

Control Number: 45624

Item Number: 324

Addendum StartPage: 0

SOAH DOCKET NO. 473-16-2751 PUC DOCKET NO. 45624

§

§ §

§ § §

§

RECEIVED

2016 MAY 24 PM 2: 56

APPLICATION OF THE CITY OF GARLAND TO AMEND A CERTIFICATE OF CONVENIENCE AND NECESSITY FOR THE RUSK TO PANOLA DOUBLE-CIRCUIT 345-KV TRANSMISSION LINE IN RUSK AND PANOLA COUNTIES BEFORE THE CLARK

PUBLIC UTILITY COMMISSION

OF TEXAS

REBUTTAL TESTIMONY

OF

STAN GRAY

ON BEHALF OF

SOUTHERN CROSS TRANSMISSION LLC

MAY 24, 2016

32

SOUTHERN CROSS TRANSMISSION LLC REBUTTAL TESTIMONY OF STAN GRAY

TABLE OF CONTENTS

I.	INTRODUCTION AND EXPERIENCE	1
II.	DISCUSSION	3

<u>EXHIBIT</u>

Exhibit SG-1-R Oncor Southern Cross DC Tie Study Report

<u>Page</u>

1		I. INTRODUCTION AND EXPERIENCE
2	Q1.	PLEASE STATE YOUR NAME, BUSINESS ADDRESS, EMPLOYER, AND
3		JOB TITLE.
4	A.	My name is Stan Gray. My business address is 800 NE Tenney Rd, Ste 110-132,
5		Vancouver, WA 98685. I'm employed by Pattern Energy Group LP, as Director,
6		Transmission.
7		
8	Q2.	ON WHOSE BEHALF ARE YOU TESTIFYING?
9	A.	I am testifying on behalf of Southern Cross Transmission LLC ("SCT") and in
10		support of the application filed in this case by the City of Garland ("Garland"),
11		doing business as Garland Power & Light ("GP&L").
12		
13	Q3.	PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AND
14		EXPERIENCE.
15	A.	I have a Bachelor of Science Degree in Electrical Engineering from Portland State
16		University. I was a registered professional engineer for over 44 years. I practiced
17		for 22 years as a transmission planning engineer working for Portland General
18		Electric performing system studies including power flow, stability and electro-
19		magnetic transient program studies to predict the behavior of power systems and
20		aid in planning the expansion of the transmission network. My work included
21		supporting the control room operators by running planning studies to predict the
22		result of unplanned and planned outages and preparing operating plans to manage
23		the outages. I also managed the electromagnetic field ("EMF") program for PGE.

I negotiated operating and facility sharing agreements between PGE and other
 northwest grid owners.

3 I left PGE to work for Enron where I was responsible for interconnection 4 and delivery of generation projects worldwide. I worked at Renewable Energy Systems Americas ("RES") and then Babcock and Brown. While at Babcock and 5 6 Brown, I participated in development of the Trans Bay Cable, a 400 MW HVDC 7 under-sea cable project that serves about 40% of the San Francisco northern 8 peninsula's peak load. Pattern Energy Group was formed in 2009 from a 9 management buyout of Babcock and Brown employees with Riverstone Private 10 Equity.

11 While at RES, B&B and Pattern I provided planning for interconnections, 12 delivery and some operations support for over 5,000 MW of wind and solar 13 projects in the US, Canada, Chile, Japan and Mexico. I have worked with the 14 New England ISO, PJM, NYISO, ERCOT, CAISO and IESO in Ontario.

15

16 Q4. HAVE YOU TESTIFIED PREVIOUSLY BEFORE THE PUBLIC UTILITY17 COMMISSION OF TEXAS?

18 A. Yes, I testified before the PUCT in Docket No. 35665, Commission Staff's
 19 Petition for the Selection of Entities Responsible for Transmission Improvements
 20 Necessary to Deliver Renewable Energy from Competitive Renewable Energy
 21 Zones.

1 Q5. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. My testimony responds to several intervener witnesses who address system
upgrades, primary frequency response and reactive support, a congestion
management plan, and ramp rate limitations.

- 5
- 6

II. DISCUSSION

7 Q6. SEVERAL INTERVENOR WITNESSES ARGUE THAT SCT SHOULD BE
8 REQUIRED TO PAY FOR ANY TRANSMISSION SYSTEM UPGRADES
9 NECESSARY TO SUPPORT EXPORTS OVER THE TIE (GRIFFEY AT 12;
10 FRAZIER AT 8). HAS ONCOR STUDIED WHETHER SYSTEM UPGRADES
11 WOULD BE REQUIRED TO SUPPORT EXPORTS OVER THE SCT TIE?

12 A. Yes. Oncor performed interconnection studies at the request of ERCOT that 13 compared a benchmark case provided by ERCOT (without the SCT project) to 14 two SCT project sizes, 1500 MW and 3000 MW, to identify potential upgrades 15 for both imports and exports. In response to Staff RFI 1-1, ERCOT indicated that it believes Oncor's studies related to the Southern Cross project are sufficient to 16 17 reliably interconnect the project to the ERCOT grid. The Oncor studies can give 18 some insight into system upgrades that could allow more area deliverability of 19 generation and SCT flows, but the upgrades are not necessary to interconnect 20 SCT. A copy of Oncor's Southern Cross DC Tie Study Report is attached as 21 Exhibit SG-1-R.

1 Q7. WHAT DOES THE ONCOR STUDY REPORT SHOW?

2 A. Based on the assumptions in the cases used, new reactive support is required to 3 resolve voltage violations in the 1,500 MW and 3,000 MW cases. Tables 1, 2 and 4 3 in the summary of the report provide insight into the upgrade facilities required 5 in each case. In comparison to the benchmark case, the 1,500 MW case shows the 6 need for the addition of reactive devices for both imports and exports and the 7 upgrade of the one-mile 138-kV Tyler Grande to Tyler GE line for imports. Since 8 the SCT tie is now being planned to deliver 2,000 MW, the 3,000 MW case is no 9 longer useful other than to allow some interpolation of line loading results 10 between the two studied project sizes.

11

12 Q8. HOW CAN YOU INTERPOLATE RESULTS FOR SCT'S 2,000 MW TIE 13 FROM THE 1,500 MW AND 3,000 MW CASES STUDIED BY ONCOR?

14 A. The study indicates that line capacity is left on the studied lines in the 1,500 MW 15 case, and it is possible to interpolate increased flows on lines from the 1,500 MW 16 case to the 3,000 MW case to form conclusions about line loading at 2,000 MW. 17 This interpolation suggests that the study's conclusions for the 1,500 MW case 18 would largely hold true for a 2,000 MW project. Oncor may complete a 19 2,000 MW study before construction using updated grid topology, but no network 20 upgrades are required to interconnect SCT. In the end, ERCOT is a market and 21 will limit market participants' production to mitigate system reliability concerns 22 like line overloads or system instabilities with or without the addition of system 23 upgrades.

Q9. PLEASE DESCRIBE THE ONCOR STUDY'S ANALYSIS OF WHETHER
 SYSTEM UPGRADES ARE NECESSARY TO SUPPORT EXPORT
 TRANSACTIONS OVER THE SCT TIE.

4 A. Assumptions in the ERCOT case used to study exports were changed to stress the 5 transmission system. Stressing the system is an attempt to set load levels and 6 generation dispatch to emulate power flows that are similar to the worst 7 conditions one would expect to see on the system. In the export cases, the 8 ERCOT system customer load level and generation near the SCT project were 9 reduced. These conditions require generation exported by SCT to come from a 10 greater distance through the ERCOT transmission system. Generation brought 11 from a greater distance puts more demands on the transmission system. The study 12 shows that, to allow exports under these conditions, voltage support is required. 13 SCT will provide such support by adding capacitors near the Panola substation, 14 and Oncor's study analyzes the addition of 400 or more MVAR of reactive 15 support at Rusk station. There are no new lines or line upgrades required based 16 on the study with 1,500 MW or 3,000 MW of export.

17

18 Q10. WHAT DID THE ONCOR STUDIES CONCLUDE ABOUT WHETHER
19 SYSTEM UPGRADES ARE NECESSARY TO SUPPORT IMPORT
20 TRANSACTIONS OVER THE SCT TIE?

A. In the Oncor study, the import case generation dispatch was changed to increase
the amount of generation on line near the future Rusk station. Increasing the
output of existing generators near Rusk stresses the system by adding generation

1		that is in the same area as the connection of SCT. ERCOT customer loads were
2		modeled at the summer peak level. Aside from the reactive support discussed
3		above, there is only one additional upgrade required at the 1,500 MW import
4		level, and that is the one mile section of 138-kV line mentioned in Q7 above. As
5		discussed above, it is reasonable to interpolate that the same conclusion would
6		result at a 2,000 MW import level. ERCOT will manage the grid so that the
7		ERCOT transmission system is reliable without any network upgrades.
8		
9	Q11.	WHAT DO THE ONCOR STUDIES REFLECT CONCERNING REACTIVE
10		POWER SUPPORT?
11	A.	The studies show that the primary impact to the ERCOT system by adding
12		additional flows for either imports or exports on SCT is a voltage drop near Rusk
13		station. This voltage drop would be expected for greater flows on any
14		transmission system or when generation dispatch is changed as generators are a
15		source of reactive power that supports voltage in the system. The addition of
16		capacitors can also supply the needed voltage support. Adding reactive devices
17		like capacitors instead of relying on generators for the reactive supply is a useful
18		solution especially because generation near Rusk tends to run a limited number of
19		hours a year. As discussed above, reactive support will be installed by Rusk near
20		Panola station and was included in Oncor's analysis at the Rusk station.

Q12. LUMINANT WITNESS FRAZIER SUGGESTS THAT NEW METHODS 1 2 SHOULD BE DEVELOPED TO IDENTIFY TRANSMISSION UPGRADES TO 3 SUPPORT EXPORTS (FRAZIER AT 8). DO YOU AGREE? 4 A. It is not entirely clear whether Ms. Frazier is addressing reliability or economic 5 studies, but I don't agree that changes are needed for reliability studies. The same long established pre and post power flow and stability study methods used in the 6 7 Oncor studies are the correct techniques used worldwide for reliability studies of 8 power systems. 9 10 Q13. LUMINANT WITNESS FRAZIER PROPOSES THAT SCT BE REQUIRED TO

PROVIDE PRIMARY FREQUENCY RESPONSE AND REACTIVE
 SUPPORT, WHILE ERCOT WITNESS WOODFIN TESTIFIES THAT IT
 WOULD BE HELPFUL FOR SCT TO BE ABLE TO PROVIDE SUCH
 SERVICES (FRAZIER AT 9, WOODFIN AT 16). PLEASE DESCRIBE SCT'S
 CAPABILITIES TO PROVIDE SUCH SERVICES.

16 A. SCT is not a generator, it is a controllable transmission line. But it does connect 17 two large systems together and the HVDC control systems do have some 18 capabilities where, with cooperation between power systems on both ends of 19 SCT, some services like Primary Frequency Response ("PFR") could be provided. 20 There are two categories of issues that would have to be addressed. One is 21 technical and the other is administrative. Technically, the service being 22 performed must be carefully defined so the HVDC controls can be appropriately 23 programmed. Administratively, arrangements and agreements would have to be

negotiated between the Balancing Authorities on both sides of the HVDC line as
 well as with SCT.

SCT could provide low frequency PFR by borrowing energy from an 3 adjacent system, within the design capabilities of SCT components, to support the 4 ERCOT system very quickly in the early stages of a change in ERCOT's system 5 frequency. SCT could increase its exports during early stages of an ERCOT high 6 frequency event. The transmission system supplying or absorbing the energy is 7 impacted. An HVDC tie can be programmed to supply PFR, but again only with 8 the agreement between systems on both sides of the tie. ERCOT doesn't have 9 rules today that would allow SCT to participate in supplying PFR, so the ERCOT 10 Regional Planning Group would have to consider rule changes to allow HVDC 11 facilities to supply PFR. Similar considerations will be required by the Balancing 12 Authority on the other side. 13

As far as reactive supply being provided by SCT, SCT does not have the capability within the HVDC equipment to supply reactive power. As discussed earlier, substation static or dynamic reactive devices will be used to provide additional reactive support to compensate for the Garland line between Rusk and Panola. SCT will include significant reactive capability by adding capacitors or other reactive dynamic devices near Panola station, and the Oncor studies reflect that Oncor analyzed addition of reactive support at Rusk station.

Q14. COULD THE SCT TIE ALSO HAVE THE CAPABILITY TO PROVIDE OTHER ANCILLARY SERVICES?

