, report the LOEC for survival.
- 10) For the fathead minnow, Parameter TWP6C, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
- 11) For the fathead minnow, Parameter TPP6C, report the NOEC for growth.
- 12) For the fathead minnow, Parameter TYP6C, report the LOEC for growth.
- d. Enter the following codes for retests only:
 - 1) * For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) ; For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. <u>Persistent Toxicity</u>

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. Significant lethality and significant effect were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth/reproduction at the critical dilution when compared to the growth/reproduction in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.

If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.

c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.

- d. If the two retests are performed due to a demonstration of significant sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan ~ The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show

٠.

significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;

3) Quality Assurance Plan - The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, systèm blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and

- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.

d. ⁱ The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:

- 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollntant performed during the quarter;
- 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
- 3) any data and substantiating documentation which identifies the pollutant(s) and sonrce of effluent toxicity;
- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
- 6) 'any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.

Copies of the TRE activities report shall also be submitted to the U.S. EPA Region 6 office.

- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no

I

significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism. A copy of the TRE final report shall also be submitted to the U.S. EPA Region 6 office.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.

TABLE 1 (SHEET 1 OF 4) **BIOMONITORING REPORTING** CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION Date Time Date Date Date Time Date Time Date Composites No. 2 FROM: ______ TO: _____ Collected No. 3 FROM:______ TO:_____ Test initiated: _____ _______am/pm _______date Dilution water used: _____ Receiving water _____ Synthetic Dilution water NUMBER OF YOUNG PRODUCED PER ADULT AT END OF TEST 177 1 Percent effluent REP 0% **31%**. 42% 56% 74% 99% Ά D G . Ĵ. Survival Mean - Total Mean CV%** * PMSD

*Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean number of young produced per adult significantly less than the number of young per adult in the control for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION (98%): _____ YES _____ NO

PERCENT SURVIVAL

	Percent effluent							
Time of Reading	0%	31%	42%	56%	74%	99%		
24h								
48h								
End of Test								

2. Fisher's Exact Test:

Is the mean survival at test end significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (98%): _____YES _____NO

3. Enter percent effluent corresponding to each NOEC\LOEC below:

a.) NOEC survival = _____% effluent

b.) LOEC survival = ____% effluent

c.) NOEC reproduction = ____% effluent

d.) LOEC reproduction = ____% effluent

Green Valley Special Utility District

1.

ŝ

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

Dates and Times	[.] No. 1	· FROM:	Date	Time	_ TO: _	Date	Time	
Composites Collected	No. 2	FROM:	,	3 k	_ TO: .		÷ -+	, , ,
	No. 3	FROM:	, 		_ TO:_			r
Test initiated:	<u> </u>	<u> </u>		am/pm				date
Dilution wat	er used:		Receiv	ving water		Synt	hetic diluti	on water

• FATHEAD MINNOW GROWTH DATA

.

Effluent,	Áveráge Dry Weight in repl	Mean Dry CV%*		
Concentration	Ales B	Ď. Ě	Weight	
0%	1	•	1	
31%		· · · · · · · · · · · · · · · · · · ·		
41%	where articular and a state of the state of the		t day	,, , , , , , , , , , , , , , , , , , ,
* 55%	·	-	1	
74%			· · · · ·	
-98%	* 's e '		÷	5
PMSD	· · ·			1

* Coefficient of Variation = standard deviation x 100/mean

1

,

ť.

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean dry weight (growth) at 7 days significantly less than the control's dry weight (growth) for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION (98%): _____ YES _____ NO

Ŧ

•74

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent Concentration	Percei	n t Surviv	al in repl	licate ch	ambers	Mean percent survival			CV%*
	A	В	С	D	E	24 h	48h	7 day	
0%									
31%									
41%									
55%									
74%									
98%									

* Coefficient of Variation = standard deviation x 100/mean

2. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean survival at 7 days significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (98%): _____YES _____NO

3. Enter percent effluent corresponding to each NOEC\LOEC below:

a.) NOEC survival = ____% effluent

b.) LOEC survival = ____% effluent

c.) NOEC growth = ____% effluent

d.) LOEC growth = ____% effluent

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for WET testing.

- 1. <u>Scope, Frequency, and Methodology</u>
 - a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater
 - than 50% survival of the appropriate test organisms in 100% effluent for a 24hour period.
 - b. Within 90 days of initial discharge of the 2.5 MGD facility, the toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, and then repeat, an invalid test during the same reporting period. The repeat test shall include the control and the 100% effluent dilution and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. <u>Required Toxicity Testing Conditions</u>

a. Test Acceptance - The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.

- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- c. Samples and Composites
 - 1) The permittee shall collect one composite sample from Outfall 001.
 - 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
 - 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
 - 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
 - 5) The effluent sample shall not be dechlorinated after sample collection.

3. <u>Reporting</u>

All reports, tables, plans, summarics, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "o" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

Green Valley Special Utility District

- 2) For the fathead minnow, Parameter TIE6C, enter a "ó" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 -) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

4. <u>Persistent Mortality</u> `

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.

b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. Toxicity Reduction Evaluation

a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.

b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall snbmit a TRE action plan and schedule for conducting a TRE. The plau shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level uot effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:

Page 53

Green Valley Special Utility District

- 1) Specific Activities - The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity" Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE Action Plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;

f.

- 3) any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;
- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.

Copies of the TRE activities report shall also be submitted to the U.S. EPA Region 6 office.

- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
 - If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances

beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism. A copy of the TRE final report shall also be submitted to the U.S. EPA Region 6 office.

h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit. Green Valley Special Utility District

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

n	,	Time	Date
· ×	Composite Sample Collected		**
ter in the second	Test Initiated		
,		1	· · · · ·

.

PERCENT SURVIVAL

T				Percen	effluent-	er a no so : is internet	
, ime	Kep ·		6%	13%1	125%	50%	100%
	KA.	1 1 1 1 1	and the second				
2 F1-54	B B	, , ,					-
	Č	· · · · ·				Maria and and	-
2411	۹, ⁹ D					an an de Stroner et	
	7 +1E				17. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		3 2
5.778. (l	MEAN	r prin r d ^{al} t in shin			Land La		и и

Enter percent effluent corresponding to the LC50 below:

24 hour LC50 = ____% effluent

· '*

÷

۰×

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Times	Dem	. Percent effluent -							
Thine Re	кер	0%	6%	13%	25%	50%	100%		
•••	A				-				
	В .		۰.						
ach	C ·								
24n	D		۴.			-			
<u>.</u>	E			ı					
	MEAN								

Enter percent effluent corresponding to the LC50 below:

24 hour LC50 = ____% effluent

Attachment 'A' WQ0015360001

DOMESTIC WORKSHEET 4.0

POLLUTANT ANALYSES REQUIREMENTS*

The following is required for facilities with a permitted or proposed flow of 1.0 mgd or greater, or facilities with an approved pretreatment program. ' See instructions for further details.

*Worksheet not required for minor amendments without renewal

1. TABLE 4.0(1) – Toxic Materials

(Instructions, Page 84)

Table 1 sample information - indicate type of sample.

Grab 🔲 Composite

Date and time sample(s) collected:

Pollutant	AVG Effluent · Conc. (µg/l)	MAX Effluent Conc. (µg/l)	No. of Samples	ΜΑL (μg/l)
Acrylonitrile			r	50 -
Aldrin		۰ ٤		0.01
Aluminum	• • •			2.5
Anthracene				10
Antimony				5
Arsenic				0.5.
Barium ,	•			3
Benzene .'				10
Benzidine				50
Benzo(a)anthracene				5
Benzo(a)pyrene				·5
Bis(2-chloroethyl)ether				10
Bis(2-ethylhexyl)phthaiate				10
Bromodichloromethane				10
Bromoform				10

۰.

