Conventional System

Below Grade Septic System

There are many types of septic systems used for on-site wastewater treatment. These include aerobic treatment units, sand filters, low pressure dose systems and spray irrigation systems. However, currently for the GVSUD CCN service area, the conventional septic system (anaerobic) is the preferred installed system because of its relatively low cost and low required maintenance compared to other systems.

A critical factor in determining the optimum type of septic system to be installed is the soil's ability to absorb water. The soil percolation rate (typically measured in minutes per inch) indicates how quickly water moves through soil and helps evaluate the ability of the soil to absorb and treat effluent. The clay-type soils prevalent in the GVSUD CCN service area have slow percolation rates thus making the use of conventional septic systems using lateral trenches inadmissible. In such areas the installation of a pressure dose system, aerobic system, or other alternative system should be required.

Based on information provided by local on-site sewage facility installers, the cost of installing a typical conventional septic system ranges from \$4,000 to \$6,000. Low pressure dosing systems cost approximately \$6,000 to \$8,000 installed, while aerobic systems cost upwards of \$8,000.

Additional costs associated with on-site sewage facilities include county permits and inspection fees. These fees vary between counties. Guadalupe County charges a fee of \$200 per lot. Comal County charges a fee of \$150 for on-site facilities less than 500 gallons per day and \$180 for facilities greater than 500 gallons per day.

2.2 Threat of On-Site Septic Systems

Several concerns arise when on-site treatment or septic systems are installed in rapidly developing areas. The primary concern is inadequate and improperly treated effluent entering the water supply sources. The Treasure Island area located adjacent to the Guadalupe River on the East side of the GVSUD CCN service area contains high density aging septic systems. As these existing high-density septic systems age and

deteriorate, the probability of improperly treated sewage leaching into water supply sources (Guadalupe River) may pose a public health concern.

Another concern is the limitation placed on developments that require septic systems. Septic systems require large areas of land for effluent discharge. This land used for effluent discharge has limited use. (Septic tank, drain field, sanitary zones, etc.) septic systems increase minimum lot sizes within subdivisions. This limits the number of lots the developer can sell. The GVSUD service area is contained in Bexar County, Guadalupe County and Comal County. Each county has subdivision regulations regarding lot sizes and percolation tests if a central wastewater collection and disposal system is not provided.

Guadalupe County requires single-family residences to provide lots having at least 22,000 square feet (approximately 1/2 acre) of surface area if it is served by a public water supply. If the residences are served by an individual water supply well and on-site sewage facilities, the well is required to have a 150-foot radius sanitary zone and lot sizes must be a minimum of 44,000 square feet (approximately 1 acre).

In 1997, Comal County began requiring home sites with septic tanks to be at least 3.17 acres. The Commissioner's Court then imposed a moratorium on subdivision development. The rules have since been revised and the current subdivision regulations require a 5.1-acre minimum for home sites with water wells and septic tanks.

In the event a county has not sought delegation of authority from the Texas Commission on Environmental Quality (TCEQ) to regulate septic tanks, then the rules and regulatios of TCEQ aply. In order to obtain delegation, the standards of the county must be at least as strit as those of the TCEQ. TCEQ requires residential lots in a platted or un-platted subdivision served by a public water supply to be at least 1/2 acre and residential lots not served by a public water supply to be at least one acre (Title 30 Part 1 Chapter 285 Rule §285.4 of Texas Administrative Code).

GVSUD has discussed proposed projects with numerous developers that have indicated they would be interested in high-density subdivisions if wastewater services were available. With the development of wastewater services, GVSUD wastewater CCN service area will likely see an increase in commercial development.

3.0 Existing Wastewater Treatment Facilities Adjacent to GVSUD

3.1 City of Marion

The City of Marion is located near the center of the GVSUD wastewater CCN service area. The City of Marion has wastewater collection and a treatment facility that provides service for its 1,925 residents. Under TPDES Permit No. 10048-001, the City

of Marion is permitted to discharge 200,000 gallons per day to Santa Clara Creek. They currently discharge an average of 60,000 to 80,000 gallons per day. Thus, the City of Marion Wastewater Treatment Facility has extra capacity available for a potential wholesale partnership. Some Marion treated effluent is used by Marion ISD for beneficial re-use (irrigation).

The City of Marion has indicated an interest in providing wholesale wastewater treatment for GVSUD. Due to the central location of the City of Marion Facility within the GVSUD wastewater CCN service area (Drainage Basin E), the potential for partnership with the City of Marion could be beneficial. Also, GVSUD may have the opportunity to take advantage of existing experienced City of Marion wastewater personnel.

(see **Attachment 1**, Exhibit 1 - GVSUD Existing Wastewater CCN 20973 Boundary) (see **Attachment 3**, Exhibit 3 City of Marion Wastewater Treatment Facility Permit)

3.2 City of Santa Clara

The City of Santa Clara has no wastewater collection system or treatment. All wastewater is disposed of with individual on-site septic systems.

3.3 Cibolo Creek Municipal Authority (CCMA)

CCMA wastewater treatment plant located south of the City of Cibolo. The majority wastewater comes from the City of Cibolo, the City of Schertz, and areas west of the GVSUD wastewater CCN service area.

CCMA currently offers wholesale wastewater treatment to areas in the GVSUD western water CCN service area. CCMA is currently permitted by the TCEQ to discharge an average flow of 6.20 million gallons per day of treated effluent into the Cibolo Creek. However, an application to reduce this discharge to an average discharge of 4.50 million gallons per day was filed on May 3, 2002. The 1.7 million gallons not discharged to the Cibolo Creek is used for beneficial re-use. The wastewater treatment facility is located approximately 2.25 miles northeast of the center of Randolph Air Force Base on the south bank of the Cibolo Creek.

The location of the CCMA plant is inconvenient for GVSUD gravity sewer flow. Any potential utilization of the CCMA wastewater treatment facility would require pumping through the existing City of Cibolo collection system. The City of Cibolo has indicated an interest working with GVSUD in providing wastewater services. Even though the CCMA plant has available capacity, the lack of gravity flow makes this option expensive for GVSUD, and a partnership opportunity would be limited.

(see **Attachment 1**, Exhibit 1 - GVSUD Existing Wastewater CCN 20973 Boundary). (see **Attachment 3**, Exhibit 1 - CCMA Wastewater Treatment Facility Permit)

3.4 Guadalupe Blanco River Authority (GBRA)

GBRA serves a wastewater CCN service area northeast of the GVSUD CCN wastewater service area. Included in this GBRA CCN service area is a wastewater treatment plant (Dunlap WWTP). Even though the plant has received recent upgrades and modifications, the plant capacity is already expended due to rapid development activity in the GBRA wastewater CCN service area.

(see Attachment 1, Exhibit 1 - GVSUD Existing Wastewater CCN 20973 Boundary).

Dunlap WWTP

The GBRA Dunlap WWTP is located in the Northeast portion of the GVSUD water service area approximately one mile east of FM 725 and 3.1 miles southeast of the intersection of IH-35 and FM 725. The present wastewater permit, TPDES Permit No 11378-001, is for 160,000 gallons per day. The GBRA Dunlap WWTP is currently operating at 90,000 gallons per day or approximately 56 % capacity. While wastewater effluent can be discharged to Lake Dunlap, it is presently being pumped to the Guadalupe Partners Power Plant for beneficial re-use. The GBRA has stated that it is possible to expand the Dunlap Wastewater Treatment Facility to 1,000,000 gallons per day.

A partnership relationship with the GBRA Lake Dunlap Plant for wholesale wastewater treatment would probably provide limited benefit for GVSUD. The GVSUD wastewater service area is located downstream of the treatment facility. This would create costs associated with pumping wastewater uphill through existing GBRA collection system. There would not be any opportunities to take advantage of a gravity system. The GVSUD service area is located several miles from the Lake Dunlap Plant. It would be expensive for GVSUD to utilize the GBRA Dunlap Wastewater treatment plant.

(see **Attachment 1**, Exhibit 1-GVSUD existing wastewater CCN 20973 boundary). (see **Attachment 3**, Exhibit 2 – GBRA (Lake Dunlap) Wastewater Treatment Facility Permit).

Northcliffe WWTP

The GBRA is authorized to treat and dispose of effluent from the Northcliffe WWTP. This facility is located near the intersection of FM 1103 and IH-35, approximately five miles northeast of the City of Schertz in southern Comal County. Under TPDES Permit No 11751-001, a non-discharge permit, the facility is authorized to dispose of treated domestic wastewater effluent at a daily average flow not to exceed 300,000 gallons per

day by land application irrigation of 117 acres on the Northcliffe Country Club golf course.

In addition, GBRA was issued a second permit to treat and dispose of effluent from the GBRA-Municipal Utility District No. 2 Wastewater Reclamation Facility also located near the intersection of FM 1103 and IH 35. This permit, TPDES No. 11751-002, allows for the discharge of 350,000 gallons per day to an unnamed tributary of Dry Comal Creek.

This Northcliffe Municipal Utility District No. 2 facilityies are located upstream of the GVSUD wastewater CCN service area and would not benefit GVSUD as a beneficial partnership option.

Other

GBRA also has wastewater permits for two other facilities in Guadalupe and Comal Counties. The Springs Hill Wastewater Treatment Facility, located in the City of Seguin, south of the Guadalupe River on State Highway 123, is allowed to discharge 300,000 gallons per day (TPDES Permit No. 11427-001). The Canyon Park Estates Wastewater Treatment Facility (TPDES Permit No 11496-001), is located in northern Comal County. Both facilities are outside of the GVSUD service area and would not pose an available partnership opportunity.

3.5 Meadow View Park

The Meadow View Park Ltd., a private investor owned utility, has obtained a wastewater permit; TPDES permit number 14153-001, which allows their facility to treat and dispose of waste from the Meadow View Park Wastewater Treatment Facility to Town Creek. The facility is located approximately 3 miles west-southwest of the intersection of State Highway 78 and State Highway 465. The permit allows Meadow View Park to discharge a daily average effluent flow of 120,000 gallons per day, with a two-hour average flow peak not to exceed 250 gpm, from the 0.24 MGD facility. No construction has been initiated on this project.

3.6 City of New Braunfels

The New Braunfels Utilities (NBU) wastewater service area is adjacent to the GVSUD northern boundary. At this time no expansion is planned by NBU into the GVSUD wastewater CCN service area. NBU has developed a guideline limiting provision of providing wastewater services only to areas within their water service area.

3.7 San Antonio River Authority (SARA)

SARA operates several wastewater treatment plants South East of the GVSUD service area. Currently these plants are located some distance away from the GVSUD

wastewater CCN service area. If the opportunity arises for wastewater growth to extend to the downstream portion of drainage basin G, there could exist an opportunity for GVSUD to partner with SARA.

3.8 Harvest Hills Subdivision

Harvest Hills is a subdivision located within the GVSUD wastewater CCN service area. The development has already obtained a wastewater facilities permit for an irrigation type discharge facility. The wastewater treatment plant, a package type facility has been installed on the development site. There is additional irrigation equipment that still remains for installation. This facility is located approximately 2.5 miles North of the City of Marion.

This facility is an excellent opportunity for GVSUD to take ownership and enter into the wastewater business. There are a few houses built with total build-out expected to be 412 homes. There are also several developers interested in property surrounding the Harvest Hills Subdivision. There may exist an opportunity for GVSUD to provide wastewater service to adjacent developments utilizing the existing Harvest Hill Wastewater treatment Plant Facility.

(see **Attachment 1**, Exhibit 1-GVSUD existing wastewater CCN 20973 boundary). (see **Attachment 3**, Exhibit 4 – Harvest Hills Wastewater Treatment Facility Permit).

4.0 Proposed Main Sewage Collection System

4.1 Wastewater Collection System Design Approach

To determine the layout of the future wastewater collection system, the GVSUD wastewater CCN service area was divided into seven (7) primary drainage areas, A through G. The proposed location of the main collection system is based on the concept of aligning along major creek beds. This method insures optimal use of gravity for main trunk lines. It is expected that this concept will present itself as the most cost effective means of providing wastewater collection because it minimizes areas that must be served by lift stations (pumps).

(see **Attachment 1**, Exhibit 2 - GVSUD Drainage Basins)

Areas A through G were further divided into smaller drainage areas. These smaller drainages areas were used to develop future build-out wastewater flows for each collection point. From wastewater flows required at each collection point, the main wastewater collection pipes were sized to accommodate the required flow. Each diameter was selected to accommodate 80% of the design flow.

In locations where the diameter of main collection pipes became so large that one large pipe would be not economical to install, two smaller diameter parallel pipes can be an option to accommodate the required flowrate. This parallel method is beneficial for GVSUD because it allows each pipe to be installed one at a time in phases. This allows GVSUD to offer adequate wastewater service, and prepare for ultimate future build-out demand. This approach may prove economical for GVSUD. Addition ROW or utility easement will need to be considered to accommodate this parallel pipes instead of one large pipe.