As discussed above, the HVDC tie could be controlled so a transmission system 3 A. 4 connected to the tie on one end could provide other ancillary services such as 5 spinning and non-spinning reserves to the transmission system connected to the other end of the line. An agreement between Balancing Authorities, and with 6 7 SCT, would be required, as was noted above for supply of PFR. These 8 agreements could be complex to arrange, but SCT would be willing to participate 9 in the process if ERCOT thought such discussions would be useful. One note of 10 caution: the better the tasks expected of an HVDC facility can be defined in the 11 early stages of design of the HVDC facility, the better the results that would be 12 expected. Making changes to the HVDC facility controls after the facility is 13 designed and constructed would be very costly.

14

15 Q15. WHAT OTHER RELIABILITY BENEFIT COULD THE SCT TIE PROVIDE?

A. During periods of high renewable generation and low ERCOT load there could be the need to curtail some wind generation, and/or for more conventional generation to be operated to support potential grid instability. As shown in Ms. Wolfe's economic studies, the SCT project will likely be exporting up to 2,100 MW during these periods. If renewable generation is exported during the oversupply times more conventional generation could be dispatched to stabilize the ERCOT grid.

1	Q16.	SEVERAL INTERVENOR WITNESSES DISCUSS THE POSSIBILITY OF			
2		IMPLEMENTING A CONGESTION MANAGEMENT PLAN/SPECIAL			
3		PROTECTION SCHEME (SIDDIQI AT 12-14, WOODFIN AT 9-10). DOES			
4		SCT SUPPORT IMPLEMENTATION OF SUCH A PLAN?			
5	А.	SCT did not propose a special protection scheme ("SPS"), but would support the			
6		concept of a well-designed SPS implemented by ERCOT where all parties			
7		benefiting from the SPS participate in the SPS.			
8					
9	Q17.	PLEASE DESCRIBE AN SPS AND EXPLAIN THE BENEFITS OF SUCH A			
10		PLAN AND HOW IT WOULD OPERATE.			
11	A.	Special Protection Schemes have been used successfully for many years around			
12		the United States. There are many forms of SPS but in concept an SPS is a			
13		system of relays, software and other devices that monitor parts of a power system			
14		and can automatically take appropriate actions to protect the transmission system.			
15		An example of what an SPS might be used for is a transmission line could be			
16		monitored and when the line trips off line in an N-1 contingency, or when the			
17		flow on a line exceeds a predetermined level, signals are sent to generators or a			
18		combination of generators and a controllable HVDC line like SCT to reduce the			
19		generator's output or change the HVDC tie's flow.			
20		An SPS can allow for a more complete use of a transmission system.			
21		Absent an SPS, for example, generation output is scheduled in a way that if a line			

trips out of service or a generator trips off line, no system elements are
overloaded. The result is some transmission capacity is left unused in the base

1		case to prepare for N-1 conditions. With an SPS in place, more flow could be
2		scheduled over the transmission system in the base case and the actions of the
3		SPS would automatically reduce any overloads following the N-1 outage. In
4		addition to limiting line overloads, an SPS could also act to mitigate voltage or
5		dynamic instabilities in the transmission grid. An SPS could allow additional
6		generation in the area near SCT to be dispatched in the base case. An SPS can
7		make sense particularly when competition for transmission capacity is seasonal or
8		the long term need is uncertain.
9		
10	Q18.	HOW WOULD AN SPS BE IMPLEMENTED?
11	A.	A study would identify where overloads in the power system occur following N-1
12		outages. Physical devices would be placed in the system at appropriate locations
13		that automatically take actions to reduce overloads such as reducing a generator's
14		output or reducing the flow on a controllable device like an HVDC terminal.
15		
16	Q19.	ERCOT WITNESS WOODFIN TESTIFIES THAT RAMPING RESTRICTIONS
17		OR INTEGRATION OF DC TIE SCHEDULES WITH OTHER MARKET
18		TOOLS SHOULD BE IMPLEMENTED FOR SCT (WOODFIN AT 12-13).
19		DOES SCT AGREE?
20	A.	SCT agrees that ramp rate restrictions are required on a number of facilities
21		including an HVDC tie. SCT has discussed ramp rate control strategies for the
22		SCT tie with ERCOT several times and we are keenly aware that changes in the
23		HVDC flows must be matched by changes in the power systems on both ends of

1	the HVDC line. One of the benefits of a modern HVDC facility is controllability.
2	Flows can be changed slowly or quickly depending on the needs of systems as
3	defined by the system operators on both ends. SCT will work with ERCOT and
4	stakeholders to address and resolve ERCOT's concerns about ramp rates over the
5	SCT tie. The solutions for this issue are straightforward and not controversial.
6	Ms. Wolfe's economic study incorporated ramp-rate limits for each
7	generator in ERCOT and in the eastern interconnect, and the model complied with
8	all of these real generation ramp rate limitations. This resulted in changes in the
9	direction of the SCT tie flow taking up to two hours to ramp. SCT fully
10	understands that it will ramp in accordance with the capabilities of the ERCOT
11	and southeastern systems
12	

13 Q20. DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?

14 A. Yes.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 1 of 71

ERCOT Response to Staff 1-3

Southern Cross HVDC Tie Study Report

Oncor Electric Delivery Company LLC System Planning June 14, 2013

Oncor Electric Delivery - cds

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 2 of 71 Southern Cross HVDC Tie Study Report

Executive Summary

Oncor was commissioned to perform a Steady State contingency analysis and a Transient Stability analysis to examine the impacts of an asynchronous high voltage direct current (HVDC) tie between ERCOT and SERC. The intent of the study was to determine the impact of the HVDC tie on thermal loading, system voltages and stability of the Oncor / ERCOT transmission system.

The study was performed for six different scenarios: a Benchmark Import case, a 1500 MW Import case, a 3000 MW Import case, a Benchmark Export case, a 1500 MW Export case and a 3000MW Export case, with all six cases having a generation profile prepared by ERCOT. All thermal, voltage and stability violations were addressed with multiple planning actions to ensure the reliability of the Oncor and ERCOT transmission system under contingency. Table 1 gives a comprehensive look at the amount of construction and upgrades necessary to connect the HVDC tie at the proposed levels.

······		IMPORT			EXPORT	
	Benchmark	1500 MW	3000 MW	Benchmark	1500 MW	3000 MW
New circuit miles	147 miles	147 miles	407 miles	0	0	147 miles
Upgrade circuit miles	23 miles	24 miles	293.9 miles	0	0	99.4 miles
Autotransformer	750 MVA	750 MVA	750 MVA	750 MVA	750 MVA	750 MVA
New Reactive	80 MVar	480 MVar	1200 MVar	0	640 MVar	1800 MVar
Series Reactor	2-ohm	2-ohm	2-ohm	0	0	0

Table 1 – Total New and Upgraded Equipment Required for Southern Cross Project

Table 2 details the needed upgrades and construction necessary to resolve all thermal and voltage violations for each of the respective import/export cases. Electric power can be exported from ERCOT to SERC with a minimum amount of transmission

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 3 of 71 Southern Cross HVDC Tie Study Report

upgrades, particularly at the lower level of generation export. However, the ability to import the same amount of power into ERCOT requires a much greater amount of construction of new lines, upgrades of existing lines and additions of shunt capacitors and a series reactor.

Table 3 details the need for various equipment and system protection actions to resolve all stability violations for each studied case. Because of the sensitivity of the transmission system in the area around where the HVDC tie will connect to the Oncor Transmission system, a new breaker switching scheme and two small dynamic reactive devices (DRDs) were needed to maintain stability on the 138 kV system. For this project two Static Var Compensators (SVCs) were evaluated and provided the necessary dynamic support. TABLE 2 - Upgrades Needed to Alleviate Thermal and Voltage Issues

					1	Nev	v MVA Ratings	for Upgraded Ti	ransmission Lines a	nd Equipment	1
							IMPORT			EXPORT	
Ref. No	Transmission Line and Equipment	kV	Ŗ	Length	Existing (MVA)	Benchmark (MVA)	1500 MW (MVA)	3000 MW (MVA)	Benchmark (MVA)	1500 MW (MVA)	3000 MW (MVA)
1	Lufkin Switch - Nacogdoches SE	345	1	23	NEW	1631	1631	1631	'		1631
2	Martin Lake - Royse North	345	1	124	NEW	1631	1631	1631	-		1631
ĥ	Martin Lake - Stryker Creek ²	345	1	41	1631	-		1631		1	1631
4	Martin Lake - Navarro	345	1	130	NEW	-	•	1631	1	,	,
2	Martin Lake - Navarro	345	2	130	NEW		I	1631		1	-
و	Trinidad - Stryker Creek	345	1	68.6	1072	•		1631	,	•	,
~	Rusk - Trinidad	345	1	92	1072	-	-	1631	•	1	-
∞	Rusk - Stryker Creek	345	1	23.4	1631	•	,	2390	1	-	1912
6	Rusk - Martin Lake	345	1	17.5	1631	-	•		•	1	1912
10	Rusk - Martin Lake	345	2	17.5	1631	1	-			1	1912
11	Tyler Grande - Tyler GE	138	1	1	326	•	484	484	-	,	
12	Dialville - Neches Pump	138	1	15.5	214		-	326	F	1	
13	Palestine South - Neches Pump	138	1	9.5	214	-	1	326	•	1	-
14	Trinidad - Malakoff	138	1	8.1	251	1		326	3	-	1
15	Forest Grove - Mabank Tap	138	1	3.7	251		J	326	1	,	
16	Malakoff - Mabank Tap	138	1	3.7	251	-	1	326	-	L	'
17	Elkton - Tyler Southwest	138	1	5	214	326	326	326	-	-	
18	Plano Tennyson - Preston Meadows	138	-	1	287	484	484	484	F.	ı	
19	Flint - Jacksonville Switch	138	7	10.4	249	1	·	326	1	,	-
20	Collin - Northwest Carrollton (multiple branches)	138	ъ	17	-	326	326	326	1	-	1
	Elkton Switch Capacitors	345			NEW	-	•	320 MVar	-	240 MVar	320 MVar
	Rusk Switch Capacitors	345			NEW		400 MVar	560 MVar	1	400 MVar	1000 MVar
	Martin Lake Capacıtors	345			NEW	-		240 MVar	,	1	240 MVar
	Nacogdoches Capacitors	345			NEW	1		•	1	-	240 MVar
	Murphy Capacitors	138	:		NEW	80 MVar	80 MVar	80 MVar		-	
	Collin Switch 345/138 Autotransformer	345/138	2		NEW	750 MV	/A Autotransfo	rmer	750 M	VA Autotransfo	ormer
	Collin (series reactor for Autotransformer #2)	345			NEW	2 -ohm	2 -ohm	2 -ohm	-	1	,
Notes	1 - Values provided in columns are the upgraded MVA rating fo	or the transmis	sion lin	es and equi	pment to elin	inate thermal lo	ading violation	s during continge	ency. Cells with ''	require no upg	rades.

17

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 4 of 71

06/14/13

Oncor Electric Delivery - cds

2 - This line currently exists, before construction of the Rusk Switch. In the 1500 MW and 3000 MW cases this line becomes Martin Lake - Rusk and Rusk – Stryker Creek (Ref. Nos. 8 and 9)

Southern Cross HVDC Tie Study Report

						Action	i Items		
				_	MPORT			EXPORT	-
Ref.					1500	3000		1500	3000
No	Transmission Line and Equipment	¥۷	Upgrade / Action Item	Benchmark	MΜ	ŠΣ	Benchmark	MM	MΜ
1	Crockett	69	+100 MVar SVC	Yes	Yes	Yes	Yes	Yes	Yes
2	Diboll	138	+80 MVar SVC	Yes	Yes	Yes	Yes	Yes	Yes
æ	Crockett - Berea	138	Breaker Switching Scheme	Yes	Yes	Yes	Yes	Yes	Yes

TABLE 3 - Upgrades / Action Items Needed to Alleviate Stability Issues

Oncor Electric Delivery - cds

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 5 of 71

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 6 of 71

TABLE OF CONTENTS

EXECUTIVE SUMMARY

Page

STEADY STATE ANALYSIS	
1.0 Study Purpose	1
2.0 Assumptions	1
2.1 Contingency Descriptions	3
3.0 Base Case System Conditions	3
3.1 Oncor System Power Flow Conditions	3
3.2 Major East Texas Line Loading	5
3.3 HVDC Model Parameters	8
4.0 Results for the Steady State Contingency Analysis	14
4.1 Import Cases	14
4.1.1 Import Benchmark Case	16
4.1.2 Import 1500 MW Case	18
4.1.3 Import 3000 MW Case	20
4.1.4 Summary	20
4.2 Export Cases	24
4.2.1 Import Benchmark Case	20
4.2.2 Import 1500 MW Case	20
4.2.3 Import 3000 MW Case	27
4.2.4 Rusk to HVDC transmission lines	20
4.2.5 Summary	21
	51
5.0 Conclusions for Steady State Analysis	33
5.1 Background and Objective	33
5.2 Approach	33
5.2.1 Metrics	33
5.2.2 Contingency Descriptions	33
5.3 Conclusions for the Steady State Contingency Analysis	34
STABILITY ANALYSIS	
6.0 Objective	36
7.0 Background	36
7.1 Base Case System Conditions	36
8.0 Approach for the Transient Stability Analysis	38
Oncor Electric Delivery - cds 06/14/	13