Table 4.0(1) – Toxics Analysis

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

۲

Page 50 of 76

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	No. of Samples	MAL (µg/l)
Cadmium				1
Carbon Tetrachloride				2
Carbaryl				5
Chlordane*				0.2
Chiorobenzene				10
Chlorodibromomethane				i0
Chloroform				10
Chlorpyrifos				0.05
Chromium (Total)				3
Chromium (Tri) (*1)				N/A
Chromium (Hex)				З
Copper				2
Chrysene				5
p-Chloro-m-Cresol				10
4,6-Dinitro-o-Cresol				50
p-Cresol				10
Cyanide (*2)				10
4,4'- DDD				0.1
4,4'- DDE				0.1
4,4'- DDT				0.02
2,4-D				0.7
Demeton (O and S)				0.20
Diazinon				0.5/0. 1
1,2-Dibromoethane				10
m-Dichlorobenzene				10
o-Dichlorobenzene				10
p-Dichlorobenzene				10
3,3'-Dichlorobenzidine				5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

Page 51 of 76

Pollutañt	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	No. of Samples	MAL (µg/l)
Dichloromethane				20
1,2-Dichloropropane				10
1,3-Dichloropropene		• 7		10
Dicofol ,				1.
Dieldrin				0.02
2,4-Dimethylphenol			F.	10 -
Di-n-Butyl Phthalate	,		v	10
Díuron				0.09
Endosulfan I (alpha)				0.01
Endosulfan II (beta)		-	ě	0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Ethylbenzene				10
Fluoride	à	۳ ^{سر}		500
Guthion				0.1
Heptachlor		a's	•	0.01-
Heptachlor Epoxide	~			0.01
Hexachlorobenzene	5	E 1		5
Hexachiorobuťadiene	h .			10
Hexachlorocyclohexane (alpha)	5			0.05
Hexachlorocyclohexane (beta)				0.05
gamma-Hexachlorocyclohexane (Lindane)	Π			0.05
Hexachlorocyclopentadiene		<u> </u>		10
Hexachloroethane		•	ł	20
Hexachlorophene	F			10
Lead		1	4	0.5
Malathion				0.1
Mercury	3			0.005
Methoxychlor		•	•	2

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

Page 52 of 76

z

r,**

ł

*

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/i)	No. of Samples	MAL (µg/l)
Methyl Ethyl Ketone				50
Mirex				0.02
Nickel				2
Nitrate-Nitrogen				100
Nitrobenzene				10
N-Nitrosodiethylamine				20
N-Nitroso-di-n-Butylamine				20
Nonylphenol				333
Parathion (ethy!)				0.1
Pentachlorobenzene				20
Pentachlorophenol				5
Phenanthrene				10
Polychlorinated Biphenyls (PCB's) (*3)				0.2
Pyridine				20
Selenium				5
Silver				0.5
1,2,4,5-Tetrachlorobenzene				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Thallium				0.5
Toluene				10
Toxaphene				0.3
2,4,5-TP (Silvex)				0,3
Tributyltin (see instructions for explanation)				0,01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)				10

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

Page **53** of **76**

Pollutant		AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	No. of Samples	MAL (μg/l)
Vinyl Chloride	4 . u			4 3	10 _ '
Zinc					5

1.

(*1) Determined by subtracting hexavalent Cr from total Cr.-

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

2. TABLE 4.0(2) – Priority Pollutants

(Instructions, Page 84)

Table 2 sample information: indicate type of sample.

Grab Composite

Date and time sample(s) collected:____

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. - (μg/l)	No. of Samples	MAĽ (µg/i)
Antimony				5
Arsenic 📩	cik.			0.5
Beryllium				0.5
Cadmium		<u>د</u>		.1
Chromium (Total)				3
Chromium (Hex)				· 3
Chromium (Tri) (*1)		<		N/A
Copper				2
Lead		•	,	0.5.
Mercury			•	0.005
Nickel				2.
Selenium		,		5
Silver		•	· · ·	0.5
Thallium	~	4		. 0.5
Zinc		-1		5

Table 4.0(2)A – Métals, Cyanide, Phenois

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

t

Page 54 of 76

······································	 · · · · · · · · · · · · · · · · · · ·	
Cyanid <u>e (*2)</u>		10
Phenols, Total		10

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	No. of Samples	MAL (µg/l)
Acrolein]		50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride	_			2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane		r		50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane				
[Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane				10
1,3-Dichloropropylene				10
Fthylbenzene				10
Methyl Bromide				50
Methyl Chloride				50
Methylene Chloride				20
1.1.2.2-Tetrachloroethane				10
Tetrachloroetbylene				10
Toluene				10
1.1.1-Trichloroethane		M		10
1.1.2-Trichloroethane				10
Trichloroethylene		·····		10
Vinvl Chloride				10

Table 4.0(2)B – Volatile Compounds

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

Page 55 of 76

Poliutant .		AVG Effluent Conc. (□	MAX Effluent Conc. (No. of Samples	MAL (E
2-Chlorophenol			۰.	-	10
2,4-Dichlorophenol					· 10
2,4-Dimethylphenol	•	•			, 10
4,6-Dinitro-o-Cresol					50
2,4-Dinitrophenol					50
2-Nitrophenol					20
4-Nitrophenol					50
P-Chloro-m-Cresol			¥		10
Pentalchlorophenól					5
Phenol		, ,			10
2,4,6-Trichlorophenol					10

Table 4.0(2)C - Acid Compounds

Table	4.0(2)D	- Base	/Neutra	l Compou	ınds ¦
	1				
					1

.

Pollutant	AVG Effluent Conc. (μg/l)-	MAX Effluent Conc. (µg/l)	No. of Samples	MAL (µg/l)
Acenaphthene			-	10
Acenaphthylené				10
Anthracene	-		· ۴۰۰	10
Benzidine			••	50
Benzo(a)Anthracene				5
Benzo(a)Pyrene	-		-	5
3,4-Benzofluoranthene		1	P.	10
Benzo(ghi)Perylene				20
Benzo(k)Fluoranthene		E.		5
Bis(2-Chloroethoxy)Methane	•			10
Bis(2-Chloroethyl)Ether			4	10
Bis(2-Chloroisopropyl)Ether				10
Bis(2-Ethylhexyl)Phthalate	-	, and a.		10
4-Bromophenyl Phenyl Ether			-	* 10
Butyl benzyl Phthalate				10
2-Chloronaphthalene	ب		•	10
4-Chlorophenyl phenyl ether	dur ¹ 4			10

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

.

* Page 56 of 76

.

i,

.

۴.

. 7

.

Chrysene		5
Dibenzo(a,h)Anthracene		5
1,2-(o)Dichlorobenzene		10
1,3-(m)Dichlorobenzene		10
1,4-(p)Dichlorobenzene		10
3,3-Dichlorobenzidine		5
Diethyl Phthalate		10
Dimethyl Phthalate		10
Di-n-Butyl Phthalate		10
2,4-Dinitrotoluene		10
2,6-Dinitrotoluene		10
Di-n-Octyl Phthalate		10
1,2-Diphenylhydrazine (as Azo-		
benzene)		20
Fluoranthene		10
Fluorene		10
Hexachlorobenzene		5
Hexachlorobutadiene		10
Hexachlorocyclo-pentadiene		10
Hexachloroethane		20
Indeno(1,2,3-cd)pyrene		5
Isophorone		10
Naphthalene		10
Nitrobenzene	l	10
N-Nitrosodimethylamine		50
N-Nitrosodi-n-Propylamine		20
N-Nitrosodiphenylamine		20
Phenanthrene		10
Pyrene		10
1,2,4-Trichlorobenzene		10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc, (µg/1)	No. of Samples	MAL (µg/l)
Aldrin				0.01
alpha-BHC				
(Hexachlorocyclohexane)				0.05
beta-BHC		-		0.05

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

Page 57 of 76

(Hexachlorocyclohexane)	
gamma-BHC	
(Hexachlorocyclohexane)	0.05
delta-BHC	
(Hexachlorocyclohexane)	0.05
Chlordane	0.2
4,4-DDT	0.02
4,4-DDE	0.1
4,4,-DDD	0.1.
Dieldrin	0.02
Endosulfan I (alpha)	. 0.01
Endosulfan II (beta)	0.02
Endosulfan Sulfate	0.1
Endrin	0.02
Endrin Aldehyde	0.1
Heptachlor	0.01
Heptachlor Epoxide	0.01
PCB-1242	0.2
PCB-1254	0.2
PCB-1221 '	0.2
PCB-1232	0.2
PCB-1248	0.2
PCB-1260	0.2
PCB-1016	0.2
Toxaphene	0.3

Ŕ.