4.2 Wastewater Standard Design Criteria

Under State Law, the Texas Commission on Environmental Quality (TCEQ) has jurisdictional responsibility for review and monitoring of wastewater facilities for all entities within the State of Texas. With regards to wastewater collection facilities, their design criteria dictate minimum slope requirements for various sizes of pipe as well as alignment and manhole spacing requirements.

Complete design criteria required by TCEQ can be found in Chapter 317 under Title 30 of the Texas Administrative Code, Sections §317.2 and §317.3. The design criteria used in this study meets or exceeds that imposed by the TCEQ.

(see Attachment 4, Exhibit 1 – Texas Commission on Environmental Quality (TCEQ)

Presently, GVSUD has not adopted design standards for wastewater collection systems and wastewater treatment facilities. For this reason, the design criteria used for this master plan was modeled after design requirements presented in the City of San Antonio and City Of Austin utilities criteria manuals. Section 2.9.0 of the City of Austin Utilities Criteria Manual provides design criteria for determination of wastewater flows, pipe sizing, lift stations and force mains as well as other design considerations.

(see **Attachment 4**, Exhibit 2 – San Antonio Water System Design Criteria) (see **Attachment 4**, Exhibit 3 – City of Austin Design Criteria)

This document provides wastewater design criteria standards for both the City of Austin (COA) and the San Antonio Water System (SAWS). The purpose of providing both COA and SAWS design standards is for GVSUD to use as a guide to establish their own preferred set of GVSUD wastewater design criteria standards. TCEQ wastewater design standards should be used as a minimum guide. It is important for GVSUD to adopt a wastewater design criteria standards. This will prepare GVSUD for negotiation with the development community and standardize the GVSUD wastewater system. GVSUD will benefit from reduced operation and maintenance costs by developing a standardized system.

4.3 Equivalent Dwelling Unit (EDU) and Wastewater Design Flows

Wastewater design flows were developed using the EDU (Equivalent Dwelling Unit) concept. An Equivalent Dwelling Unit is defined as an amount of capacity or demand on a daily basis that an average single-family residence requires.

Residential Single Family Units (EDU) = 3.5 capita/EDU

Green Valley Special Utility District EDU Calculation Summary										
		Total EDU C	alculati	ons	Total					
Drainage Basin	Total Area	Development Density	EDU	Density	EDU					
ID	(acres)	(1 EDU/acre)	1	(3 EDU/acre)	3					
A	9,211	1	9,211	3	27,633					
B	4,690	1	4,690	3	14,070					
C	5.636	1	5,636	3	16,908					
D	6.688	1	6,688	3	20,064					
F	35.618	1	35,618	3	106,854					
F F	6.515	1	6,515	3	19,545					
G	<u> </u>									
<u> </u>	75.869		75,869		227,607					

As shown in this above table, the land use assumptions play an important role in determining the total quantity of EDU. The total of 227,607 EDU with 3 EDU/Acre development densities is substantially greater than 75,869 EDU considering 1 EDU/Acre development densities. GVSUD can expect and prepare for actual EDU growth to fit within the above range.

For design purposes, three different wastewater flow rates were estimated to represent sizing of different portions of the wastewater collection and treatment systems.

An average dry weather flow or average daily flow of 245 GPD per EDU was derived from the following formula:

Average Dry Weather Flow

Residentia I Single Family Units (EDU) = $3.5 \frac{\text{capita}}{\text{EDU}} \times 70 \frac{\text{GPD}}{\text{capita}} = 245 \frac{\text{GPD}}{\text{EDU}}$ Population per LUE = 3.5 capita/ EDU Wastewater Demand = 70 GPD/capita Using the average dry weather flow, a maximum dry weather flow was calculated using the following formula:

Maximum Dry Weather Flow

Maximum Dry Weather Flow =
$$245 \frac{\text{GPD}}{\text{EDU}} \times 3\text{PFF} = 735 \frac{\text{GPD}}{\text{EDU}}$$

Average Dry Weather Flow = $245 \frac{\text{GPD}}{\text{EDU}}$ Maximum Flow Peak Factor = 3PFF

Adding inflow and infiltration of 750 gallons/acres served

Maximum Wet Weather Flow

Maximum Wet Weather Flow = 735
$$\frac{\text{GPD}}{\text{EDU}} + \left(750 \frac{\text{GPD I/I}}{\text{acre}} \times \frac{\text{acre}}{3\text{EDU}}\right)$$

Maximum Wet Weather Flow =
$$985 \frac{\text{GPD}}{\text{EDU}}$$
 or $0.7 \frac{\text{GPM}}{\text{EDU}}$

A summary of the wastewater design flow parameters considering the development density range of 1 EDU/Acre to 3 EDU/Acre is summarized in the below table:

Green Valley Special Utility District Design Flow Summary							
Design Flow Development Density							
	1 EDU/Acre	3 EDU/Acre					
Average Dry Weather Flow	245 GPD/EDU	245 GPD/EDU					
Maximum Dry Weather Flow	735 GPD/EDU	735 GPD/EDU					
Maximum Wet Weather Flow	1485 GPD/EDU	985 GPD/EDU					

The drainage basins A through G were further divided into smaller drainage areas. The surface area (acres) of these smaller drainage areas were calculated and assumed to contribute wastewater to collection points situated periodically down the main trunk line. The location of collection points for each drainage area and the anticipated flow at each point were calculated to determine the total wastewater flow required for design proposes. By multiplying EDU by the above flows per EDU, the required flow at each collection point was calculated for collection system pipe sizing.

(see **Attachment 1**, Exhibit 3 – GVSUD Area Calculations and Collection Points) (see **Attachment 2**, Exhibit 1 – Total EDU Calculations)

	Green Valley Special Utility District Wastewater Design Flows Three Design Flow Conditions										
Drainage Total Total Total Average Maximum Maximum Average Maximum Drainage Arra LUE Dry Weather Dry Weather Wet Weather Dry											
Dasin	(acres)	1 (EDU/acre)	3 (EDU/acre)	Flow (GPD)	Flow (GPD)	Flow (GPD)	Flow (GPD)	Flow (GPD)			
Drainage Basin A	9,211	9,211	27,633	2,256,695	6,770,085	13,678,335	6,770,085	20,310,255	27,218,505		
Drainage Basin B	4,690	4,690	14,070	1,149,050	3,447,150	6,964,650	3,447,150	10,341,450	13,858,950		
Drainage Basin C	5,636	5,636	16,908	1,380,820	4,142,460	8,369,460	4,142,460	12,427,380	16,654,380		
Drainage Basin D	6.688	6,688	20,064	1,638,560	4,915,680	9,931,680	4,915,680	14,747,040	19,763,040		
Drainage Basin F	35.618	35.618	106,854	8,726,410	26,179,230	52,892,730	26,179,230	78,537,690	105,251,190		
Drainage Basin E	6 515	6.515	19,545	1,596,175	4,788,525	9,674,775	4,788,525	14,365,575	19,251,825		
Drainage Basin G	7,511	7,511	22,533	1,840,195	5,520,585	11,153,835	5,520,585	16,561,755	22,195,005		

(see Attachment 2, Exhibit 2 – Wastewater Collection System Design Calculations)

The above table summarizes the cumulative design flows generated from each drainage basin at the most downstream location. The Average Dry Weather Flow, Maximum Dry Weather Flow, and the Maximum Wet Weather Flow were calculated by multiplying design flows by the total EDU for each drainage basin. There is a substantial flow difference between development densities of 1 EDU/acre versus 3 EDU/acre. GVSUD should prepare for maximum wastewater flows to fall between these two development densities.

4.4 Wastewater Collection System Design

Peak flow (Maximum Wet Weather Flow) was used to size the main gravity wastewater collection system assuming natural ground slope and 80% line capacity to maintain a minimum line velocity of 2 feet per second (Section 2.9.3, City of Austin Utilities Criteria Manual). A minimum diameter of 8 inches was used for all gravity wastewater mains. Additionally, 8-inch, 10-inch, 12-inch, 15-inch, 18-inch, 21-inch, 24-inch, 27-inch, 30-inch, 33-inch, 36-inch, 42-inch, 48-inch, 54-inch, 60-inch, 66-inch, and 72-inch diameter pipes were considered as standard wastewater pipe diameter sizes.

However, pipe diameters greater than 48" may not prove economical for initial trunk line installation. An alternative option is to prepare for installation of two smaller diameter parallel pipes whose combined cross sectional area equals the required future ultimate build-out cross sectional area. This option allows GVSUD to install one pipe to meet the immediate demand and wait until future ultimate build-out to install the second parallel pipe. This approach allows GVSUD to economically phase wastewater infrastructure to match the rate of development growth. Additional foresight must be taken into consideration in obtaining utility easements wide enough to accommodate two parallel pipes. Lift station design capacity is determined by the Maximum Wet Weather Flow. All lift stations will be designed to handle the Maximum Wet Weather Flow for the designated service area. The wet well volume is sized to provide adequate storage volume at peak design flows and a sufficient pump cycle time. A minimum of two (2) pumps will be required for all lift stations and pumping capacity will be such that the Maximum Wet Weather Flow can be handled with the largest pump out of service (Section 2.9.3, City of Austin Utilities Criteria Manual). Lift Station design shall be refined during actual project considerations.

Force mains will be designed using C-909 PVC (poly-vinyl chloride) pipe. Force mains will be sized so that the flow velocity is between three (3) and six (6) feet per second (Section 2.9.3, City of Austin Utilities Criteria Manual). Any force main designs shall be refined during actual projects.

	Green Valley Special Utility District										
	1 EDU/acre										
Pipe Diameter Design Summary											
Pipe	Basin A	Basin B	Basin C	Basin D	Basin E	Basin F	Basin G	Total			
Diameter	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe			
	Length	Length	Length	Length	Length	Length	Length	Lenath			
(in)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			
8								0			
10								0			
12	5,600							5,600			
15	8,200	2,600	2,600				2,700	16,100			
18	19,800	5,600	5,600			2,500	2,700	36,200			
21	9,000	7,000	5,600	2,500	7,350	2,500	5,000	38,950			
24	3,500	5,000	5,200	2,500	17,200	5,000	2,500	40,900			
27	2,500		5,000	5,300	22,300	5,000	2,800	42,900			
30	2,500			5,600	15,450	12,200	2,900	38,650			
33	11,400				21,650		3,000	36,050			
36					5,800		·	5,800			
42								0			
48					7,000			7,000			
54					18,500			18,500			
60					9,600			9,600			
66								0			
72								Ō			
Total	62,500	20,200	24,000	15,900	124,850	27,200	21,600	296,250			
							56	Miloc			

The above table is a summary of the required main wastewater collection system pipe diameters to service a development density of 1 EDU/Acre.

	Green Valley Special Utility District								
	3 EDU/acre								
Pipe Flow Design Summary									
Pipe	Basin A	Basin B	Basin C	Basin D	Basin E	Basin F	Basin G	Total	
Diameter	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	
	Length	Length	Length	Length	Length	Length	Length	Length	
(in)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	<u>(ft)</u>	
8								0	
10								0	
12								0	
15	2,600							2,600	
18	11,200	2,600	2,600				2,700	19,100	
21	13,800	2,800	2,800				2,700	22,100	
24	9,500	2,800	2,800		4,600	2,500	2,500	24,700	
27	5,500	2,600	2,800	2,500	7,350	2,500	2,500	25,750	
30	3,500	9,400	5,400		12,600	5,000	2,500	38,400	
33			7,600	2,500	13,000	2,500	2,800	28,400	
36	5,000			5,300	14,450	7,700	2,900	35,350	
42	11,400			5,600	31,950	7,000	3,000	58,950	
48					5,800			5,800	
54								0	
60	-				7,000			7,000	
66		-			5,000			5,000	
72					23,100			23,100	
Total	62,500	20,200	24,000	15,900	124,850	27,200	21,600	296,250	
							56	Miles	

The above table is a summary of the required main wastewater collection system pipe diameters to service a development density of 3 EDU/Acre. There is a greater quantity of larger diameter pipes required for the greater development density of 3 EDU/Acre.

The contrast in development density between 1 and 3 EDU/Acre provides a range on which to anticipate future development. The 1 EDU/Acre represents low development density and 3 EDU/Acre represents high development density. GVSUD can expect future development density to fall in between these two EDU densities.

(see **Attachment 1**, Exhibit 4 – GVSUD Proposed Wastewater Main Collection System) (see **Attachment 2**, Exhibit 2 – Wastewater Collection System Design Calculations)

5.0 <u>Wastewater Treatment Plant Capacity and Costs</u>

GVSUD has several options for wastewater treatment. One option is to partner with existing adjacent wastewater providers. GVSUD would provide the trunk lines and provide retail service to the customers. The partnership would provide wholesale treatment services and the existing adjacent wastewater providers would provide wholesale wholesale wastewater treatment.

