2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

BEACHWOOD ESTATES

1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have any questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the **Safe Drinking Water Hotline (1-800-426-4791)**.

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from surface water sources. It comes from Cedar Creek Reservoir. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU - Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

- pCi/L picocuries per liter (a measure of radioactivity)
- ppm parts per million, or milligrams per liter (mg/L)
- ppb parts per billion, or micrograms per liter ($\mu g / L$)
- ppt parts per trillion, or nanograms per litter
- ppq parts per quadrillion, or picograms per litter

Inorganic Contaminants

The second s							
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Barium (ppm)	0.059	0.059	0.059	2	2	Discharge of drilling wastes; discharge from metal refineries: erosion of natural deposits.
2014	Cyanide (ppb)	13.0	13.0	13.0	200	· 200	Discharge from plastic and fertilizer factories; discharge from steel/metal factories.
2014	Fluoride (ppm)	1.13	1.13	1.13	4	4	Erosion of natural deposits; water, additive which promotes strong teeth; discharge from fertilizer and aluminum factorics.
2014	Nitrate (ppm)	0.19	0.19	0,19	10	10	Runoff from fertilizer use; leaching from septie tanks, sewage; erosion of natural deposits.

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chloramines (ppm)	2.30	0.92	4.90	4.0	4.0	Disinfectant used to control microbes.

Disinfection Byproducts (DBP1 sites)

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2013	Total Haloacetic Acids	45	39	49	60	ppb	Byproduct of drinking water disinfection.
2013	Total Tribalomethanes	72,4	66.7	78.5	80	ррб	Byproduct of drinking water disinfection.

Unregulated Initial Distribution system Evaluation for Disinfection Byproducts (DBP2 sites)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Total Haloacetic Acids	51,7	31.9	80.6	60	ррь	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	92,5	51.1	118.6	80	ррb	Byproduct of drinking water disinfection.

.

Unregulated Contaminants

Bromoforn contaminar	a, chloroform, dichlorobromo at level for these chemicals at	methane, and the entry poi	dibromochore nt to distribution	omethane are o on.	lisinfecti	on byprodu	ets. There is no maximum
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Chloroform	41.28	0	86.8	NA	ррь	Byproduct of drinking water disinfection.
2014	Bromodichloromethane	13.08	0	18.6	NA	ррь	Byproduct of drinking water disinfection.
2014	Dibromochloromethane	3.68	0	5.44	NΛ	ррь	Byproduct of drinking water disinfection.

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

Year	Contaminant	The 90 th Percentile	Number of Sites Bxceeding Action Level	Action Level	Unit of Measure	Source of Contaminant
2014	Lead	1,3	0	15	ppb	Corrosion of household plumbing systems; erosion of natural deposits.
2014	Copper	0.06	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your top for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity

Turbidity has no	Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth.											
Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can												
cause symptoms such as nausea, oramps, diarrhea, and associated headaches.												
		Highest Single	Lowest Monthly % of	Turbidity	Source of							
Year	Contaminant	Measurement	Samples Meeting Limits	Limits	Contaminant							
2014	Turbidity (NTU)	0.33	100%	0.3	Soil runoff.							

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2014	Aluminum (ppm)	0,09	0.09	0.09	0,2	Abundant naturally occurring element.
2014	Calcium (ppm)	20.8	20.8	20.8	NA	Abundant naturally occurring element.
2014	Chloride (ppm)	18	18	18	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2014	Hardness as Ca/Mg (ppm)	69	69	69	NA	Naturally occurring calcium and magnesium.
2014	Sodium (ppm)	23	23	23	NA	Erosion of natural deposits; byproduct of oil field activity.
2014	Sulfate (ppm)	36	36	36	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2014	Total Alkalinity as CaCO3 (ppm)	62	62	62	NA	Naturally occurring soluble mineral salts.
2014	Total Dissolved Solids (ppm)	166	166	166	1000	Total dissolved mineral constituents in water.
2014	Zinc (ppm)	0.007	0.007	0.007	5	Moderately abundant naturally occurring element used in the metal industry.