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

ŧ

1

1

.

ž

Page **58** of **76**

٠

÷

TABLE 4.0(2)F (DIOXINS/FURAN COMPOUNDS) (Instructions page 91)

Complete Table 4.0(2)F as directed. (Instructions, Pages 91-93)

Are any of the following compounds used by a contributing industrial user or a. significant industrial user that is part of the collection system for the facility that you have reason to believe are present in the influent to the WWTP? 🗌 No

🗌 Yes

If yes, indicate with a check mark which compound(s) are potentially sent to the facility and provide a brief description of the conditions of its/their presence at the facility.

	2,4,5-trichlorophenoxy acetic acid	(2,4,5-T)	CASRN 93-76- 5
	2-(2,4,5-trichlorophenoxy) propanoic acid	(Silvex, 2,4,5- TP)	CASRN 93-72-1
	2-(2,4,5-trichlorophenoxy) ethyl 2,2- dichloropropionate	(Erbon)	CASRN 136-25-
	0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate	(Ronnel)	CASRN 299-84-
	2,4,5-trichlorophenol	(TCP)	CASRN 95-95-
	bexachlorophene	(HCP)	ĊASRN 70-30- 4
Descrip	ntion:		,

Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-Pb. Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

🗌 Yes No No

If yes, provide a brief description of the conditions for its presence.

If you responded yes to either item a or b, complete Table 12 as instructed. c.

Table 12 for Outfall No. Samples are (check one): Composites Grabs

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

Page 59 of 76

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1 .	*	Ł			10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1	2. F.	м (1) м		2.55	50
1,2,3,4,6,7,8 HpCDD	0.01	3 14	×	*	÷.	50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5			т. Р.		. <u>,</u> 50
2,3,7,8 HxCDFs	0.1				¥	50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003	L			k, ş	[،] 100
OCDF	0.0003	-		1		100
PCB 77	0.0001			ж		0.5
PCB 81 .	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total				16		

i.

DOMESTIC WORKSHEET 5.0

TOXICITY TESTING REQUIREMENTS

Worksheet not required for minor amendments without renewal.

1. Required Tests

(Instructions, Page 94)

-1

ŧ,

4

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic:______48-hour Acute:_____

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report / Page 60 of 76

GVSUD 200544 ~

Garry Montgomery

From: Sent: To: Subject: Attachments: Garry Montgomery Monday, April 04, 2016 11:39 AM 'Larry Diamond' GVSUD - Permit No. WQ0015360001 TCEQ 2015.05.04 Part A.pdf

Larry,

Attached is Part A of our response that you requested this morning. Please let me know if you need any other information. I will send a second email with the second section and we are preparing the regionalization map now. I will send it out later today or tomorrow.

Thanks,

Garry Montgomery, P.E., CFM, SIT

Engineer IV

New Braunfels, Texas 78130 Office: 830-626-3588 x 153 garry@rcetx.com www.rcetx.com

 x^{*}

May 1, 2015

Lisa Iroanya Municipal Permits Team Water Quality Division TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 12100 Park 35 Circle, Bldg. F Austin, Texas 78753

Re: Application for Proposed Green Valley Special Utility District Wastewater Permit No. WQ0015360001 (CN600684294) (RN108208646)

Dear Ms. Iroanya:

This letter is in response to your April 10, 2015 comments. A summary of your comments and how they were addressed are provided below.

In addition, after receiving your comments we have revised the proposed Interim Phase design flow to 2.5 MGD in lieu of 2.0 MGD. We have also removed the request for "Land Application for Beneficial Use Authorized in the Wastewater Permit" as a sludge disposal method. Instead, we are requesting to add "Permitted or Registered Land Application Site for Beneficial Use" as a sludge disposal method. Page 13 of the administrative report, and Pages 1, 12, 13, 20, 22, 24, & 26 of the technical report, along with updated USGS Maps, have been revised to reflect these changes and are also attached to this letter.

- Item 6.d. on page 10 of the Administrative Report: The public place information was not provided. Please provide the name of the building and address of a building supported by taxpayer funds in the county of the proposed facility. Please provide this information and resubmit the corrected page.
 - Attached is revised page 10 of the Administrative report which includes the public place information.

- Item 7.d. Section A. on page 12 of the Administrative Report: We were unable to verify the street address of 3930 Linne Road, Marion, Texas 78124 with the US Postal Service. If this is a 911 address please state so in your response, otherwise, please confirm that the address provided is a valid address and resubmit the corrected page.
 - This is a 911 address. See attached verification letter.
- 3. Signature page on page 17 of the Administrative Report: You provided a signature page that is a copy of the original. The agency requires the original, notarized, wet signatures. Please resubmit the signature page containing original, notarized, wet signatures.
 - Attached are the signed originals of the Administrative Report.
- 4. Item 1.a. on page 21 of the Administrative Report 1.1: Please combine the two affected landowners' maps into one map (to scale) that shows all applicable items on page 21 of the administrative report.
 - Please see attached revised Landowners Map, with revised crossreference list. Note that since we are withdrawing request to Land apply sludge, we have removed the 0.5 Mile buffer and associated affected land owners.
- 5. Item 1.c. on page 22 of the Administrative Report 1.1: The landowner list media is was not formatted in Avery 5160 format. Please resubmit the landowner list media CD-RW labeled with the applicant name and permit number. Within the file stored on the CD- RW, identify the name and addresses of each landowner in Avery 5160 format, in capitalized font, containing no punctuation, and the appropriate two-character abbreviation used for the state. Each entity listed must be blocked and spaced as shown.
 - A revised CD-RW with landowners list in the appropriate format is attached.
- 6. Item 1.c. on page 22 of the Administrative Report 1.1: The landowner's cross reference list is provided, however, with the edits to the landowners map a corrected cross reference list is required. Please resubmit the corrected cross reference list.
 - Attached is a revised cross-reference list which reflects changes made to the landowners map as requested in comment #4

- 7. Item 10.a. on pages 12-13 of the Technical Report: The sewage sludge management and disposal information was not provided. Please complete this information. If the sewage sludge is transported to another wastewater treatment facility or permitted sludge processing facility a written statement or copy of a contractual agreement confirming the identified wastewater treatment facility will accept sludge is required. Please complete the missing information and submit the corrected page.
 - Please see attached pages 12 & 13 of the Technical Report.
 - Since this permit application is for a proposed wastewater treatment plant, it is not known at this time which treatment facility or permitted sludge processing facility sludge will be hauled to. We are requesting to leave this item open, however a TCEQ Permitted Site and Hauler will be used, and a written statement and/or copy of the contractual agreement will be provided to TCEQ prior to any sludge being hauled to these facilities.
- Item 11. A. on page 13 of the Technical Report: You_provided a sludge landowners map and checked "Land application for beneficial use authorized in wastewater permit" as the sludge disposal method. Are you requesting to include authorization to land apply sewage sludge for beneficial use? If so, please complete the Application for Permit for Beneficial Land Use of Sewage Sludge (Form No. 10451).
 - We are no longer requesting authorization to land apply sewage sludge for beneficial use as a sludge disposal method.
- 9. A preliminary technical review was performed by the technical staff and it has been determined that additional information needs to be addressed before the application can be declared administratively complete or technically complete. Please provide a complete response to each item identified in Attachment 1 of this letter.
 - The preliminary technical review comments are listed below, along with how each of those comments were addressed.
- 10. The following is a portion of the Notice of Receipt of Application and Intent to Obtain a Water Quality Permit. Please read it carefully and indicate if it contains any errors or omissions.
 - We take no exceptions to the portion of the Notice of Receipt of Application and Intent to Obtain a Water Quality Permit, provided the "location to be verified" and "at a location to be determined" sections are
 - updated in accordance to our responses to comments #1 & #2.