One potential partnership that would be beneficial for GVSUD is the City of Marion. The City of Marion is considering expanding their wastewater CCN to provide service to areas within their water service area. They have expressed a desire to reserve available treatment capacity in their wastewater treatment plant for this expansion and for anticipated growth within their service area. The City of Marion may be willing to contract to provide wholesale wastewater treatment for GVSUD wastewater retail service.

Another opportunity exists at the Harvest Hills Subdivision. This 250,000 GPD facility already exists and soon will be on-line. The owner has expressed an interest for GVSUD to take ownership and operate. If an agreement can be negotiated between GVSUD and the treatment plant private owner, then GVSUD could see a relatively easy entry into the wastewater business.

The other option would be to construct new wastewater treatment facilities. Final scope and budget for the construction of new facilities would need to be determined on an individual basis and were only estimated in this report. Initially, these treatment plants would serve individual development projects. As these individual developments start to populate portions of the GVSUD wastewater CCN service area, GVSUD could utilize capital investment for wastewater infrastructure to provide a more regional wastewater collection and treatment opportunities.

These plants would initiate as small plants servicing the local development. As development increases, these small plants would be replaced with connecting infrastructure and larger regional facilities. These larger facilities would be phased to expand as capacity requires, and also be replaced with larger regional facilities which would locate downstream of major drainage basins.

The optimal result would be for GVSUD to own and operate large regional wastewater treatment facilities located at the most downstream locations in each drainage basin. Several drainage basins that flow in a common direction could be combined to share a regional wastewater treatment facility. A potential partnership with other entities could assist with economical means of developing large regional wastewater treatment plant facilities. These large regional facilities would only be justified when the GVSUD wastewater service area reaches ultimate build-out and wastewater demand exists.

Green Valley Special Utility District Wastewater Treatment Capacity Summary Most Downstream Drainage Basin Location									
Design Flow 1 EDU/Acre 3 EDU/Acre Capacity Capacity (MGD) (MGD)									
Drainage Basin A	2.3	6.8							
Drainage Basin B	1.1	3.4							
Drainage Basin C	1.4	4.1							
Drainage Basin D	1.6	4.9							
Drainage Basin E	8.7	26.2							
Drainage Basin F	Drainage Basin F 1.6 4.8								
Drainage Basin G	1.8	5.5							

The above table shows the wastewater capacity per 1 and 3 EDU/Acre development densities at the most downstream location in each drainage basin.

The exhibits in the attachments show theoretical wastewater treatment plants distributed along major trunk lines in each drainage basin. As the plants locate further downstream, there is a need for larger wastewater treatment plants. This shall be useful as a working guide to quickly estimate wastewater treatment capacity and costs at any pointy in the GVSUD wastewater collection system.

(see **Attachment 1**, Exhibit 5 - GVSUD Proposed Wastewater Treatment Capacity and Cost vs. Downstream Locations)

(see **Attachment 2**, Exhibit 4 – Wastewater Treatment Plant Capacity and Costs)

6.0 Capital Improvement Projects (CIP)

Presently, there are no GVSUD CIP projects to discuss. Each major trunk line along with the associated costs can be considered a preliminary list of CIP. As further communication with the development a community transpires, GVSUD shall develop list of CIP.

The adoption of the Harvest Hills Wastewater Treatment Plant could be considered an initial GVSUD Wastewater CIP.

7.0 Discharge Options and Permits

There are three basic types of effluent discharge permits. There is land application type, or zero discharge, where the effluent is discharged onto the surface of the land for evaporation or further filtration through the soil. This application is the easier permit to obtain from the TCEQ. However, this permit requires a great deal of land space that cannot be used for residential purpose.

The second type of permit is an effluent discharge permit. This type of permit allows wastewater effluent to be discharged into surface waters. This type of permit does not require as much land to support, but takes a great deal of time and is not a simple process to obtain a permit with TCEQ.

The third type of effluent discharge would be an opportunity for reuse or possibly sell the effluent. These options have revenue merit as well as benefit to society merit. There could be a great deal of costs associated with this type of discharge if there is not a reuse facility conveniently located nearby. The opportunity for wastewater effluent reuse would require additional study on a per project basis. As wastewater opportunities begin to surface, GVSUD should always explore wastewater effluent reuse opportunities from both customer service and potential additional revenue stream.

8.0 Estimated Costs

8.1 Wastewater Main Collection System Costs

For the purpose of determining long range feasibility and probable impact fees, a cost estimate was prepared for the wastewater collection system for Drainage Areas A through G. The estimates include costs associated with construction, basic engineering, easement acquisition, and survey. The cost estimates are shown in the below tables represent estimated cost for the proposed main wastewater collection system. The table identifies the costs of wastewater collection system per 1 and 3 EDU/Acre development densities.

	Green Valley Special Utility District								
Summary Costs									
Proposed Main Wastewater Collection System									
					3	ystem			
Desta	THE	Engineer's Op	Inioi	of Probable Cost	<u>s</u>				
Basin	I otal C	osts 1 (EDU/acre)	Tota	I Costs 3 (EDU/acre)		Variance			
A	\$	11,212,950.00	\$	13,229,734.00	\$	2,016,784.00			
B	\$	3,379,449.00	\$	3,848,841.00	\$	469,392.00			
С	\$	4,151,280.00	\$	4,773,440.00	\$	622,160.00			
D	\$	3,072,068.00	\$	4,188,876.00	\$	1.116.808.00			
E	\$	34,601,813.00	\$	43,682,177.00	\$	9.080.364.00			
F	\$	5,230,109.00	\$	6,739,925.00	\$	1.509.816.00			
G	\$	3,963,086.00	\$	4,673,334.00	\$	710,248,00			
Total	\$	65,610,755.00	\$	81,136,327.00	\$	15.525.572.00			
This cost	estimate is	based on River City Engine	eering's	experience and qualifications,	and	represents River			
City Engi	neering's be	est judgment. This cost es	timate	was prepared for feasibility and	alysis	purposes only.			
River City Engineering does not guarantee that the actual construction cost will not vary from this estimate.									
Unit price	s were use	d from SAWS average unit	price li	st revised October 2005. Units	; pric	es will not remain			
constrain	t and will va	ary due to market variation	s such	as inflation.					

(see Attachment 2, Exhibit 3 Wastewater Collection System Costs for unit prices)

8.2 Wastewater Treatment Plant Costs

For the purpose of determining long range feasibility and probable impact fees, a cost estimate was prepared for the wastewater treatment plant facilities. The wastewater treatment plant facilities were located at several locations along the downstream path of the main trunk line through each watershed or drainage basin. The estimates include the capacity of the plant if the plant was to be located at the location shown on These plant locations are not intended to represent actual the trunk line. recommended locations for wastewater treatment plants, but do represent what capacity and associated costs would exist periodically down the stream of the trunk line. The costs estimates includes construction, basic engineering, easement acquisition, and The cost estimates shown (Attachment 1 Exhibit 5 GVSUD proposed survev. wastewater treatment capacity and costs vs. downstream locations) represent theoretical wastewater treatment plant locations, required capacity at the assumed location, and costs of proposed wastewater treatment facilities. This method allows GVSUD to estimate wastewater treatment capacity and costs anywhere along the collection system.

The following table represents wastewater treatment costs at the most downstream location within each drainage basin.

Green Valley Special Utility District Wastewater Treatment Costs Summary Most Downstream Drainage Basin Location								
Design Flow		1 EDU/Acre		3 EDU/Acre				
	Costs Costs (\$) (\$)							
Drainage Basin A	\$	7,898,433	\$	20,310,255				
Drainage Basin B	\$	4,021,675	\$	12,065,025				
Drainage Basin C	\$	4,832,870	\$	14,498,610				
Drainage Basin D	\$	5,734,103	\$	17,202,308				
Drainage Basin E	\$	26,179,965	\$	39,269,948				
Drainage Basin F	\$	5,586,613	\$	16,759,838				
Drainage Basin G	\$	6,440,683	\$	16,561,755				

(see **Attachment 2**, Exhibit 4, Wastewater Treatment Plant Capacity and Costs for unit prices (Costs/GPD)

From the above table the required cost to provide wastewater treatment is substantially different between 1 EDU/Acre and 3 EDU/Acre development densities. The actual wastewater capacity and costs will be somewhere between these two EDU densities.

9.0 Proposed Financing Opportunities

GVSUD has several financing options when determining projects. The projects can be funded through equity, debt, or arrangements with the development community. For the debt arrangement, GVSUD could utilize the existing revenue streams from the water service to raise funds for wastewater. However, due to the political disagreement with water users who do not get wastewater services, this would probably not help GVSUD.

Through legislation, GVSUD could also designate portions of the GVSUD wastewater CCN service area as a taxing entity. This could also cause political disagreement with water service customers who do not get wastewater service.

9.1 Community Development Block Grant, Rural Development – U. S. Department of Agriculture

The U. S. Department of Agriculture provides loans and grants for water and sanitary sewer projects through its Rural Development Program. First time water and sanitary sewer service projects usually receive favorable consideration.

The Rural Development Program has a Colonias grant program for which the entire amount of the requested funds is allowed. To be eligible for this program, the community has to be a declared or listed "Colonia". Further study is required to determine if any areas within the GVSUD wastewater CCN service area qualifies.

The typical grant program for this agency requires a match from the applicant. The match amount may vary from between 25 and 40 percent of the amount of the grant. We note that should the District receive funds from other programs, these funds could be used to meet the amount required for local participation. The Rural Development Program also has a low interest loan program for applicants to use to meet their match.

The Rural Development programs require that funds not be released to the applicant until a construction contract is entered into. Although engineering fees are eligible for grant funds, interim payments from the grant funds are not allowed. These fees would include the cost of a preliminary engineering report required for the program as well as the basic design fees. Design drawings and specifications must be accepted by Rural Development prior to bid. The bid package must incorporate standard forms and terminology required by the program. Typically, the process of applying for and receiving a grant from the Department of Agriculture, Rural Development, takes a long time requiring between 24 and 30 months from submittal to approval for bid.

These grants are favorable for improvement of low income area infrastructure. New high density development would not be favored for these types of grants.

9.2 Economic Development Administration

The Economic Development Administration is part of the U. S. Department of Commerce. The purpose of this organization is to promote business growth and thus provide jobs for a service area. Grants for this program require written commitments from potential employers that will move to a service area if services are provided or statements from existing employers that they will move out if the services are not provided. The number of new jobs which can be attributed to the completion of the project is an important consideration for grants from this agency. Grants for this program typically require a 20 to 30 percent match from the applicant.

Processing time for the Economic Development Administration grant is typically between 12 and 18 months from submittal to approval for bid. Interim costs prior to construction will be paid as part of the process.

This approach could be utilized as commercial development increases along the IH-10 corridor.

9.3 Impact Fees from Prospective Developers

Special Utility Districts may develop and institute an impact fee program to share the costs of providing infrastructure improvements to their service area. The operation of such a program is governed by state laws and must be adopted by the Texas Commission on Environmental Quality.

In this approach, a master plan for infrastructure improvements for a projected population at some time in the future and the associated costs for these improvements is developed. These costs are prorated to the total projected number of services, and per service costs assigned to each new service. As construction on lots for new developments begin, the impact fees for that lot are paid. Existing developments are not required to pay these impact fees.

The establishment of an impact fee program allows GVSUD to have the costs of infrastructure improvements to be partially borne by new development. Funds collected from new development are assigned to an audited account and then used to construct the proposed improvements, as they are required. GVSUD shall establish a wastewater impact fee subcommittee to manage the program.

It is extremely important that GVSUD establish a wastewater impact fee for new development. The GVSUD strategy to develop wastewater service through new development requires GVSUD to have Impact Fee policy in-place.

9.4 Municipal Bonds

The District may issue revenue bonds for the financing of the proposed improvements based on the collection of future income from the project. The bonds would be issued based on the estimated costs of the proposed improvements in addition to associated issuance costs. Bonds are typically sold to Government agencies Federal – Rural Development Assistance (RDA), State of Texas Water Development Board (TWDB) and Private Bond Market. Interest rates and terms vary based on associated risk, taxable or tax-exempt issuance and lender. Bonds typically are 20-30 years in duration with a "call" period, minimum finance period of 10 years. Rates are typically 1 to 4 points over-prime lending rates. Presently these rates are 5-7%.

The bonds could be established through three different mechanisms. First, GVSUD could sell bonds based on the income from the water service revenues. This could be a political issue due to some water rate payers would not be benefiting from wastewater services, but are charged the rate of the bonds on their water bill. Second, GVSUD could establish its wastewater service area as a special taxing unit. This approach would require passed legislation for the special taxing entity. Again with this approach, the political turmoil would exist from some tax payers not benefiting from wastewater services.