~

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 7 of 71

Page 7	7 of 7
8.1 Dynamics Case Development	. 38
8.2 Fault Scenarios	. 40
8.3 System Performance Criteria	. 41
8.3.1 Monitored Elements	. 42
9.0 Results for the Transient Stability Analysis	. 43
9.1 Base Case Analysis	. 43
9.1.1 Import Base Cases	. 43
9.1.2 Export Base Cases	. 51
9.1.3 Rusk to HVDC transmission lines	. 54
10.0 Summary for Transient Stability Analysis	. 57
10.1 Base Cases Analysis	. 57
10.2 Conclusions for the Transient Stability Analysis	. 58
Appendix A - Contingencies Examined in the Steady State Contingency Analysis	
for the Southern Cross HVDC Tie Analysis	. 60
Appendix B - Results for the Import Benchmark, 1500 MW, and 3000 MW Cases Used to Select Upgrades	. 60
Appendix C - Results for the Export Benchmark, 1500 MW, and 3000 MW Cases Used to Selec Upgrades	ct . 60
Appendix D - Contingencies Examined for the Transient Stability Analysis for the Southern Cross HVDC Tie Analysis	. 60
Appendix E - Channels Monitored for the Transient Stability Analysis	60
Appendix F – Proposed Rusk County Switch One-Line	61
Appendix G - Benchmark Case Import/Export Upgrade Locations	62
Appendix H – 1500 MW Case Import/Export Upgrade Locations	63
Appendix I – 3000 MW Case Import/Export Upgrade Locations	64

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 8 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

STEADY STATE ANALYSIS

1.0 STUDY PURPOSE

Southern Cross Transmission LLC submitted an interconnection request for an asynchronous high voltage direct current (HVDC) tie between the Electric Reliability Council Of Texas (ERCOT) transmission system and the Southeastern Electric Reliability Council (SERC) transmission system. This project consists of the construction of a proposed 345 kV Switching Station (Rusk Switch) in Rusk County Texas, an approximately 50-mile, double-circuit, 345 kV transmission line from Rusk Switch to the HVDC tie, currently proposed to be located in Louisiana.

The interconnection request was evaluated to determine the ability of the ERCOT transmission system to accommodate up to a 3000 MW import and export capacity of the Tie and identify any related reliability concerns. Oncor proposed to perform a Steady State contingency analysis and a Transient Stability analysis to examine the impacts of the HVDC tie on thermal loading, system voltages and stability of the Oncor transmission system. For this project there were six scenarios that were studied. These scenarios were:

- 1. A Benchmark Import case
- A 1500 MW Import case with an 1500 MW power transfer from SERC into the ERCOT system
- 3. A 3000 MW Import case with an 3000 MW power transfer from SERC into the ERCOT system
- 4. A Benchmark Export case
- 5. A 1500 MW Export case with an 1500 MW power transfer from ERCOT into the SERC system
- 6. A 3000 MW Export case with an 3000 MW power transfer from ERCOT into the SERC system

2.0 ASSUMPTIONS

The Steady-State Study was performed with the following assumptions:

- 1. For Import into ERCOT from SERC
 - The project was studied with a 2015 Summer base case created and updated just prior to when the study commenced.

Oncor Electric Delivery - cds	pg. 1	06/14/13
	21	

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 9 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

- ERCOT provided economic dispatch for the generation in each of the cases
 - \circ Wind generation was dispatched as typical for summer cases
 - o Generation in the Rusk County area was dispatched as
 - Martin Lake #1 805 MW
 - Martin Lake #2 810 MW
 - Martin Lake #3 810 MW
 - Tenaska Gateway 846 MW
 - Stryker Creek #1 171 MW
 - Stryker Creek #2 502 MW
 - Aspen #1 50 MW
 - Nacogdoches #1 100 MW
- The Rusk County Switch was not modeled in the Benchmark case, but was modeled in the 1500 MW and 3000 MW cases.
- 2. For Export from ERCOT to SERC
 - The project was studied with a 2015 Summer base case and scaling the load down to 41% of summer peak.
 - ERCOT provided economic dispatch for the generation in each of the cases
 - Wind generation was modeled at CREZ build-out levels and dispatched at 80% of nameplate.
 - o Generation in the Rusk County area was dispatched as
 - Martin Lake #1 805 MW
 - Martin Lake #2 810 MW
 - Martin Lake #3 0 MW
 - Tenaska Gateway 0 MW
 - Stryker Creek #1 0 MW
 - Stryker Creek #2 0 MW
 - Aspen #1 50 MW
 - Nacogdoches #1 100 MW
 - The Rusk County Switch was not modeled in the Benchmark case, but was modeled in the 1500 MW and 3000 MW cases.

The Siemens Power Technologies, Inc. PSS/E power system simulation program Version 32.1.1 was used for this study. The analysis examined the thermal and voltage violations observed in Oncor zones 130 through 148 for the 345 kV to 69 kV buses. The thermal and voltage violations observed for the contingencies simulated were examined and upgrades were selected to eliminate the violations. Each case had upgrades selected to eliminate the thermal and voltage

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 10 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

violations for that configuration. The upgraded Benchmark, 1500 MW and 3000 MW Import and Export cases were then used for the Transient Stability Analysis.

2.1 Contingency Descriptions

The contingencies examined for this analysis are listed below:

- All "Special Contingencies" in the Southerncrossbasic.con file
- All Single-Circuit Contingencies in Area 1 examining branch, transformer, and generator outages
- All single-circuits out of Rusk County Switch 345 kV station
- All double-circuit contingencies out of Rusk County Switch, Stryker Creek, and Martin Lake 345 kV stations

Appendix A contains the complete lists of contingencies examined for the Steady State Contingency Analysis.

Note: Since the Rusk County Switch 345 kV station is not modeled in the Import or Export Benchmark Cases the single and double-circuit contingencies from Rusk County Switch station could not be simulated for the benchmark cases.

3.0 BASE CASE SYSTEM CONDITIONS

3.1 Oncor System Power Flow Conditions

The original 1500 and 3000 MW Import and Export power flow cases had the HVDC system modeled as a generator. The generator absorbed or produced 1500 MW of power to achieve the Export and Import, respectively. The reactive limits of the generators were fixed at 0 MVars. To achieve the 3000 MW Export and Import cases the generator absorbed or produced 3000 MW of power, respectively. For the 3000 MW Export case the generator was supplying 500 MVars. For the 3000 MW Import case the generator was supplying 318.8 MVar. The equivalent generator was replaced with the PSSE two-terminal HVDC model using parameters provided by Southern Cross Transmission LLC . The Collin 345/138 kV #2 Autotransformer was added to all the cases since it is already a planned upgrade to the Oncor system. Additionally, the shunt capacitor banks listed in Table 3.1-1 were added to allow the power flows to solve while Importing or Exporting 3000 MW of power.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 11 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 3.1-1

List of Additional Switched Shunt Capacitor Banks Added to the Import and Export 3000 MW Cases

Dof						Import 3000 MW Export			000 MW
Nei.	Bus Number	Bus Name	kV	Original Value	New Value	Original Value	New Value		
NO.				MV	AR	MV	AR		
1	3105	ELKTON_5	345	240	320	240	320		
2	9997	RUSKSS_5	345	240	560	400	1000		
3	3100	MLAKE	345	-	240	-	240		
4	3119	Nacogdoches	345	-	-	- 1	240		

Table 3.1-2 summarizes the Oncor system (Area 1) power flow conditions for the Import base cases and the final cases after adding the upgrades and eliminating the thermal and voltage violations.

Table 3.1-3 lists the Export base case and final power flow conditions. The only upgrade incorporated into the Export Benchmark and 1500 MW cases was the addition of the Collin 345/138 kV #2 Autotransformer. As mentioned earlier, the Export 3000 MW case required upgrades to allow all the contingencies to converge with an acceptable mismatch error and to eliminate any thermal or voltage violations that occurred.

From To Load To Bus To GNE To Line From Net Interchange То Desired Case Upgrades Units Generation Area Shunt Bus Shunt Charging Loses To Tie Lines To Tie + Lines Net Int MW 29403.2 24466.7 0 0 0 0 676 4260.6 4260.6 0 Base Import MVAR 2041.4 7049.1 -8573.2 0 0 9735.4 6501 331.2 331.2 Benchmark MW 29403.2 24466.7 0 650.9 0 0 0 4285.6 4285.6 0 Final MVAR 1664.9 7049.1 -8570.5 0 0 6668.1 9534.1 230.3 320.3 мw 30203.2 24466.7 0 0 0 0 883.4 4853.1 4853.1 0 Base Import MVAR 3482.7 7049.1 -10023 0 0 6598. 12823 231.5 231.5 1500 MW MW 30203.2 24466.7 0 830.4 0 0 0 0 4906.1 4906.1 Final MVAR 2771.3 7049.1 -10183 0 0 6766.2 12422 250.1 250.1 мw 30966.1 24466.7 0 0 5197.1 0 0 1302.2 5197.1 0 Base MVAR Import 4692.1 7049.1 -13986 0 0 6611.1 17887 353.4 353.4 3000 MW MW 30966 24466.7 0 5380.8 0 0 0 0 1118.6 5380.8 Final MVAR 3375.1 7049.1 -13452 0 0 7138.5 16485 433.1 433.1

Table 3.1-2 2015 Summer Import Cases

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 12 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 3.1-3

2015 Summer Export Cases

Case	Ungrados	Unite	From	To Load	To Bus	To GNE	To Line	From	То	Net Interchange		Desired
Case	Opgraues	Units	Generation	Area	Shunt	Bus	Shunt	Charging	Loses	To Tie Lines	To Tie + Lines	Net Int
Export	Base and	MW	11981.2	9508	0	0	0	0	249.7	2223.5	2223.5	0
Benchmark	Final	MVAR	924.9	2739.3	1510.9	0	0	6506.2	3458	-277.1	-227.1	
Export	Base and	MW	11111.8	9508	0	0	0	0	305.1	1298.7	1298.7	0
1500 MW	Final	MVAR	1201.9	2739.3	743.3	0	0	6503	5090.7	-868.5	-868.5	
	Base	MW	10113.6	9508	0	0	0	0	556.2	49.5	49.5	0
Export	Dase	MVAR	1993	2739.3	-1817	0	0	6495.8	8509	-942.3	-924.3	
3000 MW	Final	MW	10113.6	9508	0	0	0	0	550	55.7	55.7	0
	Flitai	MVAR	1741.8	2739.3	-1973	0	0	6699.7	6699.7	-703.4	-703.4	

3.2 Major East Texas Line Loading

The following tables list the major East Texas line loading for Base Case conditions:

- Table 3.2-1: Major East Texas line loading in the Import Benchmark Case
- Table 3.2-2: Major East Texas line loading in the Import 1500 MW Case
- Table 3.2-3: Major East Texas line loading in the Import 3000 MW Case
- Table 3.2-4: Major East Texas line loading in the Export Benchmark Case
- Table 3.2-5: Major East Texas line loading in the Export 1500 MW Case
- Table 3.2-6: Major East Texas line loading in the Export 3000 MW Case

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 13 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 3.2-1

Major East Texas Line Loading in the Import Benchmark Case

Daf				Velhage	Langth	ONCOR Base 1		MEPPI Base		MEPPI Final	
No.	To-From-CKT	To Bus	From Bus	(kV)	(Mi)	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW
1	2478-3103-1	Royse South	Shamburger	345	81	1072	56	1072	55	1072	42
2	2437-3105-1	Forney	Elkton	345	92	1072	52	956 ³	51	1072	40
3	3116-3124-1	Mount Enterprise	Trindad 2	345	93	1072	48	1072	50	1072	40
4	3100-3103-1	Martin Lake	Shamburger	345	44	1631	47	1631	46	1631	37
5	3100-3102-1	Martin Lake	Tyler Grande	345	43	1631	44	1631	44	1631	36
6	3100-3105-1	Martin Lake	Elkton	345	48	1631	41	1631	41	1631	34
7	3109-3123-1	Stryker Creek SES	Trindad 1	345	69	1072	41	1072	44	1072	37
8	3100-3109-1	Martin Lake	Stryker Creek	345	41	1631	23	1631	23	1631	14
9	3100-3116-1	Martin Lake	Mount Enterprise	345	19	1631	8	1631	6	1631	9