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
MCL Violation – Total Tribalomethantes (TTHM)	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.	04/01/14 - 06/30/14 07/01/14 - 09/30/14 10/01/14 -	The water system TTHMs for the 2 ^a 2014. Letters con mailed to resident techniques and ch to reduce the TTH MCL.	exceeded the MCL for ¹⁴ , 3 rd , & 4 th quarters of cerning this issue werc s. Alternate treatment emicals are being sought IM levels beneath the

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

CHEROKEE SHORES WATER SUPPLY

1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results, and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from Surface water sources. It comes from the Cedar Creek Reservoir. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)

The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

- NTU Nephelometric Turbidity Units
- MFL million fibers per liter (a measure of asbestos)
- pCi/L picocuries per liter (a measure of radioactivity)
- ppm parts per million, or milligrams per liter (mg/L)
- ppb parts per billion, or micrograms per liter ($\mu g / L$)
- ppt parts per trillion, or nanograms per litter
- ppq parts per quadrillion, or picograms per litter

Inorganic Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2013	Arsenic (ppb)	0.94	0.7	1.18	10	D	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
2014	Barium (ppm)	0.066	0.066	0.066	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
2014	Chromium (ppb)	0.00231	0.00231	0.00231	10	10	Discharge from steel and pulp mills; Erosion of natural deposits.
2014	Cyanide (ppb)	0.0218	0.0218	0.0218	200	200	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories.
2014	Fluoride (ppm)	0,127	0.127	0.127	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories,
2014	Mercury (ppb)	0.000135	0,000135	0.000135	2	2	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland.
2014	Nitrate (ppm)	0.156	0.156	0.156	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; crosion of natural deposits.

Synthetic Organic Contaminants

Year	Contaminant	Avcrage Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Atrazine (ppb)	0.08	0.08	0.08	3	3	Herbieide runoff.

.

.

Maximum Residual Disinfectant Level

Ycar	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chloramines (ppm)	2,12	0.84	3.91	4.00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1 sites)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2013	Total Haloacetic Acids	40.6	36.9	44.4	60	ррb	Byproduct of drinking water disinfection.
2013	Total Trihalomethanes	79.76	52.2	128	80	ppb	Byproduct of drinking water disinfection.

Unregulated Initial Distribution system Evaluation for Disinfection Byproducts (DBP2 sites)

Year	Contaminant	Average	Minimum	Maximum	MCL	Unit of	Source of Contaminant
		Level	Level	Level		Measure	
2014	Total Haloacetic Acids	37.5	24.1	46.4	60	ррь	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	76.3	41.4	112.6	80	ррб	Byproduct of drinking water disinfection.

Unregulated Contaminants

Bromoform level for the	Bromoform, chloroform, dichlorobromomethane, and dibromochoromethane are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.										
Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant					
2014	Bromodichloromethane	12.9	12.9	12.9	ppb	Byproduct of drinking water disinfection.					
2014	Chloroform	28,7	28.7	28.7	ррb	Byproduct of drinking water disinfection.					
2014	Dibromochloromethane	3.96	3.96	3.96	ррь	Byproduct of drinking water disinfection.					

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

Year	Contaminant	The 90 th Percentile	Number of Sites Execcing Action Level	Action Level	Unit of Measure	Source of Contaminant
2009	Lead	0.04	0	15	ррЪ	Corrosion of household plumbing systems; erosion of natural deposits.
2009	Copper	0.039	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as									
nausca, cramps, di	iarrhea, and associated he	adaches.		na parasitos ant	e our outle by mpromis adon ab				
		Highest Single	Lowest Monthly % of	Turbidity	Source of Contaminant				
Ycar	Contaminant	Measurement	Samples Meeting Limits	Limits					
2014	Turbidity (NTU)	0.32	100%	0.3	Soil runoff.				

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Secondary	and Other Constituer	us not kegu	lated (NO asso	clated adverse h	eann enecus)	
Year	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2014	Aluminum (ppm)	0.144	0.144	0.144	0.2	Abundant naturally occurring element.
2014	Calcium (ppm)	19.6	19.6	19.6	NA	Abundant naturally occurring element.
2014	Chloride (ppm)	19.4	19,4	19,4	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2014	Copper (ppm)	0.00131	0.00131	0.00131	1	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
2014	Hardness as Ca/Mg (ppm)	65.3	65.3	65.3	NA	Naturally occurring calcium and magnesium.
2014	Sulfate (ppm)	34.8	34.8	34.8	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2014	Magnesium (ppm)	4.0	4.0	4.0	NA	Abundant naturally occurring element.
2014	Manganese (ppm)	0.00297	0.00297	0.00297	.05	Abundant naturally occurring element.
2014	Nickel (ppm)	0.000501	0.000501	0.000501	NA	Erosion of natural deposits.
2014	Sodium (ppm)	21.0	21.0	21,0	NA	Erosion of natural deposits; byproduct of oil field activity.
2014	Total Dissolved Solids (ppm)	143	143	143	1000	Total dissolved mineral constituents in water.
2014	Zinc (ppm)	0,00878	0.00878	0.00878	5	Moderately abundant naturally occurring element;

econdary and Other Constituents Not Regulated (No associated adverse health effects