Preliminary Technical Review Comments:

- 1 Please include dates for this item. Dates of construction and completion were included in Technical Report 1.1. Include those in a new page 1 of the Technical Report.
 - Please see attached revised Page 1 of the Technical Report.
- 2 More details are needed in an attachment for this response. Number of LUE or connections for each phase are needed on a per year continuing. Normally this is included as a table with build-outs expected each year. If some of the expected contributions are from non-residential sources also include those. Give justification for all phases including the Final phase of 5 MGD.
 - Please see attached LUE projections for the proposed WWTP.
- 3 Technical Report 1.1, Item 2c Include information for all phases not just for the initial proposed phase.
 - See attached tables which includes information for the Initial, Interim, and Final phases. Also included is a revised page 23 of the technical report.
- 4 There was no TCEQ Form No.10451 in my copy of the permit. Is beneficial use authorization for land adjacent to the treatment plant being requested? If it is then all Form No. 10451 with all of the required information is necessary. If it is not, then please submit a revised page 26 to indicate this.
 - We are withdrawing our request to authorize land applying sludge for beneficial use on land adjacent to the treatment plant. Please see revised page 26 of the Technical Report.
- 5 I only found design calculations for the proposed 5 MGD phase. Please include design calculations for each proposed phase.
 - Please see attached design calculations for each of the proposed phases.
- 6 I only located the flow diagram for the initial plant phase. Please submit flow diagrams for the 2 MGD propose phase and the 5 MGD proposed phase.
 - Please see attached flow diagrams for all phases.

7 Sewage sludge management plans are needed for each phase. I did not locate any. There are examples of plans in the TCEQ form 10053ins'as Example 5.

- Please see attached Sewage Sludge Management Plan for each phase.

Two additional copies of the complete response are attached. If you have any further questions or need additional information, please do not hesitate to contact us.

Sincerely,

J.

4

Patrick A. Lackey, P.E.

 $A_{\rm e}$

c. Contact in the notice

Prefix (Mr. Ms, Miss): <u>wr</u>		
First/Last Name: Pat Allen		
Suffix (Jr, Sr, III): N/A 7	itle: General Manager	Credential: <u>N/A</u>
Organization Name: Green	alley Special Utility District	
Phone No.: (830) 914-2330	Extension: N/A	

d. Public place information

If the facility and/or outfall is located in more than one county, a public viewing place for each county must be provided.

Public Building name: Green Valey Special Utility District - Main Office

Location within the building: Front D	esk
Physical address of building: 529 Sou	uth Center Street
City: Marion	County: Guadalupe
Contact Name: Pat Allen	
Phone No.: 830-914-2330	Extension: N/A

e. Bilingual notice requirements

For new permit applications, major amendment and renewal applications. Not applicable for minor amendment or minor modification applications.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine if an alternative language notice is required:

1. Is a bilingual education program required by the Texas Education Code at the nearest elementary or middle school to the facility or proposed facility?

Yes No

(If No, alternative language notice publication is not required; skip to item 7. Regulated Entity and Permitted Site Information.)

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

Yes No N/A
Guadalupe County

Road & Bridge Department

Mark Green, Aamunistrator Roger Hurt, Assistant Administrator

2/20/2015

Green Valley Special Utility District, 529 South Center Street (PO Box 99) Marion, TX 78124

RE: ADDRESS ASSIGNMENT VERIFICATION

To Ms/Mr. Green Valley Special Utility District

This notice is to inform you of your physical location address. The address assigned to the location is:

3930 Linne Rd

Please display this address on your structures and/or driveway with 3" or larger reflective numbers so emergency personnel can easily locate these structures in an emergency. Please check with your local post office before using this new address for mailing purposes. If you receive mail at a post office box, your mailing address will not change. In this case, the address listed above will be used for location purposes only.

If you have any questions regarding this assignment, please contact me at (830)379-9721 or (830) 379-9761

Thank you,

Senisa Blandford Address Coordinator

78155 2G0313-0000-00600 & 2G0313-0000-0280 (Split-out-of)

Note: Any new driveways entering *public* right-of-ways need to be permitted through this office, the Texas Department of Transportation or a municipality. New driveways entering private lanes or private drives do not need a permit.

Office: (830) 379-9721 Fax; (830) 372-3249 2605 N. Guadalups Seguin, XX 78155-7356

Date: **REQUEST FOR 911 LOCATION ADDRESS GUADALUPE COUNTY ROAD & BRIDGE** Phone (830) 379-9721 2605 N, Guadalupe St. Fax (830) 372-3249 Seguin, TX 78165 **Read Instructions Completely** Please complete Step 1 & 2 completely. 2 Directions to the site and a map are mandatory. In most cases, the address will be determined based on where the driveway makes contact with the public or private road, it is important that the 3. driveway be marked if it doesn't already exist. Please provide the Guadalupe Apprairal account number so that the percei can be located. If the land has just been purchased, provide the previous owner's name. Addresses are assigned on Fridays by 5:00p.m. <u>NOTE: If all of the steps are not filled out completely this may cause a delay in the address essignment.</u> Contact Person: PAT ALLEN Request By: Company Name: Green Valley Special Utility District GARRY MONTGOMERY Purchased Date (if a recent purchase, include prior owner's name): MURPHEY JOANN F & CLAUDETTE JUNE TURK Owner's Name: Green Valley Special Utility District **STEP 1:** Owner's name Renter's Name: and address Current Making Address (number and streat): 529 South Center Street, PO. BOX 99 City, State, Zlp Code: Marion, TX 78124 Phone (area code and number): (830) 914-2330 Guadalupe County Appraisal District account number (if known): 70990 AND 70940 **Bik**: Subdivision Name: Unit #: Lal: STEP 2: Description of Acres: 65.000 AC Property/structure Street or road location: LINNE RD @ IH 10 Describe the structure to be addressed (example residence, single-wide mobile home, future homesile): FUTURE PLANT FACILITIES Is this structure going to be your homesite? NO Directione to structure STEP 3: Head west on I-10 Frontage Rd, Turn left onto the ramp to Linne Rd 0.1 mi, **Directions** to structure Turn right onto Linne Rd 0.1 mi OR Head west on I-10 Frontage Rd, Turn right onto the Farm to Market Road 465 ramp to Marion 0.1 mi, Turn right onto Linne Rd 0.3 mi **STEP 4:** Draw directions to the property on reverse side. SEE ATTACHED SURVEY Map to property Date: Authorized signature STEP 5: Sign here 02/18/2015 Sign and date FOR OFFICE USE ONLY: Notify; Other, Ck -Post Office GCAD Account Number: Map/Plat # (JUSI 3-1111 **ASSIGNED ADDRESS: POST OFFICE CARRIER:** ZIP CODE: ASSIGNED BY: DATE: ining Ais.

02/20/2015 11:30

(FAX)

P.003/003

GREEN VALLEY SUD SANTA CLARA CREEK NO. 1 WASTEWATER TREATMENT PLANT TCEQ DISCHARGE PERMIT PERMIT AFFECTED LANDOWNERS LIST

#	OWNER	MAILING ADDRESS		
1.	WEBER DELVIN	PO BOX 95 MARION, TX 78124		
2.	MURPHEY JOANN F & CLAUDETTE JUNE TURK .	606 SPRINGVALE SAN ANTONIO, TX 78277		
3	FROBOESE LEROY E & NELLEENE	4251 S SANTA CLARA ROAD MARION, TX 78124		
4	KELLER GISELA	PO BOX 846 MARION, TX 78124		
5	PNR RANCH LLC	4080 LINNE ROAD SEGUIN, TX 78155		
6	DEMSEY SHAWN NELSON	2982 HIDDEN MEADOW SEGUIN, TX 78155		
7	KLEIN FRIEDRICH	PO BOX 95 MARION, TX 78124		
8	GOLSON JACYN HOESE	5271 E FM 1518 N ST HEDWIG, TX 78152		
9	WIEDNER ELMON JR -	3240 GIN ROAD SEGUIN, TX 78155		
10	WIEDNER ROYCE	5200 LINNE ROAD SEGUIN, TX 78155		
11	CHAPLIN RICHARD L SR.	3575 GIN RD SEGUIN: TX 78155		

ł

,

1

Aluminum, mg/l	· c · ·	*	
Alkalinity (CaCO ₃), mg/l		 <u> </u>	• ,

9. Facility Operator

(Instructions, Page 58)

Provide the name, license classification and level, and operator license number for the facility operator:

Not known at this time, however a certified operator will be used.

10. Sewage Sludge Management and Disposal

(Instructions, Page 58)

a. Sludge disposal method To Be Determined

Check the current and anticipated sludge disposal method or methods. More than one method can be checked.