1 Data Provided in the " Southern Cross HVDC Tie Steady-State Study Report"

2 Values were the same for Rating A, B, and C unless otherwise noted

3 The MVA rating of these lines in PSSE was 956 MVA for Rating A and B and 1072 MVA for Rating C.

Table 3.2-2

Major East Texas Line Loading in the Import 1500 MW Case

			1	Voltage	Length	ONCO	Rase 1	MEPP	Base	MEPPI Final	
No.	To-From-CKT	To Bus	From Bus	(kV)	(Mi)	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW
1	2478-3103-1	Royse South	Shamburger	345	81	1072	78	1072	79	1072	61
2	3124-9997-1	Trinidad 2	Rusk County Switch	345	92	1072	77	1072	77	1072	64
3	3109-3123-1	Stryker Creek	Trinidad 1	345	69	1072	75	1072	77	1072	65
4	2437-3105-1	Forney	Elkton	345	92	1072	73	956 ³	74	1072	52
5	3100-3103-1	Martin Lake	Shamburger	345	44	1631	63	1631	62	1631	50
6	3100-3102-1	Martin Lake	Tyler Grande	345	43	1631	59	1631	59	1631	48
7	3100-3105-1	Martin Lake	Elkton	345	48	1631	55	1631	55	1631	45
8	3109-9997-1	Stryker Creek	Rusk County Switch	345	24	1631	50	1631	49	1631	35
9	3116-9997-1	Mount Enterprise	Rusk County Switch (Circuit 1)	345	1	1631	21	1631	22	1631	17
10	3116-9997-2	Mount Enterprise	Rusk County Switch (Circuit 2)	345	1	1631	30	1072	32	1072	24
11	3100-9997	Martin Lake	Rusk County Switch (Circuits 1 & 2)	345	18	1631	14	1631	15	1631	22

1 Data Provided in the " Southern Cross HVDC Tie Steady-State Study Report 2 Values were the same for Rating A, B, and C unless otherwise noted

3 The MVA rating of this lines in PSSE was 956 MVA for Rating A and B and 1072 MVA for Rating C.

Table 3.2-3

Major East Texas Line Loading in the Import 3000 MW Case

Def.				Valtaga	Length	ONCO	R Base ¹	MEPP	I Base	MEPPI Final	
No.	To-From-CKT	To Bus	From Bus	(kV)	(Mi)	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW
1	2478-3103-1	Royse South	Shamburger	345	81	1072	106	1072	101	1072	62
2	3124-9997-1	Trinidad 2	Rusk County Switch	345	92	1072	104	1072	106	1631	49
3	3109-3123-1	Stryker Creek	Trinidad 1	345	6 9	1072	106	1072	105	1631	49
4	2437-3105-1	Forney	Elkton	345	92	1072	101	956 ³	93	1072	52
5	3100-3103-1	Martin Lake	Shamburger	345	44	-	-	1631	76	1631	51
6	3100-3102-1	Martin Lake	Tyler Grande	345	43	-	,	1631	73	1631	47
7	3100-3105-1	Martin Lake	Elkton	345	48	-	-	1631	67	1631	43
8	3109-9997-1	Stryker Creek	Rusk County Switch	345	24	-	-	1631	69	2390	30
9	3116-9997-1	Mount Enterprise	Rusk County Switch (Circuit 2)	345	1	-	-	1631	20	1631	17
10	3116-9997-2	Mount Enterprise	Rusk County Switch (Circuit 1)	345	1	-		1072	30	1072	24
11	3100-9997-1	Martin Lake	Rusk County Switch (Circuits 1)	345	18	-	-	1631	36	1631	57

1 Data Provided in the 'Southern Cross HVDC Tie Steady-State Study Report'by ONCOR

2 Values were the same for Rating A, B, and C unless otherwise noted

3 The MVA rating of this lines in PSSE was 956 MVA for Rating A and B and 1072 MVA for Rating C.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 14 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 3.2-4

Major East Texas Line Loading in the Export Benchmark Case

Pof				Voltage	Longth	ONCOF	t Base ¹	MEPP	l Base	MEPPI Final	
No.	To-From-CKT	To Bus	From Bus	(kV)	(Mi)	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW
1	2478-3103-1	Royse South	Shamburger	345	81	1072	22	1072	23	1072	23
2	2437-3105-1	Forney	Elkton	345	92	1072	25	956 ³	23	1072	21
3	3116-3124-1	Mount Enterprise	Trindad 2	345	93	1072	23	1072	22	1072	22
4	3100-3103-1	Martin Lake	Shamburger	345	44	1631	20	1631	20	1631	20
5	3100-3102-1	Martin Lake	Tyler Grande	345	43	1631	20	1631	22	1631	22
6	3100-3105-1	Martin Lake	Elkton	345	48	1631	21	1631	20	1631	20
7	3109-3123-1	Stryker Creek SES	Trindad 1	345	69	1072	22	1072	21	1072	21
8	3100-3109-1	Martin Lake	Stryker Creek	345	41	1631	19	1631	18	1631	18
9	3100-3116-1	Martin Lake	Mount Enterprise	345	19	1631	20	1631	18	1631	18

1 Data Provided in the " Southern Cross HVDC Tie Steady-State Study Report"

2 Values were the same for Rating A, B, and C unless otherwise noted

3 The MVA rating of this lines in PSSE was 956 MVA for Rating A and B and 1072 MVA for Rating C.

Table 3.2-5

Major East Texas Line Loading in the Export 1500 MW Case

				Voltage	Length	ONCO	R Base ¹	MEPP	l Base	MEPP	l Final
No.	To-From-CKT	To Bus	From Bus	(kV)	(Mi)	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW
1	3100-9997	Martin Lake	Rusk County Switch (Circuits 1&2)	345	18	1631	40	1631	40	1631	40
2	2437-3105-1	Forney	Elkton	345	92	1072	12	956 ³	9	1072	8
3	3109-3123-1	Stryker Creek	Trinidad 1	345	69	1072	12	1072	13	1072	13
4	3100-3105-1	Martin Lake	Elkton	345	48	1631	10	1631	10	1631	10
5	3124-9997-1	Trinidad 2	Rusk County Switch	345	92	1072	10	1072	12	1072	12
6	3109-9997-1	Stryker Creek	Rusk County Switch	345	24	1631	9	1631	8	1631	8
7	3100-3103-1	Martin Lake	Tyler Grande	345	43	1631	6	1631	5	1631	5
8	3100-3103-1	Martin Lake	Shamburger	345	44	1631	6	1631	5	1631	5
9	2478-3103-1	Royse South	Shamburger	345	81	1072	3	1072	6	1072	6
10	3116-9997-1	Mount Enterprise	Rusk County Switch (Circuit 1)	345	1	1631	1	1631	1	1631	1
11	3116-9997-2	Mount Enterprise	Rusk County Switch (Circuit 2)	345	1	1631	1	1072	1	1072	2

1 Data Provided in the " Southern Cross HVDC Tie Steady-State Study Report 2 Values were the same for Rating A, B, and C unless otherwise noted

3 The MVA rating of this lines in PSSE was 956 MVA for Rating A and B and 1072 MVA for Rating C.

Table 3.2-6

Major East Texas Line Loading in the Export 3000 MW Case

Daf				Voltage	Length	ONCO	R Base ¹	MEPP	i Base	MEPPI Final	
No.	To-From-CKT	To Bus	From Bus	(kV)	(Mi)	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW	Rating ² (MVA)	% FLOW
1	3100-9997	Martin Lake	Rusk County Switch (Circuits 1&2)	345	18	1631	65	1631	65	1912	54
2	2437-3105-1	Forney	Elkton	345	92	1072	22	956 ³	24	1072	21
3	3109-3123-1	Stryker Creek	Trinidad 1	345	69	1072	48	1072	50	1072	19
4	3100-3105-1	Martin Lake	Elkton	345	48	1631	11	1631	14	1631	9
5	3124-9997-1	Trinidad 2	Rusk County Switch	345	92	1072	45	1072	48	1072	43
6	3109-9997-1	Stryker Creek	Rusk County Switch	345	24	1631	32	1631	34	1912	54
7	3100-3103-1	Martin Lake	Tyler Grande	345	43	1631	10	1631	12	1631	9
8	3100-3103-1	Martin Lake	Shamburger	345	44	1631	10	1631	12	1631	9
9	2478-3103-1	Royse South	Shamburger	345	81	1072	22	1072	25	1072	21
10	3116-9997-1	Mount Enterprise	Rusk County Switch (Circuits 1)	345	1	1631	18	1631	5	1631	3
11	3116-9997-2	Mount Enterprise	Rusk County Switch (Circuits 2)	345	1	1631	18	1072	7	1072	5

1 Data Provided in the " Southern Cross HVDC Tie Steady-State Study Report"

2 Values were the same for Rating A, B, and C unless otherwise noted

3 The MVA rating of this lines in PSSE was 956 MVA for Rating A and B and 1072 MVA for Rating C.

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 15 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

3.3 HVDC Model Parameters

The following figures show one-line diagrams of the Rusk County Switching Station 345 kV and the HVDC tie from the final cases with all the upgrades selected:

- Figure 3.3-1: One-line diagram of the Rusk County Switching Station 345 kV and the HVDC tie for the 1500 MW Import final case
- Figure 3.3-2: One-line diagram of the Rusk County Switching Station 345 kV and the HVDC tie for the 3000 MW Import final case
- Figure 3.3-3: One-line diagram of the Rusk County Switching Station 345 kV and the HVDC tie for the 1500 MW Export final case
- Figure 3.3-4: One-line diagram of the Rusk County Switching Station 345 kV and the HVDC tie for the 3000 MW Export final case

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 16 of 71

06/14/13

pg. 9

Oncor Electric Delivery - cds

ONCOR

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 17 of 71

06/14/13

ONCOR

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Oncor Electric Delivery - cds

pg. 10

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 18 of 71

ONCOR

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

31

pg. 11

06/14/13

Oncor Electric Delivery - cds

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 19 of 71

06/14/13

pg. 12

Oncor Electric Delivery - cds

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

32

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 20 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 3.3-1 lists the model parameters for the HVDC model in PSSE for the Import cases. Table 3.3-2 lists the model parameters for the HVDC model in PSSE for the Export cases.

Мо	del Parameters for the HVI	DC Model	in PSSE fo	or the Imp	ort Cases
Ref.		Import 150	0 MW Case	Import 300	0 MW Case
No.	PSSE 2-Term DC Parameters	Rectifier	Inverter	Rectifier	Inverter
1	Max firing angle (degree)	17	20	17	20
2	Min firing angle (degree)	13	17	13	17
3	Bridges in Series	2	2	2	2
4	Primary base (kV)	500	345	500	345
5	Commutating Resistance (Ohms)	0	0	0	0
6	Commutating Reactance (Ohms)	6.837	6.837	6.837	6.837
7	Transformer Ratio (p.u.)	0.425	0.55	0.425	0.553
8	Tap Setting (p.u.)	1.0625	1	0.9875	0.9625
9	Max Tap Setting (p.u.)	1.1	1.1	1.1	1.1
10	Min Tap Setting (p.u.)	0.9	0.9	0.9	0. 9
11	Tap Step (p.u.)	0.0125	0.0125	0.0125	0.0125
12	Setval (amps or p.u.)	1533.5	1533.5	3141	3141
13	Filter (Mvar)	750	650	1600	1600

Та	hle	3.3-1	
	NIC	J.J. L	

Table 3.3-2

Model Parameters for the HVDC Model in PSSE for the Export Cases

Ref.		Export 150	0 MW Case	Export 300	0 MW Case
No.	PSSE 2-Term DC Parameters	Rectifier	Inverter	Rectifier	Inverter
1	Max firing angle (degree)	17	20	17	20
2	Min firing angle (degree)	13	17	13	17
3	Bridges in Series	2	2	2	2
4	Primary base (kV)	345	500	345	500
5	Commutating Resistance (Ohms)	0	0	0	0
6	Commutating Reactance (Ohms)	6.837	6.837	6.837	6.837
7	Transformer Ratio (p.u.)	0.594	0.408	0.577	0.4
8	Tap Setting (p.u.)	1.0625	1.0375	0.9625	1
9	Max Tap Setting (p.u.)	1.1	1.1	1.1	1.1
10	Min Tap Setting (p.u.)	0.9	0.9	0.9	0.9
11	Tap Step (p.u.)	0.0125	0.0125	0.0125	0.0125
12	Setval (amps or p.u.)	1533	1533	3142	3142
13	Filter (Mvar)	750	750	1800	1600

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 21 of 71

ONCOR

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

4.0 RESULTS FOR THE STEADY STATE CONTINGENCY ANALYSIS

This section reports on the upgrades examined to eliminate the thermal and voltage violations in Zones 130 through 148 for 345 kV to 69 kV buses for the Benchmark, 1500 MW, and 3000 MW Import and Export case. Table 4.0-1 is a summary of new/upgraded transmission lines and transformers that were added to eliminate thermal violations.