Third, GVSUD would establish itself in the wastewater business by first taking ownership and operation of the Harvest Hills wastewater treatment plant. This would start revenues flowing into GVSUD. As additional developments come on line, increased revenues could assist GVSUD to sell bonds for the capital required to install wastewater infrastructure to connect the new developed areas. The infrastructure increase would grow at the same pace as development and would slowly lead itself to more desirable regional wastewater collection systems and treatment facilities.

9.5 USDA Rural Development, TWDB, or Co Bank

As GVSUD develops a wastewater customer base, further opportunities for the thirdparty debt financing option will materialize. A USDA Rural Development Ioan for wastewater infrastructure under 7 USCA §1926 will provide GVSUD with CCN protection from competing wastewater providers.

10.0 Proposed Impact Fees

Communities as well as utility districts may develop and institute an impact fee program. The impact fee allows developers to share the costs of providing infrastructure improvements to their area. Wastewater impact fees and rates for local wastewater service providers are presented below. New Braunfels Utilities charges a wastewater impact fee and a sewer tap fee. The wastewater impact fee is \$1,160 per connection and the sewer connection fee is \$655 per tap.

The City of Seguin also charges a sewer impact fee and a sewer tap fee. The sewer impact fee is \$500 and the sewer tap fee is \$470.

Cibolo Creek Municipal Authority (CCMA), who offers wholesale wastewater treatment to areas in the Green Valley SUD, charges a sewer impact fee of \$985 per EDU (equivalent dwelling unit). The cost of treatment is \$1.60 per 1,000 gallons.

GBRA charges a monthly service fee as well as a connection fee for the wastewater service it provides. The connection fee is \$1,000 per EDU and the monthly service fee is \$32.

Green Valley Special Utility District Wastewater impact Fees and Rates Neighboring Utilities									
Neighboring Utility	NeighboringWastewaterWastewaterCost ofMonthlyUtilityImpactConnectionTreatmentServiceFeeFee(\$/1000 gal)Fee								
New Braunfels Utilities	\$1,160	\$655							
City of Seguin	\$500	\$470							
CCMA	CCMA \$985 \$1.60								
GBRA		\$1,000		\$32					

The surrounding wastewater providers approach impact fees differently. These rates for the surrounding entities are considered normal for area developers. GVSUD should establish an impact fee rate schedule that benefits GVSUD and remains within the range of the surrounding wastewater providers. Further, GVSUD should consult with an accountant to establish the required rate necessary for GVSUD to recover the proper amount of capital.

To evaluate feasibility and determine probable impact fees, the total project cost of each drainage area was divided by the expected number of EDU's in each respective drainage area. It should be noted that these costs do not include any costs associated with operation and maintenance of the wastewater treatment facilities or service lines from customers to the collection system.

Γ	Green Valley Special Utility District Wastewater Impact Fees Main Wastewater Collection System (Trunk Lines)									
	Total	Total	Dev Density of	1 EDU/acre	Dev Density of 3	EDU/acre				
Drainage	LUE	LUE	Total	Potential	Total	Potential				
Basin	1 '	3	Costs	Impact	Costs	Impact				
	(EDU/acre)	(EDU/acre)		Fee		Fee				
Drainage Basin A	9,211	27,633	\$11,212,950	\$1,217	\$13,229,734	\$479				
Drainage Basin B	4,690	14,070	\$3,379,449	\$721	\$3,848,841	\$274				
Drainage Basin C	5,636	16,908	\$4,151,280	\$737	\$4,773,440	\$282				
Drainage Basin D	6,688	20,064	\$3,072,068	\$459	\$4,188,876	\$209				
Drainage Basin E	35,618	106,854	\$34,601,813	\$971	\$43,682,177	\$409				
Drainage Basin F	Drainage Basin F 6,515 19,545 \$5,230,109 \$803 \$6,739,925 \$345									
Drainage Basin G	7,511	22,533	\$3,963,086	\$528	\$4,673,334	\$207				
Total	75,869	227,607	\$65,610,755	\$865	\$81,136,327	\$356				

Green Valley Special Utility District Wastewater Impact Fees Wastewater Treatment Facility										
	Total	Total	Dev Density of	1 EDU/acre	Dev Density of 3	EDU/acre				
Drainage	LUE	LUE	Total	Potential	Total	Potential				
Basin	1	3	Costs	Impact	Costs	Impact				
	(EDU/acre)	(EDU/acre)		Fee		Fee				
Drainage Basin A	9,211	27,633	\$7,898,433	\$858	\$20,310,255	\$735				
Drainage Basin B	4,690	14,070	\$4,021,675	\$858	\$12,065,025	\$858				
Drainage Basin C	5,636	16,908	\$4,832,870	\$858	\$14,498,610	\$858				
Drainage Basin D	6,688	20,064	\$5,734,103	\$857	\$17,202,308	\$857				
Drainage Basin E	35,618	106,854	\$26,179,965	\$735	\$39,269,948	\$368				
Drainage Basin F	Drainage Basin F 6,515 19,545 \$5,586,613 \$858 \$16,759,838 \$858									
Drainage Basin G	Drainage Basin G 7,511 22,533 \$6,440,683 \$858 \$16,561,755 \$735									
Total	75,869	227,607	\$60,694,342	\$800	\$136,667,739	\$600				

The above two tables estimate the impact fee range that GVSUD may need to require for new wastewater development. The top table represents potential impact fees associated with the main wastewater collection system, the bottom table shows potential impact fees associated with construction of wastewater treatment facilities.

The following table is a summary of the above two tables combined.

Green Valley Special Utility District Wastewater Impact Fee Summary Wastewater Collection and Treatment Combined									
Dev Density of 1 EDU/acre Dev Density of 3 EDU/acre Drainage Wastewater Wastewater Wastewater Basin Collection Treatment Total Collection Treatment Total Impact fee Impact fee Impact fee Impact fee Impact fee Impact fee									
Drainage Basin A	\$1,217	\$858	\$	2,075	\$479	\$735	\$1,214		
Drainage Basin B	\$721	\$858		1,578	\$274	\$858	\$1,131		
Drainage Basin C	\$737	\$858	\$	1,594	\$282	\$858	\$1,140		
Drainage Basin D	\$459	\$857	\$	1,317	\$209	\$857	\$1,066		
Drainage Basin E	\$971	\$735	\$	1,706	\$409	\$368	\$776		
Drainage Basin F	\$803	\$858	\$	1,660	\$345	\$858	\$1,202		
Drainage Basin G	\$528	\$858	\$	1,385	\$207	\$735	\$942		

From the above impact fee summary, GVSUD may need to charge a wastewater impact fee of approximately \$2000 per EDU.

11.0 Recommendations

As previously developed, the cost of facilities to provide centralized wastewater service is less than or comparable to that provided by individual private on-site septic disposal systems. The benefits of public health and safety, water quality, both surface and groundwater protections are clearly evident.

The attached list of items are action items for consideration and implementation by the GVSUD Board of Directors.

- 1. Assume ownership and operation of Harvest Hills Property wastewater treatment plant.
- 2. Explore partnership opportunities with the City of Marion.
- 3. Aggressively pursue potential wastewater collection and treatment projects.
- 4. Limit Indendently Owner Utility (IOU) systems.
- 5. Adopt design criteria standards.
- 6. Adopt Impact Fees.
- 7. Identify develop density to stay consistent across entire GVSUD wastewater CCN.
- 8. GVSUD Attorney Mr. Mark Zeppa has recommended amending GVSUD by-laws to clearly delineate its ability to provide wastewater service to its customers. Mr. Zeppa has suggested draft rules changes for adoption.
- 9. Establish wastewater management team as shown in the below hierarchy diagram.
- 10. Establish GVSUD wastewater subcommittee.
- 11. Establish and adopt official GVSUD wastewater policies, tariffs, and by-laws.

- 12. Establish contract with Harvest Hills as wastewater owner and operator. GVSUD shall develop a service plan to provide wastewater service to this tract and possibly adjacent tracts.
- 13. Revise service applications (standard and non-standard) and easement applications forms to reflect not only water but wastewater as well.
- 14. Establish sales and marketing strategy for wastewater services.
- 15. GVSUD should meet with City of Santa Clara officials to discuss wastewater service plans. The above No. 5 Harvest Hills tract is in Santa Clara's political limits. To prevent future wastewater utilities from entering GVSUD wastewater CCN service area, a development plan to resolve these issues should be explored.
- 16. The City of Marion has expressed a desire to provide wastewater service outside its city limits. Discussions should be held to formalize a service plan between GVSUD and the City of Marion to insure infrastructure for wastewater service.
- 17. Discussion with GBRA on further regional long range wastewater facilities of much larger scale. Future wastewater needs for the GBRA CCN located to the Northeast of GVSUD's CCN will exceed current site capacity and a new larger site will be required.
- 18. New developments will fund wastewater systems with new construction. GVSUD should look for possible grants and innovative funding options to provide centralized service to existing subdivisions and developments. This would allow retrofitting and abandonment of their onsite systems for conversion to a centralized system. This can occur as service plans are developed.
- 19. Discuss with the residents of Treasure Island area the necessity to do away with existing individual below grade septic systems that could be potentially contaminating the Guadalupe River (Lake McQueeney). Propose GVSUD options to provide quality wastewater service to this area.
- 20. Adopt a formal development density to stay consistent throughout the GVSUD wastewater CCN service area.
- 21. Consider USDA Rural Development Assistance or TWDB type loans for CCN protection from competing wastewater providers who may attempt to take portions of GVSUD wastewater CCN service area.
- 22. Establish GVSUD wastewater design criteria standards.
- 23. Further study to implement wastewater impact fees.
- 24. Promote and advertise public meeting with development community.
- 25. Hire wastewater operator

River City Engineering, Ltd. is prepared to assist GVSUD with this long-term planning and assessment to implement this much needed utility service. Mutual cooperation with area utility systems and regulator authority will insure proper service and development.

12.0 Management Plan

GVSUD Board of Directors, General Manager, and Staff

For GVSUD to aggressively enter into the wastewater business there must be a wastewater team established. Due to the start-up nature of GVSUD involvement with wastewater, GVSUD needs internal motivation and aggressive wastewater board of directors, general manager, and staff. Included with duties of GVSUD should be the development of vision and mission statement to clearly define to its customers the long term wastewater goals.

GVSUD wastewater manager should continuously search for wastewater business opportunities to gain the competitive advantage with potential competition in the GVSUD wastewater CCN service area. GVSUD should organize wastewater subcommittee who can spend the time required to properly manage and get wastewater action items completed.

Engineering Consultant

GVSUD has hired River City Engineering, Ltd. (RCE) to develop this overall wastewater master plan. RCE is prepared to provide GVSUD technical direction beyond the adoption of this master plan and assist GVSUD into the wastewater business.

Legal Consultant

Mark Zeppa has been hired to represent GVSUD to establish formal policies and tariff rates. Also, Mr. Zeppa provides advice with general legal approach for GVSUD policy, rate structure and tariffs, rules and regulations, by-laws, and the eventual implementation of development impact fees.

Financial Consultant

GVSUD has several options to consider for funding of wastewater projects. GVSUD needs to establish a capital budgeting procedure. The procedure should at a minimum define the process of project identification, evaluation, selection, and verification.

GVSUD should hire a financial adviser to assist with bond opportunities. The financial adviser shall assist GVSUD with capital through equity versus capital through debt, financial consultation and direction, and bond management.

GVSUD should also be aware of available grants and loans.

Development Community

The development community shall provide direction and assistance with initial wastewater start-ups dealing with new development. The area is prime for growth and the development community can assist bringing wastewater customers to GVSUD. There is a great deal of negotiation and dialog between GVSUD and the development community dealing with subjects like project phasing and cost assistance.

The Green Valley Special Utility District Wastewater Business Team Green Valley SUD Board of Directors General Manager Staff **Technical Direction** Financial Direction Legal Direction Development Community River City Financial Adviser Mark Zeppa Engineering, Ltd. , M SÌ.

13.0 Conclusion

RCE looks forward to working with GVSUD with the wastewater venture in the future. The GVSUD wastewater CCN service area is prime for development and RCE recognizes GVSUD for the leadership and vision required to bring wastewater services to their customers. With continued support from the above wastewater team, GVSUD should prove itself to be the leader for quality wastewater service in the region.

Attachment 1 Exhibit Drawings

- Exhibit 1 GVSUD Existing Wastewater CCN No. 20973 Boundary
- Exhibit 2 GVSUD Drainage Basins
- Exhibit 3 GVSUD Area Calculations and Collection Points
- Exhibit 4 GVSUD Proposed Wastewater Main Collection System
- Exhibit 5 GVSUD Theoretical Locations of Wastewater Treatment
- Capacity and Costs vs. Downstream Locations
- Exhibit 6 GVSUD Proposed Growth and Development

SCALS 1"-

MARCH ENTE ON 200

CHARGE STREET CON 2000 WITT STEND HEL WE CON MAN BAST CENTRAL CON 1 WWW.MAINFELS CON SCHERCZ SEWER CCN 2028

MADE MADE DRAN TRUNCS ICO MARY COLLECTION FORMS 579 AREA EDISTERICATION CPEES-1 COLLECTION FORT ID ES-6 MAIN THINK ID

Ő.