- Permitted landfill
- Permitted or Registered land application site for beneficial use
- Land application for beneficial use authorized in the wastewater permit
- Permitted sludge processing facility
- Marketing and distribution as authorized in the wastewater permit
- Composting as authorized in the wastewater permit
- Permitted surface disposal site (sludge monofill)
- Surface disposal site (sludge monofill) authorized in the wastewater permit
- Transported to another permitted wastewater treatment plant or permitted sludge processing facility (a current statement or agreement is required, see the item below)
- Written statement/contractual agreement from the wastewater treatment plant or permitted sludge processing facility accepting the sludge is attached
- Other method (provide description):

b. Sludge disposal site

Provide the disposal site name: Not known at this time, however a TCEQ permitted site will be used.

TCEQ permit or registration number: Not Known at this time, however a TCEQ permitted site will be used.

County where disposal site is located: Not known at this time

c. Sludge transportation method

Provide the method of transportation (truck, train, pipe, other): Truck
Name of the hauler: Not known at this time, however a TCEQ permitted hauler will be used
Hauler registration number: Not known at this time, however a TCEQ permitted hauler will be used
Transported as: I liquid semi-liquid semi-solid solid
Land application for: reclamation soil conditioning

11. Permit Authorization for Sewage Sludge Disposal (Instructions, Page 58)

a. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

Yes No Existing Permit

If yes, are you requesting to continue this authorization to land apply sewage slndge for beneficial use?

Yes 🔳 No

No Existing Permit

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

Yes No

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY DOMESTIC WASTEWATER PERMIT APPLICATION

DOMESTIC TECHNICAL REPORT 1.0

The Following Is Required For All Applications

Renewal, New, And Amendment

1. Permitted or Proposed Flows

(Instructions, Page 49)

Table 1.0(1) - Existing/Interim I Phase

e	. به في
Design Flow (MGD)	0.25
2-Hr Peak Flow (MGD)	0.75
Estimated construction start date	01/2016
Estimated waste disposal start date	08/2016

... Table 1.0(2) - Interim II Phase

Design Flow (MGD)	2.5
2-Hr Peak Flow (MGD)	. 7.5
Estimated construction start date	01/2019
Estimated waste disposal start date	01/2020

Table 1.0(3) - Final Phase

Design Flow (MGD)	5.0
2-Hr Peak Flow (MGD)	15.0
Estimated construction start date	01/2044
Estimated waste disposal start date	01/2045

GVSUD 200558

Current operating phase: N/A

Provide the startup date of the current phase: <u>N/A</u>

Provide the startup date of the facility: Pending Permit Approval

TCEQ-10054 (07/14/2014) Domestic Wastewater Permit Application Technical Report

GREEN VALLEY SPECIAL UTILITY DISTRICT (GVSUD) PROJECTED FLOWS

Green Valley Special Utility District (GV5UD) has a wastewater CCN area of approximately 73,175 acres. GVSUD CCN boundary generally overlaps their water CCN boundary, except for the Northeast & Northwest parts of their water CCN area. This was helpful in identifying land use and estimating EDU/connection's per year to help size the capacity and loading of the proposed plant. To project future plant capacity and EDU's/connections per year, a 10% growth rate was used. This growth rate is similar to the growth rates of nearby municipalities that provide wastewater service. This growth rate is also similar to the growth rate of GVSUD's water system in areas where wastewater service is available over the past 10 to 15 years. This growth rate, along with land use maps, was used to determine EDU/ connections per year on a continuing basis. The Santa Clara Creek Watershed map provided in the permit provides locations of existing city limits and extraterritorial jurisdictions of surrounding municipalities.

The proposed initial phase is 0.25 MGD. GVSUD currently has an application for wastewater service for a proposed development on a tract of land to the west and up gradient of the proposed wastewater plant within the Santa Clara Creek Watershed. The proposed development is seeking capacity for an average flow 130,000-gpd (approx. 530 EDU's). The development of this tract is anticipated to take four years. The initial phase includes commercial/industrial developments along with other anticipated initial connections, and is anticipated to have approximately 950 EDU's (228,000-gpd).

The proposed Interim phase is for 2.5 MGD, and the Final Phase is for 5 MGD. As mentioned above, a 10% growth rate was used to determine EDU/connections to the plant on a per year basis and the results are provided below.

Green Valley Special Utility District Santa Clara Creek WWTP No. 1

-

¥.

٠

ŧ

Year	Land Use	Projected EDU's	Projected Volumes (GPD)				
Initial Phase: 0.25 MGD							
2016	Residential/Commercial Land Use	205	49,200				
2017	Residential/Commercial Land Use	430	103,200				
2018	Residential/Commercial Land Use	° 660	158,400				
2019	Residential/Commercial Land Use	952	228,360				
Phase II: 2	.S MGD		•				
2020	Residential/Commercial Land Use	- 1.047	251,196				
2021	Residential/Commercial Land Use	1,151	276,316				
2022	Residential/Commercial Land Use	1,266	303,947				
2023	Residential/Commercial Land Use	1,393	334,342				
2024	Residential/Commercial Land Use	1,532	367,776				
2025	Residential/Commercial Land Use	1,686	404,554				
2026	Residential/Commercial Land Use	1,854	445,009				
2027	Residential/Commercial Land Use	2,040	489,510				
2028	Residential/Commercial Land Use	2,244	538,461				
2029	Residential/Commercial Land Use	2,468	5ັ້ອ2,307				
2030	Residential/Commercial Land Use	2,715	651,538				
2031	Residential/Commercial Land Use	2,986	716,692				
2032	Residential/Commercial Land Use	3,285	788,361				
2033	Residential/Commercial Land Use	3,613	867,197				
* 2034	Residential/Commercial Land Use	3,975	~				
2035	Residential/Commercial Land Use	4,372	1,049,308				
2036	Residential/Commercial Land Use	* 4,809	1,154,239				
2037	Residential/Commercial Land Use	5,290	1,269,663				
2038	Residential/Commercial Land Use	5,819	1,396,629				
2039	Residential/Commercial Land Use	'6,401	1,536,292				
2040	Residential/Commercial Land Use	7,041	1,689,921				
2041	Residential/Commercial Land Use	7,745	1,858,913				
2042	Residential/Commercial Land Use	8,520	2,044,805				
2043	Residential/Commercial Land Use	9,372	2,249,285				
2044	Residential/Commercial Land Use	10,309	2,474,213 `				
Phase III: 5	MGD						
· 2045	Residential/Commercial Land Use	11,340	2,721,635				
2046	Residential/Commercial Land Use	12,474	2,993,798				
2047	Residential/Commercial Land Use	13,722	3,293,178				
2048	Residential/Commercial Land Use	15,094	3,622,496				
2049	Residential/Commercial Land Use	16,603	3,984,746				
2050	Residential/Commercial Land Use	18,263	4,383,220				
2051	Residential/Commercial Land Use	20,090	4,821,542				
2052	Residential/Commercial Land Use	22,099	5,303,696				

۰ ه

1 *

.

r

٠

Average Influent Loading (lbs/day = total average flow x average BOD5 conc. X 8.34) 730 #/D Initial Flow

Provide the source of the average organic strength or BOD5 concentration.

Engineer opinion and experience of comparable facilities.

If the increased flow will impact the existing organic strength, the following table must be completed.

c. Proposed organic loading

This table must be completed if applying for a new permit or if increased flow will impact organic loading.

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/l)
Municipality	See Attached Tables	
Subdivision (Residential)		
Trailer park – transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW		
AVERAGE BOD ₅		

Table 1.1(4) – Design Organic Loading SEE ATTACHED TABLES

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/L)		
Municipality	ي. م. جنهر			
Subdivision (Residential)	0.05 +	.350		
Trail Park - transient				
Mobile Home Park		u. ~ <u>a ŝ</u>		
School with cafeteria and shower		n generation g generation generation generation generation generation generation generation generation generation generation ge		
School with cafeteria and no shower	* * * *			
Recreational park, overnight use	· · · · · · · · · · · · · · · · · · ·	r		
Recreational Park, day use	۰. <u>ب</u>			
Office building or factory	·····	A. +		
Motel	· · · · · · · · · · · · · · · · · · ·	iy 6		
Restaurant	، <u>م</u> ر الم			
Hospital	The Part Part Part	1		
Nursing Home	*	1 X		
Other	0.20			
TOTAL FLOW	0.25	an an a substance and a substa		
AVERAGE BOD 5	z	350		

ł

ì ŧ ŧ

.