	New/Upgraded Equipment Examined to Eliminate Thermal Violations												
			I				New MVA Rati	ngs for Transm	isison Lines and	Equipment	2		
Ref.	where the state of	147	ar	Base Case ¹	Length		Import		Export				
No.	Transmission Lines and Equipment	KV	CKI	(MVA)	(miles)	Benchmark	1500 MW	3000 MW	Benchmark	1500 MW	3000 MW		
1						Line (MVA)	Line (MVA)	Line (MVA)	Line (MVA)	Line (MVA)	Line (MVA)		
1	Lufkin Switch to Nacogdoches SE (3117-3119)	345	1	N/A	23	1631	1631	1631	•	-	1631		
2	Martin Lake to Royse North (3100-2461)	345	1	N/A	124	1631	1631	1631	-	-	1631		
3	Martin Lake to Stryker (3100-3109)	345	1	1631 ³	41	-	-	1631	-	•	1631		
4	Martin Lake to Nararro (3100-68091)	345	1	N/A	130	-	-	1631	-	-	-		
5	Martin Lake to Nararro (3100-68091)	345	2	N/A	130	-	-	1631	-	-	-		
6	Trinidad to Styker (3123-3109)	345	1	1072	68.6	-	-	1631	-	-	-		
7	Rusk to Trinidad (9997-3124)	345	1	1072	92	-	-	1631	-	-			
8	Rusk to Stryker (9997-3109)	345	1	1631	23.4	-	-	2390	-	-	1912		
9	Rusk to Martin Lake (9997-3100)	345	1	1631	17.5	-	-	-	•	-	1912		
10	Rusk to Martin Lake (9997-3100)	345	2	1631	17.5	-	-	-	-	-	1912		
11	Tyler Grande to Tyler G.E. (3143-3213)	345	1	326	1	-	484	484	·	-	-		
12	Dialville to Neches Pump (3160-3296)	138	1	214	15.5	-	-	326	-	-	•		
13	Palestine South to Neches Pump (3271-3296)	138	1	214	9.5	-	-	326	-	-	-		
14	Trinidad to Malakoff (3127-3276)	138	1	251	8.1	-	-	326	-	-	•		
15	Forest Grove to Mabank Tap (3131-29266)	138	1	251	3.7	-	-	326		-			
16	Malakoff to Mabank Tap (3276-29266)	138	1	251	3.7	-		326	-	•	-		
17	Elkton to Tyler Southwest (3106-3139)	138	1	214	5	326	326	326	-	-	-		
18	Tennyson Plano to Preston Meadows (2523-10010)	138	1	287	1	484	484	484	-	-	-		
19	Flint to Jacksonville (3251-3253)	138	1	N/A	10.34	-	-	326	-		-		
20	Collin to Northwest Carrolton (multiple branches)	138	2	N/A	17	326	326	326	-	-	-		
21	Collin S.E.S. Auto Transformer	345/138	2	N/A	N/A		Rating A	= 700 MVA Rat	ting B and C = 75	50 MVA			

Table 4.0-1 New/Upgraded Equipment Examined to Eliminate Thermal Violations

1 The Base Case (MVA) column shows either the current MVA rating for the transmission lines/transformer as modeled in the base cases or a N/A indicating that the branch does not exist in the base case and was selected as a new branch in certain cases.

2 The values provided in these column are the suggested MVA rating for the transmission lines/transformer to eliminate thermal loading violations during contingencies. If the cell contains a "." then that line was not required to be upgraded/built for that case.

3 This line already exists in the Benchmark case before Rusk is modeled once Rusk is modeled in the 1500 MW and 3000 MW cases this line becomes Martin Lake to Rusk and Rusk to Stryker Creek. The Martin Lake to Stryker Creek. The Martin Lake to Stryker Creek 345 kV was modeled in the Import 3000 MW case.

4.1 IMPORT CASES

New transmission lines were examined to determine their impacts on thermal overloading violations identified in the Import 1500 MW case. The base case 1500 MW Import thermal overloading results without any transmission line upgrades or additions modeled were compared to the 1500 MW Import case with one new transmission modeled at a time to determine the impact each upgrade had on the thermal overloading violations. Table 4.1-1 lists the results of the new transmission lines for the Import 1500 MW case on thermal overloads during contingency analysis for Base Case conditions (i.e., pre-upgrades).

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-1

Summary of the Impact of New Transmission Lines for the Import 1500 MW Case on Thermal Overloads

	ĺ	•				Γ	F	-												
									Í	IBdn on)	w base case			-	mport 1500 MV	Base Case + N	ew Transmissior	i Line Flow (%) ¹		
Ref. No.	T	To Bus	ş	From	From Bus	ş	ð	Contingency	Flow (MVA)	Flow (Amps)	Rate A/B	How (%)	Mount Enterprise to Nacogdoches 345 KV CKT 2	Lufkin Switch to Jewett Switch 345 kV CKT 1	Lufkin Switch to Nacogdoches 5E 345 kV CKT 1	Martin Lake to Royse North 345 kV CKT 1	Martin Lake to Stryker Creek 345 kV CKT 1	Rusk County to Navarro 345 &V CKT 1	Lufkin Switch to Big Brown 345 kV CKT 1	Lufkin Switch to Nacogdoches SE 345 kV CK1 and Martin Lake to Royse North 345 kV CKT 1
-1	2370	COLLINSS1_8	138	629	ROMANJUAREZ	138	-	PLTNAUSTRNCH	-348.21	346.59	326	106.32	105.80	105.72	-	•		•		
2	3128	TRINIDAD_9	69	3239	ATHENS_9	8	-	FG-MABK-ATH	-35.00	35.94	32	112.30	112.12	102.61	111.85	,	110.82	•	105.19	
m	2437	FRNY1_5	34S	3105	ELKTON_5	345		SHAM-ROY-TY1	-876.77	999.04	956	104.50	100.36	•		•				
4	3104	SHAMBRGR_8	138	3141	TYLERNW_8	138	-	SHAM-ROY-TY1	222.56	241.53	214	112.86	108.88	100.72	106.65		102.67		101 72	
5	3123	TRINDAD1_5	345	3109	STRYKER_5	345		SHAM-ROY-TY1	-1038.42	1111.71	1072	103 70							,	
9	1666	RUSKSS_5	345	3124	TRINDAD2_5	345	-	SHAM-ROY-TY1	1029.22	1110.02	1072	103.55	-					•		
~	3160	DIALVILL_8	138	3296	NECHESRI_8	138	-	STRY-SMR-TRO	229.49	230.02	214	107.49	107.33	•	107.88		108.49	·		
∞	3271	PALSTNS_8	138	3296	NECHESRI_8	138	-	STRY-SMR-TRO	-221.96	226.77	214	105.97	105.81		106.36	•	106.97			
5	3131	FOREGROV_8	138	29266	MABANKTAP	138		TDAD-TRICORN	256.95	259.12	251	103.23	103.14	100.14	103.06	•	103.04		102.63	-
9	3276	MALAKOFF_8	138	29266	MABANKTAP	138	-	TDAD-TRICORN	-256.90	259.06	251	103.21	103 11	100.12	103.04	-	103.02		102.61	•
1	3118	LUFKNSS_8	138	3340	LUFKIN_8	138		SOUTHCR3	-275.46	308.48	251	122.90	120.96	146.82		119.94	121.52	121-66	142.65	
12	3119	NACOGDSE_5	345	3WNDTR	WND1			SOUTHCR3	865.65	865.65	750	115.42	116.85	112.90		113.16	115.04	112.12	112.81	
13	3120	NACOGDSE_8	138	3311	NACOSFA_8	138	-	SOUTHCR3	-249 13	266.17	214	124.38	122.12	103 10		120.43	124.27	116.44	105.36	
14	3120	NACOGDSE_8	138	3315	NACOGSOU_8	138		SOUTHCR3	-294.81	315.72	249	126.80	124.76	128.94		122.43	125.86	120.84	127.65	•
12	3120	NACOGDSE_8	138	3319	HERTYNOR_8	138		SOUTHCR3	-272.59	304.12	214	142.11	139.99	145.21		137.02	141.00	135.26	143.60	
19	3120	NACOGDSE_8	138	3WNDTR	NUD 2		-	SOUTHCR3	834.75	834.75	750	111.30	112.52	110.87		110.88	111 20	110.97	110.87	
17	3160	DIALVILL_8	138	3296	NECHESRI_8	138	-	SOUTHCR3	198.94	216.85	214	101.33	01 101	•	-	•	101.89			,
18	3301	GRESHRD_POI	138	3110	STRYKER_8	138	-	SOUTHCR3	246.45	262.61	186	141.19	09'6ET	115.73		135.21	140.84	129.90	118,38	
13	3301	GRESHRD_POI	138	3304	GRESHRDSS	138	-	SOUTHCR3	102.07	108.77	100	108.77	107.09	102.35	100.91	103.46	107.98	100.27	102.44	
20	3310	NACOGNOR_8	138	3311	NACOSFA_8	138	-	SOUTHCR3	-220.08	235.13	214	109.87	107.90	•		106.70	109.88	103.26		
12	3314	NACOGSW_8	138	3315	NACOGSOU_8	138	1	SOUTHCR3	266.58	288.33	249	115.79	114.04	118.45	•	111.89	114.93	110.62	117.20	•
22	3314	NACOGSW_8	138	3316	NACOGST_8	138	1	SOUTHCR3	-253.55	274.73	249	110.33	108.69	113.37		106.75	109.51	105.71	112.14	
5	3316	NACOGST_8	138	3340	LUFKIN_8	138	-	SOUTHCR3	253.53	274.71	186	147.69	145.49	151 76	•	142.91	146.60	141.51	150.12	
24	2478	ROYSE_S5	345	3103	SHAMBRGR_5	345	-	FNYELK_TRISE	-1043.58	1193.61	1072	111.34	110.36	•	109.57		104.62			
22	3106	ELKTON_8	138	3196	TYLERSWE_8	138	-	FNYELK_TRISE	174.15	192.45	186	103.47	102.93	•	102.48	•				
56	2478	ROYSE_SS	345	3103	SHAMBRGR_5	345	-	FNY-ELKSEAG	-1009.82	1142.55	1072	106.58	105.67		104.92		100.78			
27	3106	ELKTON_8	138	3196	TYLERSWE_8	138	1	FNY-ELKSEAG	170.91	187.26	186	100.68	100.21				,		,	•
28	2478	ROYSE_SS	345	3103	SHAMBRGR_5	345	1	FNY-ELKTRI	-1035.87	1184.49	1072	110.49	109.49		108.70		105.28			
52	3106	ELKTON_8	138	3196	TYLERSWE_8	138 1	1	FNY-ELKTRI	173.76	192.10	186	103.28	102.74		102.29		100.17			,
ŝ	3133	RICHLND2_5	345	3380	BIGBRN_5	345	-	WTML-TNDTRI	1159.45	1119.06	1052	106.37	106.37		107 33		108.32		•	
1 The	% flow re	esults shown for the	Import 1	1500 MW	Base Case + New Tran	mission.	Line Co.	lumn are not all of ti	he thermal ove	rloads violatik	ons observed t	for that case.	These results on	ly show how the r	ew transmission li	nes were able to	eliminate the ther	nal overloading vi	olations from the	
- " (Import 15 indicates	500 MW Base Case a the % flow is below	nd do no	ot show ar	ry new violtions caused	by the r	lew line:	vi												

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 22 of 71

Oncor Electric Delivery - cds

pg. 15

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 23 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

The Lufkin Switch to Nacogdoches 345 kV #1, 23 mile long transmission line reduces the thermal overloading for the SOUTHCR3 double circuit 345 kV contingency from Rusk to Mt. Enterprise. The Martin Lake to Royse North 345 kV #1, 124 mile long transmission line reduces the thermal overloading for the thermal violations other than SOUTHCR3. These two transmission lines were chosen to be modeled together to eliminate thermal overloads observed in the Import 1500 MW base case.

4.1.1 Import Benchmark Case

Table 4.1-2 lists the number of thermal and voltage violations for the Import Benchmark case before making any upgrades to Oncor's system.

Table	4.1-2*
-------	--------

Summary of Thermal and Voltage Violations for

Import	Benchmark	Case	Before	Upgrades
--------	------------------	------	---------------	----------

Ref. No.	Contingency Set	Number of Thermal Violations	Number of Voltage Violations
1	Special Contingencies	13	24
2	Single Circuit Area 1	11	176
***			1 1.1.1.1

*These violations occur before the SPS or manual switching operations have been implemented.

Table 4.1-3 lists the transmission lines and transformer upgrades selected for the Import Benchmark case. Table 4.1-4 lists the shunt capacitor bank upgrades examined for the Import Benchmark case at MURPHY1_8.