SCALE 1" 2004

LECEND

СКИЗКУ VALLEY WATELGENEL CON министра Балба маке алистра Балба наке 30° рин боластал рек 1 волисска бачесонакут 42° рек боластал рек 1 волисска бачесонакут Ф социастал конста во Среда-1 социастал конста во EXHIBIT-4 GVSUD PROPOSED WASTEWATER MAIN COLLECTION SYSTEM DESIGNED. SH PROJECT NO. 6096-07 [DATE: 11/2006 [SHEET NO. 4 OF 6 RIVER CITY ENGINEERING, LTD. CONSULTING CIVIL ENGINEERS MONTH & STREET AUTOMIN, TELLS 747-500 THE BALL OF BALLOW THE ROLD SHITE C MET BALLOW THE STREET FUNCTION OF STREET AUTOMIN, TELLS 747-500 FUNCTION OF STREET FUNCTION OF STREE

Attachment 2 Calculation Tables

- Exhibit 1 Total Equivalent Dwelling Unit (EDU) Calculations
- Exhibit 2 Wastewater Main Collection System Calculations
- Exhibit 3 Proposed Costs for Wastewater Main Collection System
- Exhibit 4 Wastewater Treatment Plant Capacity and Costs

	Gree ED	n Valley Spec OU Calculat	cial Utili ion Su	ity District mmary	
		Total EDU (Calculat	ions	
Drainage Basin	Total Area	Development Density	Total EDU	Development Density	Total EDU
ĪD	(acres)	(1 EDU/acre)	1	(3 EDU/acre)	3
A	9,211	1	9,211	3	27,633
В	4,690	1	4,690	3	14,070
С	5,636	1	5,636	3	16,908
D	6,688	1	6,688	3	20,064
E	35,618	1	35,618	3	106,854
F	6,515	1	6,515	3	19,545
G	7,511	1	7,511	3	22,533
	75,869		75,869		227,607

		Gre	en Valley Spe	cial Ut	ility District			
			Drainad	ie Area	Â			Λ
			Total EDU	Calcula	ations			
Sub-Area	Sub-Area	Sub-Area	Sub-Area	Total	Development	Total	Development	Total
Left	Right	Left	Right	Area	Density	EDU	Density	FDI
ID	ID	(acres)	(acres)	(acres)	(1 EDU/acre)		(3 EDU/acre)	
Pipe AA1								
A1	A46	256	520	776	1	776	3	2.328
A2	A43	177	144	321	1	321	3	963
A3	A38	169	129	298	1	298	3	894
A4	A37	175	114	289	1	289	3	867
A5	A28	210	73	283	1	283	3	849
			Total Acres =	1967	Total EDU =	1,967	Total EDU =	5,901
Pipe AA 2								
A45	A44	931	71	1002	1	1,002	3	3,006
A42	A41	486	287	773	1	773	3	2,319
A39	A40	234	394	628	1	628	3	1,884
A36	A35	131	119	250	1	250	3	750
A29	A30	34	133	167	1	167	3	501
D'			Total Acres =	2820	Total EDU =	2,820	Total EDU =	8,460
PIPE AA3								
A34	A33	93	246	339	1	339	3	1,017
A31 A36	A32	12/	195	322	1	322	3	966
A20	A25	93	262	355	1	355	3	1,065
A25	A24	127	220	347	1	347	3	1,041
A20	A19	50		290		290	3	870
Pipe AA4			Total Acres -	1022	Total EDU =	1,053	Total EDU =	4,959
A12	A11	211	17	228	1	228	3	694
A13	A10	314	69	383	1	383	3	1 140
A14	A9	252	36	288	1	288		864
A8	A48	269	72	340	1	340	3	1 021
1			Total Acres =	1239	Total EDU =	1.239	Total EDU =	3,718
Pipe AA5						-1		0,7 20
A6	A27	233	103	336	1	336	3	1.008
A7	A22	266	118	384	1	384	3	1.152
			Total Acres =	720	Total EDU =	720	Total EDU =	2,160
PipeAA6								
A15	A21	181	62	243	1	243	3	730
			Total Acres =	243	Total EDU =	243	Total EDU =	730
PipeAA7								
A47	A18	208	92	301	1	301	3	902
			Total Acres =	301	Total EDU =	301	Total EDU =	902
PipeAA8								
A16	A17	253	15	268	1	268	3	804
			Total Acres =	268	Total EDU =	268	Total EDU =	804
			Basin A (acres) =	9,211	Basin A (EDU) =	9,211	Basin A (EDU) =	27,633

Green Valley Special Utility District Drainage Area B Total EDU Calculations														
Sub-Area S Left ID	Sub-Area Right ID	Sub-Area Left (acres)	Sub-Area Right (acres)	Total Area (acres)	Development Density (1 EDU/acre)	Total EDU	Development Density (3 EDU/acre)	Total EDU						
Pipe BB								4 0 0 0						
	B16	367	267	634	11	634	3	1,903						
B2	B15	287	207	494	1	494	3	1,482						
 	B14	229	251	480	1	480	3	1,439						
B3	B13	216	366	582	1	582	3	1,747						
	B12	190	384	574	1	574	3	1,723						
	 	285	206	491	1	491	3	1,474						
<u> </u>	D11	205	200	515	1	515	3	1,545						
B/	<u> </u>	300	704	020		920	3	2.759						
B8	89	216		4600	$\frac{1}{1}$	4 690	Basin B (EDU) =	14.071						

		Gre	een Valley Spe Draina Total EDU	ecial U ge Are Calcul	tility District a C ations			С
Sub-Area Left ID	Sub-Area Right ID	Sub-Area Left (acres)	Sub-Area Right (acres)	Totai Area (acres)	Development Density (1 EDU/acre)	Total EDU	Development Density (3 EDU/acre)	Total EDU
Pipe CC	<u> </u>	L'						1
<u>C1</u>	<u> </u>	314	150	464	1	464	3	1,391
C2	C19	365	173	537	1	537	3	1.612
<u>C3</u>	C18	373	192	565	1	565	3	1.694
C4	<u>C17</u>	331	271	602	1	602	3	1.807
C5	C16	233	332	565	1	565	3	1.696
C6	C15	259	457	716	1	716	3	2.149
C7	C14	203	584	788	1	788	3	2,363
C8	C13	119	520	639	1	639	3	1,916
C9	C12	152	405	557	1	557	3	1.670
C10	C11	9	194	203	1	203	3	610
			Basin C (acres) =	5636	Basin C (EDU) =	5,636	Basin C (EDU) =	16.908

		Gre	een Valley Spe Drainag Total EDU	cial Ut ge Area Calcul	ility District a D ations			D
Sub-Area Left ID	Sub-Area Right ID	Sub-Area Left (acres)	Sub-Area Right (acres)	Total Area (acres)	Development Density (1 EDU/acre)	Total EDU	Development Density (3 EDU/acre)	Total EDU
			1 () () () () () () () () () (98. (r.				
Pipe DD						1.100		4.405
D14	D1	1068	401	1468	1	1,468	3	4,405
D13	D2	815	374	1189	1	1,189	3	3,567
D12	D3	725	411	1135	1	1,135	3	3,406
D11		610	326	936	1	936	3	2,809
	D5	466	376	842	1	842	3	2,527
0	<u> </u>	283	407	690	1	690	3	2,071
09	00	120	207	426	1	426	3	1,277
8	0/	128	Basin D (acres) =	6688	Basin D (EDU) =	6,688	Basin D (EDU) =	20,063

.

		Gr	een Valley Sp	ecial U	tility Distric	t		
			Draina	ige Are	a E			F
			Total EDU	Calcu	lations			
Sub-Area Left ID	Sub-Are Right ID	a Sub-Are Left (acres)	a Sub-Area Right (acres)	Tota Area (acres	Development Density	t Total EDU	Development Density (3 EDU/2010	t Total EDU
D'un Part	1.4				7 (= ====)			
FPE EE 1	E60	1455	442	1007				
E61	E00 F59	476		1897	1	1,897	3	5,691
E62	E58	424	365	789		789	3	2,361
E63	E57	383	419	802	1	802	3	2,300
E64	E56	343	517	860	1	860	3	2,579
<u>E65</u>	<u>E55</u>	302	58	360	1	360	3	1,080
E00	E54	267	625	892	1	892	3	2,676
E67	E53	259	471	905	1 1	905	3	2,715
E69	E51	248	416	664	<u>-</u>	/25		2,176
E70	E50	224	381	605		605	3	1,993
E71	E49	167	312	479	1	479	3	1,010
E72	E48	130	250	381	1	381	3	1.142
			Total Acres =	10146	Total EDU =	10,146	Total EDU =	30,438
Dine EE 2	1			- Jane -	2.2	e pales		1. C.
E1	F85	2297	574	2971		2 071		
E2	E84	519	347	866	1	2,8/1	3	8,612
E3	E83	484	322	806	1	806	3	2,598
E4	E82	464	279	743	1	743	3	2,230
<u>E5</u>	E81	419	273	692	1	692	3	2,076
<u></u> E6	E80	406	266	673	1	673	3	2,018
E/ F8	E/9 E79	151	260	489	1	489	3	1,466
E9	E70	135	253	404	1	404	3	1,213
E10	E76	142	232	374		374	3	1,146
E11	E75	161	183	345	1	345	3	1,122
E12	E74	151	140	291	1	291	3	874
E13	E73	291	110	401	1	401	3	1,204
Y		A CARLON AND	Total Acres =	9337	Total EDU =	9,337	Total EDU =	28,011
Pipe EE 3		0.00.20 0.00 000.C				ļ	and the second	1967 - B.
E39	E38	1168	50	1218	1	1 218	2	2 655
E40	E37	619	179	797	1	797	3	2 3022
E41	E36	477	32	509	1	509	3	1.526
E42	E35	334	509	843	1	843	3	2,530
E43	<u> </u>	192	628	820	1	820	3	2,460
		51		856		856	3	2,568
		1987 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	Total Acres -	5044		5,044	iotal EDU =	15,132
Pipe EE 4								
E14	E47	466	184	649	1	649	3	1.948
E15	E46	414	106	520	1	520	3	1,560
_E10	E45	578	28	606	1	606	3	1,817
			I OTAL ACTES =	1775	Total EDU =	1,775	Total EDU =	5,325
Pipe EE 5								19 A. S.
E17	E32	607	925	1532	1	1.532	3	4 506
E18	E31	644	1036	1679	1	1,679	3	5 038
E19	E30	585	1003	1588	1	1,588	3	4,764
E20	E29	67	801	868	1	868	3	2,603
E21	E28	621	650	1271	1	1,271	3	3,813
F23	E2/ F26	- 100	<u> </u>	942	1	942	3	2,825
E24		564	1/	564	1	682	3	2,045
E25		191		191	1	191		1,692
			Total Acres =	9317	Total EDU =	9,317	Total EDU =	27.950
					1	·		
			Basin E (acres) =	35,618	Basin E (EDU) =	35,618	Basin E (EDU) =	106.855

P:\Projects\6096 (Green Valley SUD)\07-Wastewater Master Plan\Report\EDU calcs\EDU Drainage Basin E 091806.xls

		Gree	n Valley Spec Drainage Total EDU C	ial Util e Area alculat	lity District F tions			F
Sub-Area Left ID	Sub-Area Right ID	Sub-Area Left (acres)	Sub-Area Right (acres)	Total Area (acres)	Development Density (1 EDU/acre)	Total EDU	Development Density (3 EDU/acre)	Total EDU
1					apita apa	9 I.	999	
Pipe FF								
F1	F22	614	233	847	1	847	3	2,542
F2	F21	379	343	722	1	722	3	2,166
F3	F20	389	291	680	1	680	3	2,040
F4	F19	451	229	680	1	680	3	2,041
F5	F18	500	239	739	1	739	3	2,216
F6	F17	452	229	681	1	681	3	2,042
F7	F16	313	284	597	1	597	3	1,791
F8	F15	295	233	528	1	528	3	1,585
F9	F14	363	89	451	1	451	3	1,354
F10	F13	250	86	337	1	337	3	1,010
F11	F12	82	171	253	1	253	3	758
			Basin F (acres) =	6515	Basin F (EDU) =	6,515	Basin F (EDU) =	19,544

;

Green Valley Special Utility District Drainage Area G Total EDU Calculations														
Sub-Area Left ID	Sub-Area Right ID	Sub-Area Left (acres)	Sub-Area Right (acres)	Total Area (acres)	Development Density (1 EDU/acre)	Total EDU	Development Density (3 EDU/acre)	Total EDU						
					ter Skiel in 1998 in			a strategiester						
Pipe GG														
G1	G18	267	96	363	1	363	3	1,088						
G2	G17	187	268	455	1	455	3	1,365						
G3	G16	144	452	596	1	596	3	1,789						
G4	G15	129	552	681	1	681	3	2,043						
G5	G14	90	594	685	1	685	3	2,054						
G6	G13	160	661	821	1	821	3	2,463						
G7	G12	387	838	1225	1	1,225	3	3,674						
G8	G11	563	600	1163	1	1,163	3	3,488						
G9	G10	1410	113	1523	1	1,523	3	4,569						
			Basin G (acres) =	7511	Basin G (EDU) =	7,511	Basin G (EDU) =	22,534						

•

.