DESIGN ORGANIC LOADING - INITIAL PHASE.

۰.

.

**

ì

۶.

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/L)		
Municipality				
Subdivision (Residential)	1.75	350		
Trail Park - transient				
Mobile Home Park				
School with cafeteria and	0.25	350		
shower	V.2J	550		
School with cafeteria and no				
shower				
Recreational park, overnight				
use		······································		
Recreational Park, day use	0.01			
Office building or factory	0.05	350		
Motel				
Restaurant	0.05			
Hospital				
Nursing Home				
Other	0.39	350		

DESIGN ORGANIC LOADING - INTERIM PHASE

TOTAL FLOW 2.50

AVERAGE BOD 5

350

Source	Total Average Flow (MGD)	influent BOD ₅ Concentration (mg/L)
Municipality	· · · · · · · · · · · · · · · · · · ·	· · · ·
Subdivision (Residential)	3.90	350
Trail Park - transient	·** • 1	']
Mobile Home Park	•	
School with cafeteria and shower	0.25	350
School with cafeteria and no shower	,	
Recreational park, overnight use	ء م مسیر میں ا	· · · · · · · · · · · · · · · · · · ·
Recreational Park, day use	0.01	.350
Office building or factory	0.05	350
Motel	a sug	·
Restaurant	0.05	<u> </u>
Hospital	ay an industrial against and go	
Nursing Home		*
Other	0.74	350 ,

..

.

٠,

TOTAL FLOW 5.00 AVERAGE BOD 5

ŧ

ż

1

Ļ

Þ.

GVSUD 200564

, **r**

,

4

ł

ŗ

· .

1

 \mathbf{t}_{i}

ł

.

) #1

- .

b. Wind rose

Indicate by a check mark that a wind rose has been submitted.

6. Permit Authorization for Sewage Sludge Disposal

(Instructions, Page 67)

a. Beneficial use authorization

Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit:

Yes No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details):

b. Sludge processing authorization

Are you requesting to include authorization for any of the following sludge processing, storage or disposal options at the wastewater treatment facility:

🛄 Yes 🔳 No	Sludge Composting
Yes No	Marketing and Distribution of sludge
Yes No	Sludge Surface Disposal or Sludge Monofill

If yes to any of the above sludge options and if the applicant is requesting to continue this authorization, is the completed **DOMESTIC WASTEWATER PERMIT APPLICATION: SEWAGE SLUDGE TECHNICAL REPORT (TCEQ Form No. 10056)** attached to this permit application?

ĸ

GIVEN

Influent:				Effluent:			
Q =	250,000	*gpd	ā.	BOD ₅ =	20		mg/l
Peaking Factor =	3			TSSeff =	20		mg/l
Qp =	750,000	gpd (influent to Plant)		NH3N =	3	-	mg/l
BOD ₅ =	350	mg/i					-
TSS ≍	.300	mg/l					
Chemical Oxygen	• 1	-	Chiorine	Residual =	1		mg/l @ 20
Demand (COD) =	700	mg/l (.38 (BOD/COD), used 0.55)					min det
TKN =	50	mg/l					
NH3N =	26	mg/l					
Organic N _{14*C} ≈	24	mg/l					
Alkalinity =	200	mg/l					
Winter Temp. Min. =	15	°Č					
Summer Temp. Max. =	30	°C -					

ASSUME

` θc≈	10	days, mean cell residence time
, Y ≈	0.6	maximum yield coefficient, range: 0.4 - 0.8 (Metcalf & Eddy Table 8-7)
k _d ≈	0.06	day^-1, endogenous decay coefficient, range: 0.025 - 0.075 (Metcalf & Eddy Table 8-7)
a ≈-	0.95	growth constant, range: 0.8 - 1.10
_b ≈ -	0.08	growth constant
MLSS =	3000	 mg/l, conc. Of suspended solids in aeration tank
MLVSS ≈	70%	of MLSS
MLVSS (X) ≈	2100	mg/l, conc. Of volatile suspended solids in aeration tank

DESIGN CALCULATIONS

A. BOD_s Loading

$$F = \frac{8.34 \times Q \times (S_o - S)}{10^6}$$

F = 688.1 lb BOD₆ /day

B. TSS Loading

$$TSS = \frac{8.34 \times Q \times (TSS_{inf} - TSS_{eff})}{10^6}$$
$$TSS = 583.8 \quad \text{(b TSS /day}$$

C. Aeration Basin Volume

$$V = \frac{\theta c \times Q \times Y \times (So - S)}{ML VSS(1 + kd \times \theta c)}$$

Minimum Aeration Basin Volume = 147,321 gal =

19,694 ft³

2. TCEQ Criteria

1.

25 Ibs BOD5/day/1,000 ft³ (Conventional Activated Sludge w/ Ntrification)

Minimum Aeration Basin Volume = 27,522 ft³

F

Minimum Required Aeration Basin Volume=			27,522 ft ³		
•	Proposed Aeration Basin Volume = Volumatric BOD Loading ⇒	31,50 21.8	0 ft ³ lbs/100	0 ft ³ - dav	,

D. Hydraulic Retention Time (0)

Hydraulic Retention Time = V/Q Hydraulic Retention Time = 22.62 hrs

E. Food to Mass Ratio

$$F / M = \frac{So}{\theta \times MLVSS}$$
FIM = 0.177 ib/lb-day

F. Micro-Organism Mass in Aeration Basin

$$Mv = F \times \frac{\theta c \times Y}{1 + (kd \times \theta c)}$$
$$Mv = 2,580 \quad \text{lbs}$$

G. Sludge Residence Time (SRT)

$$SRT = \frac{1}{a \times (F/Mv) - b}$$

SRT = 5.8 days

H. Clarifier

1. Weir Loading

	Minimum Length = Proposed Length =	20,000 37.5 50.0	gpd/lf max at peak flow If If
2. Surface Area			
Mir	nimum Surface Area =	1,200 625.0	gpd/sf max overflow rate at peak flow ft ²

3. Volume/Detention Time

	1.8	hours minimum detention time at peak flow
Minimum Volume =	7,519.6	ft ³
Proposed Volume =	35,352.0	ft ³

1. Return Activated Sludge (RAS)

1. Ratio r = MLVSS_{AER} / (MLVSS_{SLDG} - MLVSS_{AER}) Assume Clarifier concentrates to r= 16% 2. RAS

RAS = r x Q = 28.3 gpm

Proposed Surface Area = 1,964.0 ft²

J. Sludge Yield

Volatile = M	₩×[(a)(F	/ _{Mv})-b]		
Volatile = \$ludge Vield =	447.2 638.9	lbs/day lbs/day	·	
Assume Perce	nt Solids =	1.5	%	
,	Qsludge =	5,107	gal/day	
K. Digester Minimum Retention Time =	15	days	k	
Required Digester Volume = Proposed Digester Volume =	76,607 95,000	gai = gai = `	10,241 ft ³ 12,700 ft ³	2
L. Oxygen Requirements		*		÷.

1. Aeration Basins

Minimum oxygen requirement =

Minimum oxygen requirement = 13,200 scf per Ib BOD5 per day @ 12' submergence and 20 deg C 1,529 scfm @ 12' submergence and 20 deg C

÷

۰.