Table 4.1-3

Transmission Lines and Transformer Upgrades Selected for Import Benchmark Case

Ref. No.	То	To Bus	From	From Bus	kV	ск	MVA	R (p.u.)	X (p.u.)	B (p.u.)	Length (miles)	New or Upgrade
1	3117	Lufkin Switch	3119	Nacogdoches SE	345	1	1631	0.00074	0.00970	0.23455	23	New
2	3100	Martin Lake	2461	Royse North	345	1	1631	0.00401	0.05228	1.26451	124	New
3	3106	ELKTON_8	3139	TYLERWES_8	138	1	326	0.00181	0.01809	0.00598	5	Upgrade
4	2523	PL_TENNY_8	10010	PRSTMDWS_8	138	1	484	0.00013	0.00153	0.01976	2.64	Upgrade
5	Collin	to Northwest Ca	rrolton (r	nultiple branches)	138	2	326	0.00036 ¹	0.00362 ¹	0.00120 ¹	17	New
6	2370	COLLINSS1 8	2372	COLLINSS1 5	138/345	2	Rat	ing A =700	MVA Ratin	g B. C = 750) MVA	New

1 The units for these values are in (p.u./mile) not in (p.u.) as the rest of the impedance values in this table.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 ____Page 24 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-4 Shunt Capacitor Banks Examined for the Import Benchmark Case at MURPHY1_8 (bus 2696) Ref. Contingnery Binit Bus Voltage

No.	Contingnecy	(MVAR)	Voltage (p.u.)
1	Base Case	-	1
2		0	0.93
3		10	0.94
4		20	0.95
5		30	0.96
6	BD-MURPMC	40	0.98
7		50	0.99
8		60	1
9		70	1.01
10		80	1.03
11		90	1 04

The BD-MURPMC contingency consists of the loss of the Ben Davis to Murphy 138 kV and Ben Davis to Parker-Maxwell Creek 138 kV transmission lines. This was the only contingency observed where voltage violations observed could not be solved by switching existing shunt capacitor banks or by changing transformer tap settings. The voltage violations for this contingency are eliminated if a shunt capacitor is added at MURPHY1_8 (bus #2696) and is sized between 10 to 90 MVAR. An 80 MVAR bank was chosen since it provides voltage support for the surrounding area.

The remaining voltage violations observed for the Import Benchmark case were eliminated using SPS and manual switching operations such as switching bus tie breakers, turning on/off shunt capacitor banks, or changing transformer tap ratios.

The Collin #2 345/138 kV autotransformer was observed overloading when the Collin #1 345/138 kV autotransformer was switched out and the transformer taps settings on Collin #2 were not at 1 p.u. on both sides. Series reactors were examined at the high side terminals of the Collin #2 345/138 kV autotransformer to eliminate the loading violations over 100% that were occurring. Table 4.1-5 lists the results of the series reactor's impacts on the Collin #2 345/138 kV autotransformer loading during the Import Benchmark case with the Collin #1 autotransformer out. It was determined that a 2-ohm series reactor would eliminate the thermal loading if the transformer taps were coordinated correctly.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 25 of 71

ONCOR

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-5Series Reactor Impacts on the Collin 345/138 kV #2 Transformer LoadingDuring the Import Benchmark Case with the Collin #1 Transformer Out

Ref.	Series Reactor	Transformer Ta	p Settings (p.u.)	Loading
No.	(ohms)	345 kV	138 kV	(%)
1		1	1	88
2		0.924 ¹	1 ¹	99
3	2	0.9	1	105
4		0.879	1	109
5		1	1	86
6	3	0.924 ¹	1 ¹	96
7		0.9	1	101

1 These transformer tap settings were obtained by allowing the transformer taps to step. The other tap settings were examined to see what other loading values could occur.

The 2-ohm series reactor, the transmission lines and transformer listed in Table 4.1-3, and the shunt capacitor bank upgrades were chosen to be modeled eliminating the thermal and voltage violations observed for the Import Benchmark case.

Refer to Table B-1 and Table B-4 in Appendix B for the list of loading violations and voltage violations, before implementing SPS or manual switching operations, for the Import Benchmark case for the "Special Contingencies" and the Single Circuit Area 1 Contingencies.

4.1.2 Import 1500 MW Case

Table 4.1-6 lists the number of thermal and voltage violations for the Import 1500 MW case before making any upgrades to Oncor's system.

Table 4.1-6*
Summary of Thermal and Voltage Violations for
Import 1500 MW Case Before Any Upgrades

Ref. No.	Contingency Set	Number of Thermal Violations	Number of Voltage Violations
1	Special Contingencies	30	77
2	Single Circuit Area 1	41	224
3	Single and Double Circuits out of Rusk	16	39

*These violations occur before the SPS or manual switching operations have been implemented.

Table 4.1-7 lists the transmission lines and transformer upgrades selected for the Import 1500 MW case. Table 4.1-8 lists the shunt capacitor bank upgrades examined for the Import 1500 MW case at MURPHY1_8.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 26 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-7 Transmission Lines and Transformer Upgrades Selected for the Import 1500 MW Case

Ref. No.	То	To Bus	From	From Bus	kV	ск	MVA	R (p.u.)	X (p.u.)	B (p.u.)	Length (miles)	New or Upgrade
1	3117	Lufkin Switch	3119	Nacogdoches SE	345	1	1631	0.00074	0.00970	0.23455	23	New
2	3100	Martin Lake	2461	Royse North	345	1	1631	0.00401	0.05228	1.26451	124	New
3	3106	ELKTON_8	3139	TYLERWES_8	138	1	326	0.00181	0.01809	0.00598	5	Upgrade
4	2523	PL_TENNY_8	10010	PRSTMDWS_8	138	1	484	0.00013	0.00153	0.01976	2.64	Upgrade
5	3143	TYLERGND_8	3213	TYLERGE_8	138	1	484	0.00005	0.00058	0.00748	1	Upgrade
6	Collin	s to Northwest Ca	rrolton (multiple branches)	138	2	326	0.00036 ¹	0.00362 ¹	0.00120 ¹	17	New
7	2370	COLLINSS1_8	2372	COLLINSS1_5	138/345	2	R	ating A =700	MVA Rating	B, C = 750 N	/IVA	New

1 The units for these values are in (p.u./mile) not in (p.u.) as the rest of the impedance values in this table.

Table 4.1-8

Shunt Capacitor Banks Examined for the Import 1500 <u>MW Case at MURPHY1_8</u> (bus 2696)

Ref. No.	Contingnecy	Binit (MVAR)	Voltage (p.u.)
1	Base Case	-	1
2		0	0.93
з		10	0.94
4		20	0 95
5		30	0 96
6		40	0.98
7	BD-WORFINE	50	0.99
8		60	1
9		70	1.02
10		80	1.03
11		90	1.04

BD-MURPMC was the only contingency observed where voltage violations observed could not be solved by switching existing shunt capacitor banks or by changing transformer tap settings. The voltage violations for this contingency are eliminated if a shunt capacitor is added at MURPHY1_8 (bus #2696) and is sized between 10 to 90 MVAR. An 80 MVAR bank was chosen since it provides voltage support for the surrounding area.

The remaining voltage violations observed for the Import 1500 MW case were eliminated using SPS and manual switching operations such as switching bus tie breakers, turning on/off shunt capacitor banks, or changing transformer tap ratios.

The Collin #2 345/138 kV autotransformer was observed overloading when the Collin #1 345/138 kV autotransformer was switched out and the transformer taps settings on Collin #2 were not at 1 p.u. on both sides. Series reactors were examined at the high side terminals of the Collin #2 345/138 kV autotransformer to eliminate the loading violations over 100% that were occurring. Table 4.1-9 lists the results of the series reactor's impacts on the Collin #2 345/138 kV autotransformer loading during the Import 1500 MW case with the Collin #1 autotransformer out. It was determined that a 2-ohm series reactor would eliminate the thermal loading if the transformer taps were coordinated correctly.

Oncor Electric Delivery - cds

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 27 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-9Series Reactor Impacts on the Collin 345/138 kV #2 Transformer LoadingDuring the Import 1500 MW Case with the Collin #1 Transformer Out

Ref.	Series Reactor	Transformer Ta	p Settings (p.u.)	Loading
No.	(ohms)	345 kV	138 kV	(%)
1		1	1	88
2	2	0.924 ¹	1 ¹	99
3	2	0.9	1	105
4		0.879	1	109
5		1	1	86
6	3	0.924 ¹	11	96
7		0.9	1	101

1 These transformer tap settings were obtained by allowing the transformer taps to step. The other tap settings were examined to see what other loading values could occur.

The two ohm series reactor, the transmission lines and transformer listed in Table 4.1-7, and the shunt capacitor bank upgrades were chosen to be modeled eliminating the thermal and voltage violations observed for the Import 1500 MW case.

Refer to Table B-5 and Table B-10 in Appendix B for the list of loading violations and voltage violations, before implementing SPS or manual switching operations, for the Import 1500 MW case for the "Special Contingencies," the Single Circuit Area 1 Contingencies, and the single and double circuit contingencies out of Rusk County 345 kV Switching Station.

4.1.3 Import 3000 MW Case

When the Import 3000 MW base case was examined for the steady state contingency analysis thermal and voltage violations were observed, however several of the single and double circuit contingency cases did not converge. Table 4.1-10 lists the number of thermal violations, voltage violations, and convergence errors for the Import 3000 MW case before making any upgrades to Oncor's system.

Table 4.1-10*

Summary of Thermal and Voltage Violations and Convergence Errors for the Import 3000 MW Case Before Any Upgrades

Ref. No.	Contingency Set	Number of Thermal Violations	Number of Voltage Violations	Number of Convergence Errors
1	Special Contingencies	16	42	17
2	Single Circuit Area 1	68	22	35
3	Single and Double Circuits out of Rusk	4	11	7

*These violations occur before the SPS or manual switching operations have been implemented.

Table 4.1-11 lists the single and double circuit contingencies from the Import 3000 MW cases that did not converge. The upgrades for the 3000 MW case were selected by first modeling the

Oncor Electric Delivery - cds

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 28 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

upgrades selected in the Import 1500 MW case. Additional upgrades were then made based on the contingencies that still had violations or did not converge. Table 4.1-12 lists the final lines and transformers added or upgraded to eliminate all violations. Table 4.1-13 lists the shunt capacitor bank upgrades examined for the Import 3000 MW case at MURPHY1_8.

Table 4.1-11

Summary of Single Circuit Contingencies from the Import 3000 MW Case With a Mismatch Greater Than One Before Making Any Upgrades