Green Valley S Design F	pecial Utility D low Summar	istrict Y
Design Flow	Developme	ent Density
	1 EDU/Acre	3 EDU/Acre
Average Dry Weather Flow	245 GPD/EDU	245 GPD/EDU
Maximum Dry Weatherh Flow	735 GPD/EDU	735 GPD/EDU
Maximum Wet Weather Flow	1485 GPD/EDU	985 GPD/EDU

P:\Projects\6096 (Green Valley SUD)\07-Wastewater Master Plan\Report\Design Flows SUMMARY 111406.xls

			Gre V Thi	en Valley S Vastewat ree Desig	Special Util er Desigi n Flow Co	ity District 1 Flows onditions			
.	Green Valley Special Utility District Wastewater Design Flows Three Design Flow ConditionsDrianage BasinTotal TotalTotal 		B EDU/acre						
Basin	Area	EDU	EDU	Average Dry Weather	Dry Weather	Wet Weather	Dry Weather	Dry Weather	Wet Weather
		1	3	Flow	Flow	Flow	Flow	Flow	Flow
	(acres)	(EDU/acre)	(EDU/acre)	(GPD)	(GPD)	(GPD)	(GPD)	(GPD)	(GPD)
Drainage Basin A	9,211	9,211	27,633	2,256,695	6,770,085	13,678,335	6,770,085	20,310,255	27,218,505
Drainage Basin B	4,690	4,690	14,070	1,149,050	3,447,150	6,964,650	3,447,150	10,341,450	13,858,950
Drainage Basin C	5,636	5,636	16,908	1,380,820	4,142,460	8,369,460	4,142,460	12,427,380	16,654,380
Drainage Basin D	6,688	6,688	20,064	1,638,560	4,915,680	9,931,680	4,915,680	14,747,040	19,763,040
Drainage Basin E	35,618	35,618	106,854	8,726,410	26,179,230	52,892,730	26,179,230	78,537,690	105,251,190
Drainage Basin F	6,515	6,515	19,545	1,596,175	4,788,525	9,674,775	4,788,525	14,365,575	19,251,825
Drainage Basin G	7,511	7,511	22,533	1,840,195	5,520,585	11,153,835	5,520,585	16,561,755	22,195,005

		Green \	Valley S	Special	Utility I	District		
			1 E	EDU/a	cre			
		Pipe I	Diamet	er Desi	gn Sum	mary		
Pipe	Basin A	Basin B	Basin C	Basin D	Basin E	Basin F	Basin G	Total
Diameter	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe
	Length	Length	Length	Length	Length	Length	Length	Length
(in)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
8								0
10						<u> </u>		0
12	5,600							5,600
15	8,200	2,600	2,600				2,700	16,100
18	19,800	5,600	5,600			2,500	2,700	36,200
21	9,000	7,000	5,600	2,500	7,350	2,500	5,000	38,950
24	3,500	5,000	5,200	2,500	17,200	5,000	2,500	40,900
27	2,500		5,000	5,300	22,300	5,000	2,800	42,900
30	2,500			5,600	15,450	12,200	2,900	38,650
33	11,400				21,650		3,000	36,050
36					5,800		L	5,800
42								0
48					7,000		ļ	7,000
54					18,500			18,500
60	<u> </u>				9,600			9,600
66		1					<u> </u>	0
72	1							0
Total	62,500	20,200	24,000	15,900	124,850	27,200	21,600	296,250
							56	Miles

A UQ			21 22 Pipe Pipe Viameter Velocity	Vominal Nominal Vinches) (Arker)		16	18 4.03	18 4.67	21 4.67				18 4.21	21 4.67	21 4.67	11.6			17 2 00	15 3.07	18 4.78	18 5.33				15 3.22	18 4.21					30 5 92	76-17				33 6.31					55 b.31	T		33 7.73
- -		-	20 Pipe Diameter	SU% Full 1 (inches) {		14 50	15.87	17.03	18.68				17.97	20.14	21.30	00.112			11 56	13.81	15.53	16.02			12 DE	13.93	15.71				76 25	27.48					30.05			+	30.05	06.70	╀		30.89
	and and	ulie	Pipe Diameter	(inches)		11.60	12.70	13.62	14.94				14.38	16.11	17 10				9.25	11.05	12.42	12.82			0 64	11.14	12.57				07.10	21.98					24.04				75.30	/C'n7	Ī		24.71
	1 onio		th Slope	£		0.0060	0,0060	0.0060	0.0050	0_0.0058		-	0.0050	0.0050	0.0050	0.0050			0.0073	0.0067	0.0064	0.0080	0.0071		0.0050	0.0050	0.0050	0.0050			0 UDED	0.0050	0.0050			0.000	0.0050	0.0050			0.0050	0.0050			0.0075
		Ê	ream Pipe	3		2.500	2,500	2,500	3,500	11,00			3,500	3,000	3.500	12.50			2,600	2,700	2,800	2,500	10,60		3.000	3,000	6,000	12,00(2 500	2,500	5,000			1 700	4,500	4,500			4.900	4,900			2,000
		16	am Downst t Inve on Flevet	E		585	570	555	540			011	8/2		540				581	563	545	525	-		543	536	230				535	530				2	676 				510				495
		1	r Upstrea r Inver	(¥		ŝ	585	570	555			202	A C	e ra	23				600	581	263	£			550	543	28 28				95 95	535				120	2				525				210
	ler.	14	Cumulative Wet Weathe Flow	(cfs)	1.78	2.52	3.21	3.87	4.52		00 C	2.30	00.5	6.10	6.48			0.78	1.52	2.33	3.13	3.80		0.52	1.40	2.07	2.85		4 57	11.00	11.77	12.65		7 OF	15 50	16.06	00.04		3.80	19.86	20.55			20.55	21.16
	Wet Weath	13	Wet Weather Flow	(cfs)	1.78	0.74	0.68	0.66	0.65	4.52	02 0	82.1	1.44	0.57	0.38	6.48		0.78	0.74	0.82	0.80	2 80		0.52	0.88	0.66	9.0	C0.7	4 57	6.48	0.77	0.88	12.65	3 8 5	12.65	0.56	16.06		3.80	16.06	0.69	20.55		20.55	70.0
listrict 1 Dns	Maximum	12	Wet Weather Flow	(mqg)	800	331	307	538	767	2,028	1022	201 201	648	258	172	2,908		350	332	366	200	1.705		235	395	297	755	21712	2028	2908	347	Ř	5,679	1270	5679	251	7.208		1705	7208	309	9,222		9222	0 400
Utility D A - 1 EDL Calculativ		11	Wet Weather Flow	(GPD)	1,152,360	476,685	442,530	429,165	420,255	2,920,995	1 487 970	1.147.905	932,580	371,250	247,995	4,187,700	1	503,415	478,170	527,175	057 057	2.454.705		338,580	568,755	427,680	1 841 400		2.920.995	4,187,700	498,960	570,240	8,1///895	1.841.400	8,177,895	360,855	10,380,150		2,454,705	10,380,150	445,500	13,280,355	a10 000 0.1	13,280,355 307 000	356 878 21
nage Area. W Design	Weather Flow	10	Cumulative Dry Weather Flow	(GPD)	190,120	268,765	341,//5	412,580	CT6'TOL	Ī	245.490	434,875	588,735	649,985	690,900		22 221	cc0,28	101,945	120,255	404 085	2224.2		55,860	149,695	220,255	000/2002		481,915	1,172,815	1,255,135	1,349,215	Ī	303,800	1,653,015	1,712,550			404,985	2,117,535	2,191,035		2 404 02E	2,191,U35	
Drair Pipe Flo	Average Dry V	6	Dry Weather Flow	(GPD)	150,120	/8/045	10,010	200,07	401 015	CTETTOL	245.490	189,385	153,860	61,250	40,915	690,900	02 AEE	000 02	0,030 06 07E	30,9/3	71.050	404,985		55,860	93,835	83 545	303,800		481,915	006'069	82,320	34,080 1.340.715	CTTICLOIT	303,800	1,349,215	59,535	1,712,550		404,985	1/12/550	/3,500	2,191,035	2 101 D2E	65.660	2,256.695
	tion	8	nt Total EDU		0// 5/2	321	280	202	1967		1002	773	628	250	/9 <u>1</u>	707	330	500	32	247	290	1653		228		341	1240		1967	2820	336	5507		1240	5507	243	6990		1053	2005		242	8043	268	9211
	Popula	~	Developmen	(1 EUU/aCN		1.1		0.1			1.0	1.0	1.0	1.0			0	10	01	0	1.0			1.0	0.1	1.0			1.0	0.1	0.0	21		1.0	1.0	1.0			0.1		7:7		1.0	1.0	
) Area	9	Area	776	321	700	200	283	1967		1002	73	628	520)010		339	327	155	347	290	1653		228	S &	341	1240		1967	2820	202	5507		1240	5507	243	6990	1657		300	8943		8943	268	9211
	ontributin	0	a Side	520	144	124	114	2	980		7	287	ž	611	1004		246	195	262	220	240	1163	!	19	6 %	2	194		88	100 100		2205		ž	2205	8	2461	1163	7461	6	3716		3716	15	3731
ŀ	이. 十		ion Side	1-1 256	1-2 177	1-3 169	175	1-5 210	987		?-1 931	2-2 486	23	<u>4</u> 14	1816		1-1 93	127 127	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	127	F1 50	490		117 11	-3 257	-2 269	1046		-2	1816	292	3302		-2 1046	-2 3302	101 1	4529	401	-1 4579	1 208	5227		-1 5227	-1 253	5480
	Location		n Strea on Collect	e A	1 CP AP	-2 CP AAI	3 CP MI	4 CP AN		Ц	₹ B B		A 0 5		É J		n CP AG	1 CP AN	2 CP M3	3 CP A3	4 CP A46		2		2 CP 444	3 CP AAS			C WI		1 CP AS			n CP AS	CU ANS			CP AAF	CP A6	L CP M7.			CP A7	L CP AA8	
	wer Main	• -	Stream Collection	1 Upstream	1 CP MI	1 CP AI	1 CP AN-	1 CP AN	Total		2 Upstream	2 CD W			Tota		3 Upstrear	3 CP AG	3 CP A3-	3 CP A3-	3 CP A3-	Total	1 Inches	P CP A44-	D CP A44-	CP AA4-	Total		Upstream	CP A1-4	CP AN-	Total		Upstream				Unstream	CP AAS-2	CP A46-1	Total		CP AA6-1	CP AV7-1	Total
e e	Ϋ́,	Pine	≜ A	Pipe AA	Pipe AA.	Pipe AA.	Pipe AA.	Pipe AA.	-		Pipe AA.	Pipe AA	Pipe AA.	Pipe AA	7		Pipe AA:	Pipe AA:	Pipe AA:	Pipe AA:	Pipe AA:	m	Dine AAA	Pipe A44	Pipe A44	Pipe A44	4	74.4	Pipe A1	Pipe AA5	Pipe AA5	2		Pipe A44	Pine AA6	4	,	Pipe AA3	Pipe AA6	Pipe AA7	ŀ		Pipe AA7	ipe AA8	.∞

422	
GPD capita/EDU EDU/acre GPD/capita	gallon/acres served
245 3.5 1 70 3	750
Residential Single Family Units (EDU) = Population per EDU = Development Average Density = Wastewater Demand = Maximum Flow Peak Factor =	Trinow/Innitration =

GPD/EDU	SPD/EDU	SPD/EDU
245 (735 (1485 (
Average Dry Weather Flow =	Maximum Dry Weather Flow =	Maximum Wet Weather Flow =

0.013 80% Manning's Roughness Coefficient = Percent of Pipe Flowing Full =

EDU 112706\1 EDU Man/Rer P: . Projects / 6096 (Green Valley SUD) / 07-Wastewater Master