¥,

Diffuser Submergence Depth (ft)	Almow Correction Factor
8	1.82
10 🔹	1.56
12	1.00
15	vi 0.91 v
18 .	0.73
. 20 .	0.64

ft

Diffuser Submergence Depth = 18. Correction Factor = 0.73

Minimum oxygen requirement = scfm 🕲 20 deg C 1,116

2. Digester

30 scfm per,1,000 ft3 Oxygen Requirement = Minimum oxygen requirement = 381 scfm

M. Disinfection

Chlorine Contact Basin Minimum Detention Time = 20 minutes Minimum Required Volume = 1,392.5 ft³ Proposed Volume = 2,250 ft3

INFLUENT

Flow:

Average:	2.5	MGD	
Peak:	7.5	MGD	
	EEA	A MODI	
Site Elevation:	550	TIMSEL	
Composition:			
	Design Vali	Jes	
Assumed Values			
Peak Biological Oxygen			
Demand 5-day (BOD5):	350	mg/l	
Total Suspended Solids (TSS):	300	mg/l	
Ammonia (NH3-N):	26	mg/l	
Chemical Oxygen			
Demand (COD):	700	mg/l	
Alkalinity	200	mg/l	
•		-	

Assumed values			
Peak Biological Oxygen			
Demand 5-day (BOD5):	350	mg/l	
Total Suspended Solids (TSS):	300	mg/l	
Ammonia (NH3-N):	26	mg/l	
Chemical Oxygen			
Demand (COD):	700	mg/l	
Alkalinity	200	mg/i	
Total Dissolved Solids (TDS):	550	mg/l	
Total Nitrogen (N):	50	mg/l	
Phosphorus (P):	9	mg/l	
Temperatures:			
Winter Temp (Min.):	15	°C	
Summer Temp (Max.):	30	°C	

EFFLUENT

Composition:		
Biological Oxygen		
Demand 5-day (BOD5):	10	mg/l
Total Suspended Solids (TSS):	15	mg/l
Ammonia (NH3-N):	3	mg/l
Dissolved Oxygen:	4	mg/l

CHARACTERISTICS & COEFFICIENTS

.

MLSS =	3000	mg/l at normal ope	al operating level	
Volatile Suspended Solids =	70	% of Total Suspen	ded Solids	
Minimum DO during aeration =	2.0	mg/l		
Kinetic Coefficients for heterolrophic bacteria		<u>د</u>	· ,	
Y=	⊥0.40	g VSS / g bCOD		
kai =	0.12	g VSS / g VSS*d	× .	
kd =	1.04	unitless		
kd, 15°C =	0.099	g/g*d		
fd =	0.15	unitless	• ,	
Kinetic Coefficients for nitrification				
Yn =	0.12	g VSS / g NH4-N		
Ko =	0.50	g/m^3		
Kn =	0.74	g NH4-N / m^3	•	
Kn =	1.053	unitless	• •	
Kn,"15℃ =	0.572	g / m^3	۱.	
Kdn =	0.080	g VSS / g VSS*d	•	
kdn =	1.040	unitless 🛛 🕴		
kdn, 15℃ =	0.066 -	g/g*d		
µmn =	0.75	g VSS / g VSS*d	•	
μn =	1.07	unitiess		
µm,15°C =	0.535	g / g*d	*	

e: Metcalf & Eddy, Wastewater Engineering Treatment & Reuse, 4th Ed., Tables 8-10 & 8-11, Pgs 704-705

LOADING

BOD5 Loading:
BOD5 Removed =
$$\frac{8.34 \times Q(BOD_{5} \inf - BOD_{5} eff)}{10^{6}}$$

BOD5 Removed = 7,089 lbs/day
TSS Loading:
TSS Removed = $\frac{8.34 \times Qx (TSS \inf - TSS eff)}{10^{6}}$
TSS Removed = 5,942 lbs/day

12

È

Ł

-

.

Page 2 of 13 GVSUD 200570

.

5

ã,

FINE SCREEN

Bar Spacing:	0.25	in				
Average Flow Rate:	2.5	MGD				
Approximate Volume of Screenings:	13	cf/MG				
Anticipated Volume of Screenings:	32.5	cf per day				
COARSE SCREEN (BYPASS/OVERFLOW BA	R SCREE	N)				
INFLUENT FLOW RATE:						
Average Influent Flow Rate:	2.50	MGD	E	1736 apm	= 3.86	8 cfs
Peak Influent Flow Rate:	7.50	MGD	Ξ	5208 gpm	= 11.6	04 cfs
CHANNEL GEOMETRY:						
Channel Width	50	f+				
Design Channel Flow Depth:	0.0	н А				
May Channel Denth:	1.8	11. ff				
	1.0	п				
BAR RACK GEOMETRY:						
Bar Size:	0.375	in				
Clear Space Between Bars:	0.500	in				
Incline Angle:	60	degrees				
No. of Bars in Back:	68					
Clear Space:	2.875	sf per ft of c	hannel depi	th		
HEADLOSS THROUGH BAR SCREEN:						
Channel Area (Avg):	35	ef				
Channel Area (Max):	9.0	sf				
Approach Velocity (Avg):	1.11	fos (usino d	lesion chang	el denth)		
Approach Velocity (Peak):	1.29	fos (using a	nax channe	(denth)		
		ibo (asing n				
Bar Screen Area (Avg):	2.01	sf				
Bar Screen Area (Max):	5.18	sf				
Velocity Through Bars (Avg):	1.92	fps (using d	lesign chanr	nel depth)		
Velocity Through Bars (Max):	2.24	fps (using m	nax. channe	l depth)		
V ² ²						
$HeadLoss = \frac{v - v}{0.7 \times 2 \times g}$						
V= Velocity of flow through open	ninas in rad	ck.				
v= Approach velocity						
g= Acceleration of gravity, 32.2						
			Assumino (Clogging:		
Assuming No Cloadina:				Clogging Factor	0,500	
Head Loss (Design):	0.0549	ft	He	ad Loss (Design):	0.219	ft
Head Loss (Max):	0.075	ft		Head Loss (Max):	0.299	ft

INITIAL SBR BASIN DESIGN

	Number of Basins =	2		
	Number of Cycles per Day =	4	per Basin	
	Total Cycle Time =	6.00	hrs / cycle	
	Volume per Cycle =	312,500	gal / cycle	
	Side Water Depth (SWD) =	28.0	, ft _ ·	
	P		,	
FW				
	Fine to Fill = 24 nrs/day / Total No. of Cyc	cies per da	ay	
	Time to Fill (Tf)= 3.00	nrs / cycle	3	
	Average Flow Rate = Volume per Cycle / /	Time to Fil)II	
	Average Flow Rate =	1,736.1	gpm	
Beest				
React	Minimum Required Agentics Volume:	÷	,×	
ç	Manimum Required Aeradon Volume.	° 26	The BOD5/day/1000 of	
	waxindin Organic Loading.	ZJ		
			(TCEQ Chap. 217.154, Conventional	
			Activated Sludge with Nitrification, with	
			temperatures between 13°C and 15°C)	
	BOD5 Loading:	7,089	IDS/Gay	
	Minimum Required Aeration Volume (Va):	283,560.0	0 cf	
	Initial Assumption:			
	Aerated Portion of Fill:	* [`] 0%		
	Aerated Portion of React:	100%		
	React Portion of Total Cycle:	34%		
	React Cycle Time (Tr):	2.04	hrs	
	Aerated React Cycle Time (Tra):	2.04	hrs	
	Minimum Total Volume Dequired (VA) = V	- / Ta		
		81 18	of = 6.239.737 eet	
	¥t -	034,000		
	Minimum Total Volume Required p	er Basin =	= 417,000.0 cf = 3,119,368.5 gal	
	Minimum Surface Area Required p	er Basin =	= 14,892.9 sf	
	Proposed Ba	asin Size =	= 94.0 ft x 160.0 ft x 28.0 ft SW	D
	Round Br	asin Size =	= 137.7 ft diameter	
	Proposed Volume p	er Basin =	= 421,120.0 cf	

۲

¥ ي د

1

Wastewater Treatmen Interim	it Design I Phase	Calculatio	ons	
Settle Maximum Overflow Rate @ 2-Hr P	1200	gal/day/sf (TCEQ Chap. 217.154, Conventional Activated Skudge with Nitrification, with temperatures between 13°C and 15°C)		
Min. Surface Area Required (Proposed Surface Area per basin) =			sf	
Maximum Overflow Rate = 1		12,533.3	gpm	
Volume	per Cycle =	312,500	gal	
Minimum Settle	Time (Ts) = Use Ts =	24.93 25.00	min min = 0.42 hrs	
Decant				
Assumed Flow Rate of Decanter = Decanters per Basin =	6,950.0 2	gpm		
Total Decant Flow Rate per Basin =	13,900.0	gpm		
Volume per Decant =	312,500	gal		
Decant Time (Td) =	22.48	mîn =	0.37 hrs	

.