—	1			
Ref. No.	Contingency Name	Contingency Description	Converged	Convergence State ¹
		OPEN BRANCH FROM BUS 2514 [ALLENSW2_5 345.00] TO BUS 1696 [MOSES1_T5 345.00] CKT 1		
1	ALN*MON-RYS	OPEN BRANCH FROM BUS 2513 [ALLENSW1_5 345.00] TO BUS 2461 [ROYSE_N5 345.00] CKT 1	FALSE	Blown up
		OPEN BRANCH FROM BUS 1695 [MOSES_5 345 00] TO BUS 1696 [MOSES1 T5 345.00] CKT BC	1	
2	MIAK EDV TO	OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 3105 [ELKTON 5 345.00] CKT 1		
1 2		OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 3102 [TYLERGND 5 345.00] CKT 1	FALSE	Blown up
	MIAKE CHANA	OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345 00] TO BUS 3103 [SHAMBRGR 5 345.00] CKT 1		-1
2	IVILARE-SHAIVI	OPEN BRANCH FROM BUS 3103 [SHAMBRGR_5 345 00] TO BUS 3104 [SHAMBRGR 8 138.00] CKT 1	FALSE	Blown up
		OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 3105 [ELKTON_5 345 00] CKT 1		
4	ML-EL_IG-IKI	OPEN BRANCH FROM BUS 3102 [TYLERGND_5 345 00] TO BUS 2432 [TRICRN1_5 345.00] CKT 1	FALSE	Blown up
-		OPEN BRANCH FROM BUS 3123 [TRINDAD1_5 345.00] TO BUS 3133 [RICHLND2 5 345.00] CKT 1		
5	RICHLIND-TDAD	OPEN BRANCH FROM BUS 3124 [TRINDAD2_5 345.00] TO BUS 3134 [RICHLND1_5 345 00] CKT 1	FALSE	Blown up
6	CHANA DOV TVA	OPEN BRANCH FROM BUS 3103 [SHAMBRGR 5 345.00] TO BUS 2478 [ROYSE 55 345 00] CKT 1		Blown up
•	SHAW-KUT-TTT	OPEN BRANCH FROM BUS 3104 [SHAMBRGR_8 138.00] TO BUS 3201 [LINDALE 8 138.00] CKT 1	FALSE	
~	CTOV CHAP TRO	OPEN BRANCH FROM BUS 3110 [STRYKER_8 138.00] TO BUS 3112 [SMRFLDMT 8 138.00] CKT 1		Blown up
1	STRT-SIVIR-TRU	OPEN BRANCH FROM BUS 3110 [STRYKER_8 138.00] TO BUS 3147 [TROUPSS 8 138.00] CKT 1	FALSE	
ि	TDAD TRICOPAL	OPEN BRANCH FROM BUS 3123 [TRINDAD1_5 345.00] TO BUS 2427 [WATMLL W5 345.00] CKT 1		
l °	TDAD-TRICORN	OPEN BRANCH FROM BUS 3124 [TRINDAD2_5 345.00] TO BUS 2432 [TRICRN1 5 345.00] CKT 1	FALSE	Biown up
_		OPEN BRANCH FROM BUS 3102 [TYLERGND_5 345.00] TO BUS 2432 [TRICRN1 5 345.00] CKT 1		Blown up
3	ILRG-ELK-FRN	OPEN BRANCH FROM BUS 3105 [ELKTON_5 345.00] TO BUS 2437 [FRNY1_5 345.00] CKT 1	FALSE	
10	SOUTHORS	OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 9997 [RUSKSS_5 345.00] CKT 1		Blown up
10	300THCK2	OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 9997 [RUSKSS 5 345 00] CKT 2	FALSE	
11	SOUTHERS	OPEN BRANCH FROM BUS 3116 [MTENTRPR_5 345.00] TO BUS 9997 [RUSKSS_5 345.00] CKT 1		- 1
11	SOUTHERS	OPEN BRANCH FROM BUS 3116 [MTENTRPR_5 345 00] TO BUS 9997 [RUSKSS_5 345.00] CKT 2	FALSE	Blown up
12	SOUTHORS	OPEN BRANCH FROM BUS 9997 [RUSKSS_5 345 00] TO BUS 3109 [STRYKER_5 345.00] CKT 1		
12	300110.00	OPEN BRANCH FROM BUS 9997 [RUSKSS_5 345.00] TO BUS 3124 [TRINDAD2_5 345.00] CKT 1	FALSE	Blown up
12		OPEN BRANCH FROM BUS 2437 [FRNY1_5 345.00] TO BUS 3105 [ELKTON_5 345.00] CKT 1	541.05	
15	FINTELK_TRISE	OPEN BRANCH FROM BUS 2432 [TRICRN1_5 345 00] TO BUS 2433 [SGVLSW1_5 345 00] CKT 1	FALSE	Blown up
14		OPEN BRANCH FROM BUS 2437 [FRNY1_5 345.00] TO BUS 2433 [SGVLSW1_5 345.00] CKT 1	541.05	
14	FNT-ELKSEAG	OPEN BRANCH FROM BUS 2437 [FRNY1_5 345.00] TO BUS 3105 [ELKTON_5 345.00] CKT 1	FALSE	Blown up
		OPEN BRANCH FROM BUS 2437 [FRNY1_5 345.00] TO BUS 3105 [ELKTON_5 345 00] CKT 1		
15	FNY-ELKTRI	OPEN BRANCH FROM BUS 2437 [FRNY1_5 345 00] TO BUS 2433 [SGVLSW1_5 345 00] CKT 1	FALSE	Blown up
		OPEN BRANCH FROM BUS 2433 [SGVLSW1_5 345.00] TO BUS 2432 [TRICRN1_5 345.00] CKT 1		
16		OPEN BRANCH FROM BUS 3380 [BIGBRN_5 345.00] TO BUS 3134 [RICHLND1 5 345.00] CKT 1		
10	55-NICHDAND	OPEN BRANCH FROM BUS 3380 [BIGBRN_5 345.00] TO BUS 3133 [RICHLND2_5 345.00] CKT 1	FALSE	Blown up
17		OPEN BRANCH FROM BUS 3380 [BIGBRN_5 345.00] TO BUS 68091 [NAVARRO 345.00] CKT 1		
	DIG_BRN-NAV	OPEN BRANCH FROM BUS 3380 [BIGBRN_5 345.00] TO BUS 68091 [NAVARRO 345.00] CKT 2	FALSE	Blown up

1 PSSE was set to solve using 100 iterations.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 29 of 71

ONCOR

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-11 (Continued)

Summary of Single Circuit Contingencies from the Import 3000 MW Case With a Mismatch Greater Than One Before Making Any Upgrades

		• • • • •		
NO.	Name	Contingency Description	Converged	Convergence State ¹
18 OV	VRLOD 1	OPEN LINE FROM BUS 3358 [CENTVILL_8 138.00] TO BUS 3394 [JEWETTA_T_8 138.00] CKT 1	FALSE	Blown up
19 OV	VRLOD 2	OPEN LINE FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 3103 [SHAMBRGR_5 345.00] CKT 1	FALSE	Blown up
20 OV	VRLOD 3	OPEN LINE FROM BUS 3355 [GRPLMGTA_8 138.00] TO BUS 3357 [PLSNTSPG_8 138.00] CKT 1	FALSE	Iteration limit exceeded
21 OV	VRLOD 4	OPEN LINE FROM BUS 3357 [PLSNTSPG_8 138.00] TO BUS 3358 [CENTVILL_8 138.00] CKT 1	FALSE	Iteration limit exceeded
22 OV	VRLOD 5	OPEN LINE FROM BUS 3354 [CROCKETT_8 138.00] TO BUS 3355 [GRPLMGTA_8 138.00] CKT 1	FALSE	Iteration limit exceeded
23 OV	VRLOD 6	OPEN LINE FROM BUS 2478 [ROYSE_S5 345.00] TO BUS 3103 [SHAMBRGR_5 345.00] CKT 1	FALSE	Blown up
24 OV	VRLOD 7	OPEN LINE FROM BUS 3109 [STRYKER_5 345.00] TO BUS 3123 [TRINDAD1_5 345.00] CKT 1	FALSE	Blown up
25 OV	VRLOD 8	OPEN LINE FROM BUS 2437 [FRNY1_5 345.00] TO BUS 3105 [ELKTON_5 345.00] CKT 1	FALSE	Blown up
26 OV	VRLOD 9	OPEN LINE FROM BUS 2432 [TRICRN1_5 345.00] TO BUS 3102 [TYLERGND_5 345.00] CKT 1	FALSE	Blown up
27 OV	VRLOD 10	OPEN LINE FROM BUS 3100 [MARTINLK_5 345 00] TO BUS 3102 [TYLERGND_5 345.00] CKT 1	FALSE	Blown up
28 OV	VRLOD 11	OPEN LINE FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 3105 [ELKTON_5 345.00] CKT 1	FALSE	Blown up
29 OV	VRLOD 14	OPEN LINE FROM BUS 2432 [TRICRN1_5 345 00] TO BUS 3124 [TRINDAD2_5 345.00] CKT 1	FALSE	Blown up
30 OV	VRLOD 16	OPEN LINE FROM BUS 2427 [WATMLL_W5 345.00] TO BUS 3123 [TRINDAD1_5 345.00] CKT 1	FALSE	Blown up
_31 OV	VRLOD 19	OPEN LINE FROM BUS 3110 [STRYKER_8 138.00] TO BUS 3111 [STRYKERTA_8 138.00] CKT 1	FALSE	Blown up
32 OV	VRLOD 21	OPEN LINE FROM BUS 3111 [STRYKERTA_8 138.00] TO BUS 3160 [DIALVILL_8 138.00] CKT 1	FALSE	Blown up
33 OV	VRLOD 27	OPEN LINE FROM BUS 2428 [WATMLL_E5 345.00] TO BUS 2432 [TRICRN1_5 345.00] CKT 1	FALSE	Blown up
34 OV	VRLOD 38	OPEN LINE FROM BUS 3110 [STRYKER_8 138.00] TO BUS 3112 [SMRFLDMT_8 138.00] CKT 1	FALSE	Blown up
35 OV	VRLOD 39	OPEN LINE FROM BUS 3112 [SMRFLDMT_8 138.00] TO BUS 3253 [JAXVLSW_8 138.00] CKT 1	FALSE	Blown up
36 OV	VRLOD 40	OPEN LINE FROM BUS 3116 [MTENTRPR_5 345.00] TO BUS 3119 [NACOGDSE_5 345 00] CKT 1	FALSE	Blown up
37 OV	VRLOD 41	OPEN LINE FROM BUS 3119 [NACOGDSE_5 345.00] TO BUS 3120 [NACOGDSE_8 138.00] TO BUS 3135	FALSE	Blown up
38 OV	VRLOD 56	OPEN LINE FROM BUS 3110 [STRYKER_8 138.00] TO BUS 3147 [TROUPSS_8 138.00] CKT 1	FALSE	Blown up
39 OV	VRLOD 75	OPEN LINE FROM BUS 3133 [RICHLND2_5 345 00] TO BUS 3380 [BIGBRN_5 345.00] CKT 1	FALSE	Blown up
40 OV	VRLOD 76	OPEN LINE FROM BUS 3147 [TROUPSS_8 138.00] TO BUS 3156 [WALNUT_POI 138.00] CKT 1	FALSE	Iteration limit exceeded
41 OV	VRLOD 77	OPEN LINE FROM BUS 3156 [WALNUT_POI 138.00] TO BUS 3227 [WHITEHSE_8 138.00] CKT 1	FALSE	Iteration limit exceeded
42 OV	VRLOD 178	OPEN LINE FROM BUS 3160 [DIALVILL_8 138.00] TO BUS 3296 [NECHESRI_8 138.00] CKT 1	FALSE	Blown up
43 OV	VRLOD 482	OPEN LINE FROM BUS 1431 [GRHAMSES1_8 138.00] TO BUS 1601 [GRAHAME_8 138.00] CKT 1	FALSE	Iteration limit exceeded
44 OV	VRLOD 517	OPEN LINE FROM BUS 1596 [GRAHAMSW_8 138.00] TO BUS 1601 [GRAHAME_8 138.00] CKT 1	FALSE	Iteration limit exceeded
45 OV	VRLOD 629	OPEN LINE FROM BUS 3271 [PALSTNS_8 138.00] TO BUS 3296 [NECHESRI_8 138.00] CKT 1	FALSE	Blown up
46 OV	VRLOD 782	OPEN LINE FROM BUS 1596 [GRAHAMSW_8 138.00] TO BUS 1599 [BARTON_8 138.00] CKT 1	FALSE	Iteration limit exceeded
47 OV	VRLOD 1913	OPEN LINE FROM BUS 3105 [ELKTON_5 345.00] TO BUS 3106 [ELKTON_8 138.00] TO BUS 29150 [EL	FALSE	Blown up
48 OV	VRLOD 2037	OPEN LINE FROM BUS 3123 [TRINDAD1_5 345.00] TO BUS 3133 [RICHLND2_5 345.00] CKT 1	FALSE	Blown up
49 OVI	VRLOD 2077	OPEN LINE FROM BUS 3124 [TRINDAD2_5 345.00] TO BUS 3134 [RICHLND1_5 345.00] CKT 1	FALSE	Blown up
50 UN	NIT 120101	REMOVE UNIT C1 FROM BUS 120101 [TGCCS_CT1 18.000]	FALSE	Blown up
51 UN	NIT 120102	REMOVE UNIT C2 FROM BUS 120102 [TGCCS_CT2 18.000]	FALSE	Blown up
52 UN	NIT 120103	REMOVE UNIT C3 FROM BUS 120103 [TGCCS_CT3 18.000]	FALSE	Blown up

1 PSSE was set to solve using 100 iterations.

06/14/13

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 _____Page 30 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-12 Transmission Lines and Transformer Upgrades Selected for the Import 3000 MW Case

Ref. No <i>.</i>	То	To Bus	From	From Bus	kV	ск	MVA	R (p.u.)	X (p.u.)	B (p.u.)	Length (miles)	New or Upgraded
1	3117	Lufkin Switch	3119	Nacogdoches SE	345	1	1631	0.00070	0.00970	0.23450	23	New
2	3100	Martin Lake	2461	Royse North	345	1	1631	0.00401	0.05228	1.26452	124	New
3	3100	Martin Lake	3109	Stryker	345	1	1631	0.00132	0.01729	0.41811	41	New
4	3100	Martin Lake	68091	Navarro	345	1	1631	0.0042	0.05481	1.3257	130	New
5	3100	Martin Lake	68091	Navarro	345	2	1631	0.0042	0.05481	1.3257	130	New
6	3143	TYLERGND_8	3213	TYLERGE_8	345	1	484	0.00005	0.00058	0.00748	1	Upgraded
7	3123	Trinidad	3109	Stryker	345	1	1631	0.00222	0.02892	0.69956	68.6	Upgraded
8	9997	Rusk_5	3124	Trinidad2_5	345	1	1631	0.00297	0.03879	0.93819	92	Upgraded
9	9997	Rusk_5	3109	Stryker	345	1	2390	0.00076	0.00987	0.23863	23.4	Upgraded
10	3160	Dialvill-8	3296	Nechesri_8	138	1	326	0.00562	0.05609	0.01853	15.5	Upgraded
11	3106	ELKTON_8	3139	TYLERWES_8	138	1	326	0.00181	0.01809	0.00598	5	Upgraded
12	2523	PL_TENNY_8	10010	PRSTMDWS_8	138	1	484	0.00013	0.00153	0.01976	2.64	Upgraded
13	3271	PALSTNS_8	3296	NECHESRI_8	138	1	326	0.00344	0.03438	0.01136	9.5	Upgraded
14	3131	FOREGROV_8	29266	MABANKTAP	138	1	326	0.00134	0.01339	0.00416	3.7	Upgraded
15	3276	MALAKOFF_8	29266	MABANKTAP	138	1	326	0.00134	0.01339	0.00416	3.7	Upgraded
16	3127	TRINIDAD_8	3276	MALAKOFF_8	138	1	326	0.00294	0.02931	0.00911	8.1	Upgraded
17	3251	FLINTSUB_8	3253	JAXVLSW_8	138	1	326	0.00375	0.03741	0.01236	10.34	Upgraded
18	18 Collins to Northwest Carrolton (multiple branches)			138	2	326	0.00036 ¹	0.00362 ¹	0.00120 ¹	17	New	
19	2370	COLLINSS1_8	2372	COLLINSS1_5	138/345	2	Rati	ng A =700	MVA Ratin	g B, C = 75	D MVA	New