۵	۵	Γ	5	1	Pipe	elocity	Interimo		r/sec)		4.63		40.0	5.04	5.79	5 45		6.40	6.46		
	Ş			7	Pipe	ameter V	.W lenimo		incnes) (5		81	18	21	24		24	24		
Ľ			L	50	Pipe	ismeter Di			inches) (13 99		16.20	18.19	19.57	00.10	27177	21.83	23.69		
		40		19	Pipe	ismater D			inches) (11 10	2777	12.96	14.55	15.66	17 03	3.1	17.46	18.95		
		Dino Deci		81	Pipe	Clone D	anne		(tt)		1100 0	/////	0.0071	0.0071	0 0077	0000	000010	0.0080	0.0080	0076	220010
			ļ	17	Pine		nfillen		(£)		009 0	2,000	2,800	2,800	2 600	2000	4,400	2,500	2.500	000.00	201200
				16	Downstream			Elevation	£		001	08C	560	540	202	070	490	470	450		
				5	Inchroam		TINNELL	Elevation	E		002	200	580	260		2	520	490	470		
			2	14	Cumulative		vet weather	Flow	(cfs)	146	2	2.59	3.69	5 03	2010	65.0	7.48	8.66	10.78	7/1/7	
			Net Weath	13	401		Weather	Flow	(cfs)	1 46	2	1.14	1 10	20.1		1.32	1.13	1.18	11		10.78
istrict	-		Maximum /	•			Weather	Flow	(apm)	100	5	203	405	200	200	592	506	531	1000	644	4,837
Utility D	- 1 EDU	alcular		÷		Met	Weather	Flow	(GPD)	000 100	741,45U	733.590	712 000	000/77	804,2/U	852,390	729.135	764 775	000 000 1	1,300,2UU	6,964,650
ey Special I	age Area B	W Design	Veather Flow	ç		Cumulative	Dry Weather	Flow	(GPD)		155,55U	276.360	000 505	000'000	536,550	677,180	797.475	012 650	722,010	1,149,050	
Green Vall	Drair	Pipe rio	Average Dry V			λ	Weather	Flow			155,330	121 030	000	000//11	142,590	140,630	120.295	176 175	C/T/07T	225,400	1,149,050
			Ę	ļ	»	Total	EDU			2	634	404	5	480	582	574	401		CIC	920	4690
			Populati		-	Development	Density		(and the state	TEDU/ ACIE	1.0	-	717	1.0	10	1.0	-	01 1	1.0	97	
			Area		9	Total	Area		()	(ane)	634	201	F	480	582	574	101	441	515	920	4690
			rihuting		2	Riaht	Side			(acres)	367	205	9	229	216	190		C07	306	216	2096
			ton		4	Left	Cida		Area	(acres)	267		/07	251	366	384		907	209	704	2594
			ation		m	Down			Collection	Point	CP BB-1		7-99 2	CP 88-3	CP BB-4	CP RR-5		CP 88-6	CP 88-7	CP BB-8	
			white have		N	2		integrit	ollection	Point	Instream		CP 88-1	CP BB-2	CP BB-3	CD BR-4	3	CP 88-5	CP BB-6	CP BB-7	Total
			Country	DAUDO	-	acio	4	3	0		Pine RR		Pipe BB	Pipe BB	Pine RB	an original second		Pipe 88	Pipe BB	Pine BB	

Design Parameters:

Family Units (EDU) = 245 GPD/EDU Manning's Roughness Coefficient = 0.013 DU = 3.5 capita/EDU Maximum Dry Weather Flow = 735 GPD/EDU Manning's Roughness Coefficient = 0.013 DU = 3.5 capita/EDU Maximum Dry Weather Flow = 735 GPD/EDU Percent of Pipe Flowing Full = 80% arage Density = 1 EDU/acre Maximum Wet Weather Flow = 1485 GPD/EDU Percent of Pipe Flowing Full = 80% and = 70 GPD/capita 80% 1485 GPD/EDU Percent of Pipe Flowing Full = 80% eak Factor = 3 3 750 gallon/acres served 6
Residential Single Family Units (EDU) = Population per EDU = Development Average Density = Wastewater Demand = Maximum Flow Peak Factor = Inflow/Infiltration =

P-\Projects\6096 (Green Valley SUD)\07-Wastewater Master Plan(Report)Pipe Sizing\Pipe Size 1 EDU 112706\1 EDU Pipe Size Design Basin B 112706.xis

			Pipe Design	16 17 18 19 20 74 75	wnstream Pipe Pipe Pipe Pipe Dine Dine	Invert Length Slope Diameter Diameter Diameter Velocity	levation Actual 80% Full Nominal Actual	(ft) (ft) (ft) (inches) (inches) (inches) (ft/sec)		580 2,600 0.0077 10.70 13.38 15 4.63	560 2,800 0.0071 12.83 16.04 18 5.04	540 2,800 0.0071 14.50 18.12 18 E 04	520 2,800 0,0071 15.81 19.77 21 5.58	500 2,800 0.0071 17.25 21.57 21 5.58	480 2,600 0.0077 18.38 22.97 24 6 33	460 2,600 0.0077 19.37 24.22 24 6.32	440 2,500 0.0080 20.03 25.03 77 6 ac	420 2,500 0.0080 20.31 25.38 27 6 00	24 MM A ANTE
	rict	S	cimum Wet Weather	12 13 14 1	Vet Wet Cumulative Upst	amer weather wet weather In	iow riow riow fiev	pilly (crs) (crs) (r	79 1.07 1.07	55 1.24 2.30 60	83 1.30 3.60 58	21 1.38 4.98 56	83 1.30 6.28 54	38 1.65 7.93 52	12 1.81 9.74 50	29 1.47 11.20 48	/4 1.28 12.48 46	09 0.47 12.95 1 44	812 12.95
	airey special Utility Dis ainage Area C - 1 EDU	low Design Calculation	/ weamer Flow Ma	11	Dry Worthon Worthon				113,080 689,040	245,450 /98,930	C20,258 C16,000	0/6/050 010/755	003/030 839/UZ5	1 030 0CE 1 1 20 0CF	1 104 630 048 045	CT6'046 070'LCT'T	Ch1/100 000 1	CC4'TAC AZA'AOC'T	8,309,460 5,
Grann V		Print Arrest		Avalanment Total Dec	Density FDI Weather	Flow	1 EDU/acre) (EDU) (GPD)	1.0 464 1 113 680	1 1 53 101/01	1.0 7.65 1.38.475	1.0 607 147 400	1.0 565 138.475	1.0 716 175 420	1.0 787 1 197 815	1.0 639 156 555	1.0 557 136 465	1.0 203 40 735	5636 1 380 870	120JU014 0000
		n Contributing Area	3 4 5 5	wn Left Right Total f	eam Side Side Area	action Area Area	hint (acres) (acres) (acres) (CC-1 150 314 464	CC-2 173 365 538	CC-3 192 373 565	CC-4 271 331 602	CC-5 332 233 565	CC-6 457 259 716	CC-7 584 203 787	CC-8 520 119 639	CC-9 405 152 557	C-10 194 9 203	3278 2358 5636	
		Sewer Main Location	1 2	Pipe Up Do	ID Stream Stre	Collection Colle	Point Po.	Pipe CC Upstream CP (Pipe CC CP CC-1 CP C	Pipe CC CP CC-2 CP C	Pipe CC CP CC-3 CP C	Pipe CC CP CC-4 CP C	Pipe CC CP CC-5 CP C	Pipe CC CP CC-6 CP C	Pipe CC CP CC-7 CP C	Pipe CC CP CC-8 CP C	Pipe CC CP CC-9 CP C	Total	

<u>Design Parameters:</u>

her Flow = 245 8ther Flow = 735 ather Flow = 1485
Average Dry Weat Maximum Dry Wea Maximum Wet We
GPD capita/EDU EDU/acre GPD/capita galion/acres served
245 3.5 1 70 3 750
Residential Single Family Units (EDU) = Population per EDU = Development Average Density = Wastewater Demand = Maximum Flow Peak Factor = Inflow/Infiltration =

0.013 80%

Manning's Roughness Coefficient = Percent of Pipe Flowing Full =

GPD/EDU GPD/EDU GPD/EDU

EDU D		21 22	e Pipe Pipe	eter Diameter Velocity	Full Nominal Actual	es) (inches) (ft/sec)		1 21 4.01	0 24 4.39	6 27 4.64	0 27 4.83	4 30 4.97	6 30 5.05	
Ħ		20	Pip	ster Diame	al 80%	es) (inch		3 20.9	2 23.9	7 25.9	8 27.6	7 28.8	4 29.5	
	e Design	19	e Pip	e Diame	Actu) (inch		50 16.7	50 19.1	50 20.7	50 22.0	50 23.0	50 23.6	92
	Pip	7 18	pe Pip	igth Sloi		٤ ٤		00.0	00 0 00	000 0.00	300 0.00	00.0	00'0 0'00	00.0
		16 1	ownstream Pi	Invert Ler	Elevation	(L) ()		562 2,5	554 2,5	546 2,5	538 2,5	530 3,(522 2,6	44
		15	Jpstream D	Invert	Elevation	(ft)		570	562	554	546	538	530	
	her	14	Cumulative	Wet Weather	Flow	(cfs)	3.38	6.11	8.72	10.87	12.80	14.39	15.37	
	Wet Weat	Ę	Wet	Weather	Flow	(cts)	3.38	2.73	2.61	2.15	1.93	1.59	0.98	40.37
istrict J	Maximum	11	Wet	Weather	Flow	(mqg)	1515	1226	1172	965	868	712	438	2005
Utility D 0 - 1 EDU Calculati		п	Wet	Weather	Flow	(GPD)	2,181,465	1,765,665	1,686,960	1,389,960	1,250,370	1,024,650	631,125	A 030 40E
lley Special nage Area D	Weather Flow	10	Cumulative	Dry Weather	Flow	(GPD)	359,905	651,210	929,530	1,158,850	1,365,140	1,534,190	1,638,315	
Green Val Drai Dian Ele	Average Drv	6	Drv	Weather	Flow	(GPD)	359,905	291,305	278,320	229,320	206.290	169,050	104,125	710 71
	ion	8	t Total	EDU		(EDU)	1469	1189	1136	936	842	690	425	2033
	Populat	1	Developmen	Density		(1 EDU/acre	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	Area	9	Total	Area	}	(acres)	1469	1189	1136	936	842	069	425	2200
	ntributine	5	Richt	Side	Area) (acres)	1068	815	725	610	466	283	128	
	Co.	4	10	Side	Area	acres	1401	374	411	4 326	376	407	7 297	
	vation		Down	Stream	Collection -	Point	du au							
	or Main L		1	Stream		Point	Instream	CP DD-1	2002	200	2002	5-00-02	0000	
	9	8	, oie	ŝ	1		ine DD		ine DD	DD ani			ipe DD	

<u>Design Parameters:</u>

Manning's Roughness Coefficient = Percent of Pipe Flowing Full =
GPD/EDU GPD/EDU GPD/EDU
245 735 1485
Average Dry Weather Flow = Maximum Dry Weather Flow = Maximum Wet Weather Flow =
GPD capita/EDU EDU/acre GPD/capita gallon/acres served
245 3.5 3.5 70 750
Residential Single Family Units (EDU) = Population per EDU = Development Average Density = Wastewater Demand = Maximum Flow Peak Factor = Inflow/Infiltration =