÷

ŝ.

SBR DESIGN

.

Number of Basins =	2	
"Number of Cycles per Day =	4	
 Volume per Cycle = 	312,500	gal
Side Water Depth (SWD) =	28	ft -
.Minimum Total Volume Needed =	834,000	cf
Minimum Volume per Basin =	417,000.0	cf
Minimum Surface Area Required per Basin =	15,040.0	sf * .
Proposed Basin Size =	94.0	ft x 160.0 ft x 28.0 ft SWD
Proposed Surface Area =	, 138.4	ft diameter
Volume Proposed Per basin	421,120	cf
Volume Proposed Total	842,240	cf · ·
Total Cycle Time =	6.00	hrs
Max. Fill Time (Tr):	3.00	hrs (at design flow)
Anoxic Fill Time (Τ f,an):	3.00	hrs
Aerated Fill Time (T f,aer):	0.00	hrs
React Time (Tr):	2.04	h rs ,
Settle Time (Ts).	[∞] 0.42	hrs
Decant Time (Td):	0.37	hrs
Idle Time (Ti):	0.17	hrs

1

2

Hydraulic Retention Time

ŧ

$$\tau = V / Q$$

Hydraulic Retention Time = 2.52 days

F/M

,

$$F/M = \frac{Q \times BOD_{5,inf}}{MLSS \times V}$$
F/M = 0.046 gBOD/gMLSS-d

20

.

1 1. .

Wastewater Characteristics

bCOD = 1.6(BOD) = nbCOD = COD - bCOD =		560 140	mg/l (Biodegra mg/l (non-biod	adable CC degradabl)D) e COD)	
IT 9	S = TSS - VSS					
	TSS =	300	mall			
	VSS =	210	mg/l			
	iTSS =	90	mg/l			
bpCOD	(bCOD/BO	D)(B(OD – sBOD)		
pCOD	CO.	D-sC	COD	-		
sBOD: soli sCOD: soli bpCOD: B pCOD: Pa	uble BOD uble COD iodegradable partici rticulate COD	ulate CO	D			
A	ssume: sCOD =	33%	of COD =	231	ma/l	
A	esume: sBOD =	33%	of BOD =	115	mg/l	
t	pCOD/pCOD =	0.80				
$nbVSS = \left[1 - \left(\frac{bpCOD}{pCOD}\right)\right]BOD$						
	novss =	70.0	mg/I (non-bio	Jegradabi	e VSS)	

Sludge Retention Time

,

$$(P_{X,SS})SRT = \frac{QY(S_{\alpha} - S)SRT}{[1 + (k_{\alpha})SRT](0.85)} + Q(nbVSS)SRT + \frac{QY_{\alpha}(NO_{\alpha})SRT}{[1 + (k_{\alpha})SRT](0.85)} + \frac{(f_{\alpha}(k_{\alpha})Q(Y)(S_{\alpha} - S)SRT^{-2})}{[1 + (k_{\alpha})SRT](0.85)} + Q(TSS_{\alpha} - VSS_{\alpha})SRT$$

$$(P_{X,TSS})SRT = (V)(X_{MLSS}) - V$$

$$XMLSS = : 3000 g/m^{A3} - V = 421,120.0 cf/basin = 11,924.78, m^{A3} / basin Q (per Basin) = 1.25 MGD = 4,731.76 m^{A3} / day$$

$$(P_{X,TSS})SRT = 35,774,338 g$$

$$Assume So \approx So - S$$

$$So = bCOD = 560 g/m^{A3} - 40.0 g/m^{A3} -$$

$$P_{X,TSS} = \frac{(V)(MLSS)}{SRT}$$

5,409

ŀ

7 † †

Px,TSS =

2

$$Q_{Sludge} = \frac{P_{X,TSS}}{8.34 \times PercentSolids}$$

Assume Percent Solids = 1.5 %

Qsludge = 43,236 gal/day

* 1

NITRIFICATION / DENITRIFICATION

Nitrification

$$K_n \ln \frac{N_o}{N_t} + (N_o - N_t) = X_n \left(\frac{\mu_{mn}}{Y_n}\right) \left(\frac{DO}{k_o + DO}\right) t$$

Nt = NH4-N concentration at time t (mg/L)

 X_n = Nitrifying bacteria concentration (mg/L) DO = Dissolved Oxygen concentration=

2.0 mg/L

$$NO_x = TKN_o - N_e - 0.12P_{x,bio}/Q$$

NOx = Nitrogen oxidized (mg/L) TKNo = Influent TKN (mg/L) Ne = Effluent NH4-N (mg/L) P_{x,bio} = Nitrogen in cell tissue

P = QY	$(S_o - S) = Q$	$Y_n(NO_x) + ($	$(f_d)(k_d)$	$_{d})QY(S_{o} -$	-S)SRT
$r_{x,bio} = \frac{1}{1+1}$	$(k_d)SRT^{\dagger}$ 1+	$(k_{dn})SRT$	Ī	$1 + (k_d)SR$	Т
Q =	1,250,000	gpd/basi	n =	4,731.8	m^3/day/basin
So - S =	560	g/m^3 (from SR	T calcul	ation)	
Nox =	40.0	g/m^3 (from SR	T calcul	ation)	
SRT =	29.16270079	days			
Px,bio =	399,188	g/day =	399.2	kg/day	
NOx ≖	36.9	g/m^3			

NOx added per cycle = Fill Volume x NOx = 43,623 g per fill cycle NH4-N remaining before Fill Cycle = Settle Volume x Ne = 32,225.56 g Total Oxidizable N at beginning of Cycle = 75,848 g

No = Total Oxidizable N at beginning of Cycle / Total Basin Volume = 6.36 g/m*3

$$X_{n} = \frac{Q(Y_{n})(NO_{x})SRT}{[1 + (k_{d})SRT]V}$$

$$X_{n} = \frac{17.55}{17.55} g/m^{3}$$

Time Needed: 0.06057 days = 1.454 hours Aeration Time Proposed: 2.04 hours Adequate Aeration time available for Nitrification

2

.

Denitrification

Ĺ

NO _x Added per Cycle: Vt: NO3-N: Vc:	43,623 11,924.8 3.66	g/fill cycle m^3 g/m^3 at end of aeration with tank full			M
VS. NO3-N:	39,295	g after decan	t		
$r_{o} = \frac{QY(S_{o} - S)}{S_{o} - S}$	S)SRT	xb=	668.7	g/m ^3	د
$x_b = (1 + (k_d)Sl$	RT)Vt	¥			
Biomass in System:	7,974	kg			
BOD Feed Rate:	828	kg/day 🗅			
F/Mb:	0.104	g/g*day			
SDNRb:	Ó.07	g/g*day at 20	۳C		
From Metcalf & Eddy, Fig. 8-23,	Pg 755, for its	COD/bCOD of 0.1	0		
SDNR14:	0.062	g/g*day	\$		
NO _x = (SDNR _b)(x _b)(V _t) = N	O3-N remov	al capacity			
NOx	490,949	g/day			
Fill Time:	3.0	hrs			
NOr at	3.0	hrš =	61,369	9	
NO3-N Available:	39,295	9			
All NO3-N can be removed	důring Fill	156.2%	,		
Alkalinity ,					
Alkanity Required for Nitrification:	263	mg/l			
Alkanity Recovered in Denitrification:	132	mg/l			
, Net Alkanity Required:	132	mg/l			
Residual Alkalinity Needed to maintain pH:	80	mg/l			
Total Alkalinity Required in Influent:	212	mg/l			
Alkalinity Available in Influent:	200	mg/l			
Alkalinity Addition Needed:	12	mg/l			
Added as CaCO3:	110.2	kg/day =	243.03	lbs/day	

.

ŧ.

E

Page 10 of 13 GVSUD 200578

ŧ

٠

.

Garry Montgomery

From: Sent: To: Subject: Attachments: Garry Montgomery Monday, April 04, 2016 11:42 AM 'Larry Diamond' GVSUD W10015360001 Response to TCEQ 2015.05.04- Part 2.pdf

Second email.

Garry Montgomery, P.E., CFM, SIT

Engineer IV