1 The units for these values are in (p.u./mile) not in (p.u.) as the rest of the impedance values in this table.

Table 4.1-13

Shunt Capacitor Banks Examined for the Import 3000 MW Case at MURPHY1_8 (bus 2696)

Ref.	Contingnecy	Binit (MVAR)	Voltage	
		(un orang	(p.u.)	
1	Base Case		1	
2		0	0.935	
3		10	0.95	
4		20	0.96	
5		30	0.97	
6		40	0.98	
7	BD-INIORPINC	50	1	
8		60	1	
9		70	1.02	
10		80	1.03	
11		90	1.05	

BD-MURPMC was the only contingency observed where voltage violations observed could not be solved by switching existing shunt capacitor banks or by changing transformer tap settings. The voltage violations for this contingency are eliminated if a shunt capacitor is added at MURPHY1_8 (bus #2696) and is sized between 10 to 90 MVAR. An 80 MVAR bank was chosen since it provides voltage support for the surrounding area.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 ____Page 31 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

The remaining voltage violations observed for the Import 3000 MW case were eliminated using SPS and manual switching operations such as switching bus tie breakers, turning on/off shunt capacitor banks, or changing transformer tap ratios.

The Collin #2 345/138 kV autotransformer was observed overloading when the Collin #1 345/138 kV autotransformer was switched out and the transformer taps settings on Collin #2 were not at 1 p.u. on both sides. Series reactors were examined at the high side terminals of the Collin #2 345/138 kV autotransformer to eliminate the loading violations over 100% that were occurring. Table 4.1-13 lists the results of the series reactor's impacts on the Collin #2 345/138 kV autotransformer loading during the Import 3000 MW case with the Collin #1 autotransformer out. It was determined that a 2-ohm series reactor would eliminate the thermal loading if the transformer taps were coordinated correctly.

Table 4.1-13Series Reactor's Impacts on the Collin 345/138 kV #2 Transformer LoadingDuring the Import 3000 MW Case with the Collin #1 Transformer Out

Ref.	Series Reactor	Transformer Ta	Loading	
No.	(ohms)	345 kV	138 kV	(%)
1		1	1	94
2	2	0.97 ¹	1 ¹	97
3		0.95	1	106
4		1	1	92
5	3	0.97 ¹	11	95
6		0.95	1	98

1 These transformer tap settings were obtained by allowing the transformer taps to step. The other tap settings were examined to see what other loading values could occur.

The two ohm series reactor, the transmission lines and transformer listed in Table 4.1-13, and the shunt capacitor bank upgrades were chosen to be modeled eliminating the thermal and voltage violations observed for the Import 3000 MW case.

Refer to Table B-11 and Table B-19 in Appendix B for the list of loading violations and voltage violations, before implementing SPS or manual switching operations, for the Import 3000 MW case for the "Special Contingencies," the Single Circuit Area 1 Contingencies, and the single and double circuit contingencies out of Rusk County Switching Station 345 kV.

4.1.4 Summary

Table 4.1-14 lists the line and transformer upgrades required for the Benchmark, 1500 MW, and 3000 MW Import cases. In addition to these upgrades, a shunt capacitor located at the Murphy 138 kV bus and a 2-ohm series reactor located at the Collin #2 345/138 kV autotransformer eliminates all voltage and thermal violations observed for the Import case during the contingency analysis.

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.1-14 Summary of New/Upgraded Equipment to Eliminate the Thermal Violations for the Import Cases

						New MVA Ratings for Transmisison			
Ref.	The second state of the se	LAV.		Base Case ¹	Length	Lines and Equipment for Import Cases ²			
No.	Transmission Lines and Equipment	ĸv			(miles)	Benchmark	1500 MW	3000 MW	
						Line (MVA)	Line (MVA)	Line (MVA)	
1	Lufkin Switch to Nacogdoches SE (3117-3119)	345	1	N/A	23	1631	1631	1631	
2	Martin Lake to Royse North (3100-2461)	345	1	N/A	124	1631	1631	1631	
3	Martin Lake to Stryker (3100-3109)	345	1	1631 ³	41	-	-	1631	
4	Martin Lake to Nararro (3100-68091)	345	1	N/A	130	-	-	1631	
5	Martin Lake to Nararro (3100-68091)	345	2	N/A	130	-	-	1631	
6	Trinidad to Stryker (3123-3109)	345	1	1072	68.6	-	-	1631	
7	Rusk to Trinidad (9997-3124)	345	1	1072	92	-	-	1631	
8	Rusk to Stryker (9997-3109)	345	1	1631	23.4	-	-	2390	
9	Rusk to Martin Lake (9997-3100)	345	1	1631	17.5	-	-	-	
10	Rusk to Martin Lake (9997-3100)	345	2	1631	17.5	-	-	-	
11	Tyler Grande to Tyler G.E. (3143-3213)	345	1	326	1	-	484	484	
12	Dialville to Neches Pump (3160-3296)	138	1	214	15.5	-	-	326	
13	Palestine South to Neches Pump (3271-3296)	138	1	214	9.5	-	-	326	
14	Trinidad to Malakoff (3127-3276)	138	1	251	8.1	-	-	326	
15	Forest Grove to Mabank Tap (3131-29266)	138	1	251	3.7	-	-	326	
16	Malakoff to Mabank Tap (3276-29266)	138	1	251	3.7	-	-	326	
17	Elkton to Tyler Southwest (3106-3139)	138	1	214	5	326	326	326	
18	Tennyson Plano to Preston Meadows (2523-10010)	138	1	287	1	484	484	484	
19	Flint to Jacksonville (3251-3253)	138	1	249	10.34	-	-	326	
20	Collin to Northwest Carrolton (multiple branches)	138	2	N/A	17	326	326	326	
21	Collin S.E.S. Auto Transformer	345/138	2	N/A	N/A	Rating A = 700	MVA, Rating B a	nd C = 750 MVA	

1 The Base Case (MVA) column shows either the current MVA rating for the transmission lines/transformer as modeled in the base cases or a N/A indicating that the branch does not exist in the base case and was selected as a new branch in certain cases.

2 The values provided in these column are the suggested MVA rating for the transmission lines/transformer to eliminate thermal loading violations during contingencies. If the cell contains a "-" then that line was not required to be upgraded/built for that case.

3 This line already exists in the Benchmark case before Rusk is modeled once Rusk is modeled in the 1500 MW and 3000 MW cases this line becomes Martin Lake to Rusk and Rusk to Stryker Creek. The Martin Lake to Stryker Creek 345 kV line was modeled in the Import 3000 MW case.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 33 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

4.2 EXPORT CASES

4.2.1 Export Benchmark Case

Table 4.2-1 lists the number of thermal and voltage violations for the Export Benchmark case before making any upgrades to Oncor's system.

Table 4.2-1* Summary of Thermal and Voltage Violations for Export Export Benchmark Case Before Any Upgrades

Ref. No.	Contingency Set	Number of Thermal Violations	Number of Voltage Violations	
		VIOIACIONS	violations	
1	Special Contingencies	1	4	

*These violations occur before the SPS or manual switching operations have been implemented.

The only thermal violation for the Export Benchmark case was the Gresham Road POI to Gresham Road Switch 138 kV line (3301-3304) at 100.09% in the base case. This violation is due to the MW output of the NACPW_UNIT1 was set to 100 MW which is also the Pmax for this unit. Decreasing this generator below its Pmax rating eliminated this thermal violation for the Export Benchmark case.

The voltage violations observed for the Export Benchmark case were eliminated using SPS and manual switching operations such as switching bus tie breakers, turning on/off shunt capacitor banks, or changing transformer tap ratios.

The Collin #2 345/138 kV autotransformer was added to the Export Benchmark case because it was already a planned upgrade to the Oncor system. No additional transmission lines or upgrades were required to eliminate the thermal and voltage violations for the Export Benchmark case.

Refer to Table C-1 and Table C-4 in Appendix C for the list of loading violations and voltage violations, before implementing SPS or manual switching operations, for the Export Benchmark case for the "Special Contingencies" and the Single Circuit Area 1 Contingencies.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 34 of 71

Oncor Electric Delivery - Proprietary and Confidential Southern Cross HVDC Tie

4.2.2 Export 1500 MW Case

Table 4.2-2 lists the number of thermal and voltage violations for the Export 1500 MW case before making any upgrades to Oncor's system.

Table 4.2-2*

Summary of Thermal and Voltage Violations for Export 1500 MW Case Before Any Upgrades

Ref. No.	Contingency Set	Number of Thermal Violations	Number of Voltage Violations
1	Special Contingencies	1	7
2	Single Circuit Area 1	1	88
3	Single and Double Circuits out of Rusk	1	1

*These violations occur before the SPS or manual switching operations have been implemented.

The only thermal violation for the Export Benchmark case was the Gresham Road POI to Gresham Road Switch 138 kV line at 100.31% in the base case. This violation is due to the MW output of the NACPW_UNIT1 being set to 100 MW which is also the Pmax for this unit. Decreasing this generator below its Pmax rating eliminated this thermal violation for the Export 1500 MW case.

The voltage violations observed for the Export 1500 MW case were eliminated using SPS and manual switching operations such as switching open breakers, turning on/off shunt capacitor bank steps, or changing transformer tap ratios.

The Collin #2 345/138 kV autotransformer was added to the Export 1500 MW case because it was already a planned upgrade to the Oncor system. No additional transmission lines or upgrades were required to eliminate the thermal and voltage violations for the Export 1500 MW case.

Refer to Table C-5 and Table C-10 in Appendix C for the list of loading violations and voltage violations, before implementing SPS or manual switching operations, for the Export 1500 MW case for the "Special Contingencies," the Single Circuit Area 1 Contingencies, and the single and double circuit contingencies out of Rusk County 345 kV Switching Station.

One double circuit contingency would not solve for the 1500 MW case and is shown in Table 4.2-3. The case did not diverge but the solution was outside the mismatch tolerance. To solve this contingency 200 MVAR of the filter bank at the HVDC converter station was allowed to switch. This allowed the case to solve and no thermal or voltage violations were observed.

Exhibit SG-1-R SOAH Docket No. 473-16-2751 PUC Docket No. 45624 Page 35 of 71

Oncor Electric Delivery – Proprietary and Confidential Southern Cross HVDC Tie

Table 4.2-3

List of Contingencies with a Mismatch Greater Than One for the Export 1500 MW Case

		initi duse
Ref. No.	Contingency Name	Contingency Description
1	SOUTHER2	OPEN BRANCH FROM BUS 3100 [MARTINLK_5 345.00] TO BUS 9997 [RUSKSS 5 345.00] CKT 1
-	Seemenz	OPEN BRANCH FROM BUS 3100 [MARTINLK 5 345,00] TO BUS 9997 [RUSKSS 5 345,00] CKT 2

4.2.3 Export 3000 MW Case

When the Export 3000 MW base case was examined for the steady state contingency analysis only one thermal violation was observed, however several of the single and double circuit contingencies did not converge. Table 4.2-4 lists the number of thermal and voltage violations for the Export 3000 MW case before making any upgrades to Oncor's system. Table 4.2-5 lists the single and double circuit contingencies from the Export 3000 MW case that did not converge. These contingencies were examined and then upgrades that were applied to the 3000 MW Import case were incorporated into the 3000 MW Export case to eliminate violations and help the cases converge.

Table 4.2-4*

Summary of Thermal and Voltage Violations for the Export 3000 MW Case Before Any Upgrades

Ref.	Contingency Set	Number of	Number of	Number of Convergence Errors	
No.		Violations	Violations		
1	Special Contingencies	1	9	13	
2	Single Circuit Area 1	1	108	17	
3	Single and Double Circuits out of Rusk	1	0	2	

*These violations occur before the SPS or manual switching operations have been implemented.