0.013 80%

ш	T	2	Pipe Velocity Mominal	(ft/sec)		6.00	6.00	6.49	6.49	7.16	7.16	7.16	7.63	7.35	Τ		5.11	5.52	5.92	5.92	6.31	6.31	6.31	6.31	6,69	60.0		4.67	5.11	5.11	5.52	T	Π	8.10	8.10	07-0			8.77	8.77	8.77	8.77	9.40	9.40	Π	
DC		12	Pipe Diameter Nominal	(inches)		77	24	27		30	30	96	33	EE			7	27	ñ	9 9 9	8	33	5	33	36	2		2	24	2	2			48	48				2 2	54	2	1 25	90	89		
Ш Ħ		R	Pipe Diameter 80% Full	(inches)	10 20	21.76	23.52	25.19	25.84	28.43	29.46	30.36	31.73	32,64		12.00	25.57	27.06	28,34	30.29	30.92	31.50	32.05	32.95	33.49	64.00		18.85	20.51	22.85	26.59	T		44,68	45.11 45.60				51.57	52.60	53.14 53.03	54.49	54.90	55.34	Π	
	esiqn	19	Pipe Diameter Actual	(inches)	16 80	17.41	18.82	20.16	20.6/	22.75	23.57	24.29	25.38	26.12		10.01	20.45	21.65	22.67	24.23	24.74	25.20	26.03	26.36	26.80	00.07		15.08	16.41	18.28	21.27			35,74	36.09 36.48				40.36	42.08	42.51	43.60	43.92	44.27		
	Pipe D	18	h Slope	e	0,000	6900.0	0.0069	0.0069	600010	0.0073	0.0073	0.0073	0.0073	0.0068		0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050		0.0050	0.0050	0.0050	0.0050	0.0050		0.0050	0.0050	0.0050		0.000	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	
		17	m Pipe Lengt	E	2 76N	2,750	2,750	2,750	2.750	2,600	2,600	2,600	2,600	3,100		200	2,900	2,550	2,550	2,550	2,550	222	2,800	2,800	4 4 6 4 6 7 7 7	34,750		4,600	4,600	4 600	4 000	22,400		2,000	2,500	7,000		2 100	2,500	3,000	3,500	3,500	4,400 2,500	2,700	28,100	
		16	Downstrea Invert Elevation	E	811	792	773	754	216	697	678	659	621	80		603	684	676	899	652	6 4	636	620	612	\$ <u>5</u>			646	627	580 280 280	570			590	580 570			793	261	556	546	541	536	526		
		15	Upstream Invert Elevation	ε	830	811	792	73	735	716	693	629 659	55	621		700	692	684	9 <u>7</u> 9	660	652	49 25,2	628	620	612 604			665	646	608	589			600	590 580			210	566	561	221	546	541 536	531		
		14	Cumulative Vet Weather Flow	(g	4.36 6.17	7.98	9.82	11.80	14.68	16.76	18.42	21.34	22,44	23.31		0.0U	10,44	12.15	15,/4	16.40	17.33	19.07	19.86	20.53	21.45		2.80	4.63	5.80	6.6	11.59		23.31	46.26	47.45 48.84		11.59	60.43 63 05	67.81	71.46	76.38	78.54	80.11 81.41	81.85		
	Vet Weathe	13	Weather V Flow	(j) (j)	1.81	1.81	1.84	1.98	2.05	2.08	1.67	1.39	1.10	15.52		8.6	1.85	1.71	4C-1	1.12	0.93	0.86	0.79	0.67	0.00	21.45	2.80	1.83	1.17	1-88	1.97		23.31	1.49	1.19	48.84	11.59	48.84	3.86	3.65	2.92	2.16	1.30	0.44	81,85	
SL	aximum V	11	Verther Flow	(apm)	812	814	827	/80	920	533	749	624	\$	392 10,463		1067	831	¥		Ş	417	5 98	355	8	1 0	9,627	1256	823	525	846	883 5,202		10463 9627	670	536 625	21,921	5202	21921	1733	1638	1311	971	282	197	36,732	
- 1 EDU alculatio	I	Ħ	Weather Flow	(GPD)	1,168,695	1,171,665	1,190,970	534.600	1,324,620	1,343,925	1,0/8,110 086 040	898,425	711,315	#######	1 163 43F	1.286.010	1,196,910	1,103,355	026.790	726,165	599,940	555.390	510,840	432,135 FOF 40F	0	#######	1.808.730	1,185,030	755,865	1,217,700	1,271,160 7,490,340		13,066,810	965,250	012,200 899,910	*****	7,490,340	2.275.020	2,494,800	1 288 080	1,887,435	1,398,870	1,012,//0 837,540	283,635	######	
age Area E w Design C	eather Flow	2 2	Cumulative Dry Weather Flow	(GPD)	657,580	850,885	1,047,375	1.346.275	1,564,815	1,786,540	2 127 000	2,275,315	2,392,670	n///co+/2	305 204	915,565	1,113,035	1,295,070	1.629.250	1,749,055	1,848,035	2,033,255	2,117,535	2,188,830	2,287,075	-	298,410	493,920	618,625 825 160	1,026,060	1,235,780		4,772,845	4,932,095	5,207,965		1,235,780	6,819,085	7,230,685	7,832,405	8,143,800	8,374,590	8,679,860	8,726,655		
Drain Pipe Flo	Average Dry W	,	Veather Flow	(GPD) 464 765	192,815	193,305	196,490 210 700	88,200	218,540	221,725	162,680	148,225	117,355	2,485,770	703 305	212,170	197,470	160 540	164,640	119,805	98,980	91,630	84,280	71,295	0	2,287,075	298,410	195,510	206 535	200,900	209,720 1,235,780		2,287,075	159,250	148,470	5,207,965	1,235,780	375,340	411,600	212,660	311,395	230,790	138,180	46,795	cc0'07/4	
	Ę	• •		(EDU)	787	789	802	38	892	285 X	664	605	479	10146	3871	866	806	/43 607	672	489	<u></u>	374	344	167	0	9335	1218	798	222 843	820	856 5044		9335	650	909	17227	5044	1532	1680	868	1271	<u>8</u> 9	564	191	CTOC	
	Populati	2	Density	I EDU/acre)	1.0	1.0	91	10	1.0	010	1.0	1.0	1.0		-	1.0	10	0.1	1.0	1.0	0	1.0	1.0	01	1.0		1.0	1.0	01	1.0	1.0		1.0	10	10	Ì	0.1	1.0	10	1.0	0'1	0.0	201	1.0		
	Area		Į	(acres)	787	789	860	360	892	202 202	5 5 5 5 5 5	605	479	10146	2871	866	806	(1)	672	489	1	374	¥	101	0	9335	1218	798	843	820	856 5044	10146	9335	650	909		5044 21257	1532	1680	868	1271	242	25	191		
	tributing.	22	Side Area	(acres) 1455	476	424	343	302	267	255	5 8	224	130	4933	7975	519	\$	4 19 19	406	229	135	142	161	167	•	5849	20	<u>8</u> ;	203	628	2203	4023	5849	466	578	12240	2203	607	₹ª	29	621	ò y	564	191		
	ð,	•	Skie S	44)	311	365	517	58	625	₿14	416	381	312	5213	574	347	322	273	266	8	242	232	183	110	•	3486	1168	619	334	192	51 2841	5113	3486	28 25	28	/T02	2841 9017	925	1036	801	650 275	c/c	0	16665		
	ation		Stream Collection	CP EE1-1	CP EE1-2	0 661-3	Q EEL-5	CP EE1-6	CP EE1-7	0 6 11 0 0	CP EE1-10	CP EE1-11	CP EE1-12 CP EF1-13		CP EE2-1	CP EE2-2	CPEE2-3	0 E25	CP EE2-6	0 EE2-7	CP EE2-9	CP EE2-10	0 EE-11	CP EE2-13	CP EE1-13		CP EE3-1	0 653-2	CD EE34	CP EE3-5	C # 12	CD EE1-13	CP EE1-13	0 EE4-1	0 EF13		CP EE4-3 CP EE4-3	CP EE5-1	CP EES-2	CP EE5-4	CP EE5-5	OP EES-7	CP EES-8			j
	K Main Lo	7	Stream	Upstream	CP EE1-1	0 EE1-2	O EII	CP EE1-5	00 EE1 6	0 EE1-8	CP EE1-9	CP EE1-10	7 FF1-17	Totai	Upstream	CP EE2-1	CP EE2-2	0 EE74	OP EE2-5	CP EE2-6	CP EE2-8	CP EE2-9	D EE2-10	P EE2-12	PEE2-13	IOCAL	Upstream	0 EE-1	CP EE3-3	09 EE3 4		Instream	Upstream	7P EE1-13	CP EE 4-2		P EE1-13	CP EE4-3	0 EE5-1 30 FF5-3	CP EE5-3	0 EE5 4	7 EE5-6	CP EE5-7	Total		CHC INCLU
	Sewe	- i	e la	ipe EE1	Pipe EE1	ipe EE1	ipe EE1	ipe EE1	ipe EE1	Pe EE1	Ipe EE1	Ipe EE1	IDe EE1		ipe EE2	ipe EE2	ipe EE2	pe EE2	ipe EE2	ipe EE2 ine EE2	pe EE2	ipe EE2	IDE EE2 (pe EE2 (ipe EE2 (ŀ	ipe EE3	pe EE3	ipe EE3	pe EE3		ine FF1	pe EE2	ipe EE4	ipe EE4	Ħ	the EE3	pe EE5	ipe EES	ipe EES	ipe EES	pe EES	pe EES			

•

0.013 80%

Manning's Roughness Coefficient = Percent of Pipe Flowing Full =

GPD/EDU GPD/EDU GPD/EDU 245 735 1485 Average Dry Weather Flow = Maximum Dry Weather Flow = Maximum Wet Weather Flow =

You ...

gallon/acres served capita/EDU EDU/acre GPD/capita 3.5 70 750 resortional angler raining Units (LUU) Population per EDU = Development Average Density = Watkweite Demand = Maximum Flow Peak Factor = Inflow/Infiltration =

_	Т	T			Z		1	5	Т			Г	T	Τ	1	1			Γ		Г	1
L			ដ	Pipe	Veloci			11/30		4,21	4.67	5.11	11		20.0	5.52	5.92	5.92	5.92	5.97		
Ы			21	Pipe	Diameter	Moninella Moninella	Nominar	(Incnes)		18	21	24	PC.	1	17	27	ĝ	õ	90	9		
			20	Pipe	hameter		SU% FUE	(incres)		17.16	19.64	21 60	73.60	20.02	25.15	26.39	27.42	28.25	28.84	70 27	14174	
		5	19	Pipe	amater F			nches)		13.73	15 71	17 35	10 00	10.00	20.12	21.12	21.93	22.60	23.07	73 41		
		Pipe Desi	18	Pipe				⊃ €	-	0050	0050	LOUCO A	0000	NCDN.	.0050	0.0050	0.0050	0.0050	0050	DOED		ACUD.
			17	Pine	-		1	€		2.500 0				n 00c,2	2,500 0	2,500 0	2.500 0	2,700	3 600	000/2		V VU2/13
			16	ownstream		JUANT	Elevation	(¥)		645	240		600	630	625	620	615	610	60F		2000	Ì
			15	Inctrosm D		TIDVEIT	Elevation	(£		650	245	640	Ð	635	630	625	620	615	610	200	50	-
		her	14	Cumulative		wet weather	Flow	(cfs)	1.95	2 61	141	/7.0	0./3	8.43	66'6	11.36	12.58	13.67	14 20	10.11	14.9/	
		<u>Wet Weat</u>	13	town		Weather	Flow	(cfs)	1.95	1 56	3	1.20	1.50	1.70	1.56	1.37	1 21	15	5.6		82.0	14.97
	ons	aximum	-			Neather	Flow	(mqg)	873	745	e i	10	10/	762	702	616	EAF	334	9	ţ	261	6,719
Utility D	alculation	ž			Met	Weather	Flow	(GPD)	1.257.795	VLI CLU I	N/T'7/N'T	1,009,800	1,009,800	1,097,415	1.011.285	886 545	000 002	000/10/	0/1/200	438,900	375,705	9,674,775
ey Special nage Area F	w Design C	Veather Flow	ç		Cumulative	Dry Weather	Flow	(GPD)	207,515	101 101	384,405	551,005	717,605	898,660	1.065.505	1 211 770	0///17777	1,571,570	1,451,870	1,534,190	1,596,175	
Green Vall Drait	Pipe Flo	Average Drv W	- Anna - Anna - A	n	Δīd	Weather	Flow	(GPD)	207 515	000 000	1/6,890	166,600	166,600	181.055	166,845	146 265	C07/0L1	N05'67T	110,/40	82,320	61,985	1,596,175
			•	•	Total	EDU		(EDU)	847	5	2	88	680	739	681	102	201	87	452	336	253	6515
		Dominatio	- upundor	,	Development	Density		(1 EDU/acre)	0.1	7.7	1.0	1.0	1.0	1.0	10		01	1.0	1.0	1.0	1.0	
		- Cont	5	•	Total	Area		(acres)	110	È	722	680	680	739	103	10	22	228	452	336	253	6515
		ihutin .	1 Bunnau	2	Right	Side	Area	(acres)		+10	379	389	451	200		764	515	295	363	250	82	4088
		100	5	4	Fer	Side	Area	(acroc)		533	343	291	229	020		222	284	233	89	86	171	2427
			Cadon	3	Down	Stream	Collection	Boint		123	GP FF 2	CP FF 3	CP FF 4	2 2 2		E E	0 # 7	OP FF 8	CP FF 9	CP FF 10	CP FF 11	
			er main Lo	2	٩Ŋ	Stream	offection	Doint .		Upstream	OP FF 1	CP FF 2	CP FE 3			ч Т Т	CPFF 6	CP FF 7	CP FF 8	CP FF 9	CP FF 10	Total
			Sev	-	Pipe	ļ				ipe ++	ipe FF	ipe FF	ine FF			10e T	ipe FF	ipe FF	hpe FF	Vibe FF	ipe FF	

<u>Design Parameters:</u>

Residential Single Family Units (EDU) = Population per EDU = Development Average Density = Wastewater Demand = Maximum Flow Peak Factor =	245 3.5 1 70 750	GPD capita/EDU EDU/acre GPD/capita aallon/acres served	Average Dry Weather Flow = Maximum Dry Weather Flow = Maximum Wet Weather Flow =	245 735 1485	GPD/EDU GPD/EDU GPD/EDU	
		-				

0.013 80%

Manning's Roughness Coefficient = Percent of Pipe Flowing Full = P:\Projects\6096 (Green Valley SUD)\07-Wastewater Master Man\Report\Ppe Sizing\Ppe Sizing\Ppe Size 1 EDU 112706,1 EDU Ppe Size Design Basin F 112706,xis