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
MCL Violation – Total Tribalomethantes (TTHM)	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.	7/01/2014 to 9/31/2014	The water system for the 3 rd quarte issue were mailer techniques and c the TTHM levels	n exceeded the MCL for TTHMs r of 2014. Letters concerning this d to residents. Alternate treatment hemicals are being sought to reduce s beneath the MCL.

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

<u>CAROLYNN ESTATES</u> (MICHAELS COVE & PINNACLE CLUB) 1-866-654-7992

The Utility's water system, owned and operated by **SouthWest Water Company**, provides our water customers an annual water quality report to show the source of your water, test results, and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 1-866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from surface water sources. It comes from the Cedar Creek Reservoir. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. **Maximum Contaminant Level Goal (MCLG)** The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU - Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of radioactivity)

ppm - parts per million, or milligrams per liter (mg/L)

- ppb parts per billion, or micrograms per liter (μ g/L)
- ppt parts per trillion, or nanograms per litter
- ppq parts per quadrillion, or picograms per litter

Inorganic Contaminants

Year	Contaminant	Average Lovel	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Barium (ppm)	0.0573	0.0573	0.0573	2	2	Discharge of drilling wastes; discharge from metal refineries: erosion of natural deposits.
2014	Chromium (ppb)	0.00263	0.00263	0.00263	100	100	Discharge from steel and pulp mills; erosion of natural deposits.
2014	Cyanide (ppb)	8.9	8.9	8.9	200	200	Discharge from plastic and fertilizer factories; discharge from steel/metal factories.
2014	Fluoride (ppm)	0.13	0.13	0.13	4	4	Brosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2014	Nitrate (ppm)	0.148	0.148	0.148	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2014	Thallium (ppb)	,000256	.000256	.000256	2	0.5	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories.

Radioactive Contaminants

Year	Contaminant	Avcrage Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2009	Combined Radium 226 & 228 (pCi/L)	1	1	1	5	0	Erosion of natural deposits.
2009	Gross beta emitters (pCi/L)	4.7	4.7	4.7	50	0	Decay of natural and man-made deposits.

,

.

Synthetic Organic Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Atrazine (ppb)	0.9	0.9	0.9	3	3	Herbicide runoff.

Volatile Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chloramines (ppm)	2.57	1.20	4.00	4.00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1)

		Construction of the second sec		and the second s			
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2013	Total Haloacetic Acids	54.8	44	65.7	<u>60</u>	ррь	Byproduct of drinking water disinfection.
2013	Total Trihalomethanes	113,5	113	[14	80	ррb	Byproduct of drinking water disinfection.

Unregulated Initial Distribution system Evaluation for Disinfection Byproducts (DBP2)

Year	Contaminant	Avcrage Leyel	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Total Haloacetic Acids	54.125	46.1	63.0	60	ррь	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	92.75	44.9	126.8	80	ppb	Byproduct of drinking water disinfection.

Unregulated Contaminants

Bromoform level for the	Bromoform, chloroform, dichlorobromomethane, and dibromochoromethane are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.											
Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant						
2014	Bromodichloromethane	21.7	21.7	21.7	рръ	Byproduct of drinking water disinfection.						
2014	Chloroform	77.1	77.1	77.1	ррЪ	Byproduct of drinking water disinfection.						
2014	Dibromochoromethane	4.71	4.71	4.71	ррь	Byproduct of drinking water disinfection.						

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

Ycar	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Measure	Source of Contaminant
2014	Lead	1,8	0	15	ppb	Corrosion of household plumbing systems; erosion of natural deposits.
2014	Copper	0.22	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity

Turbidity has n	Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may											
indicate the presence of disease-causing organisms. These organisms include bacteria, viruses and parasites that can cause symptoms such as												
nausca, cramps, diarrhea and associated headaches.												
	· · · · · · · · · · · · · · · · · · ·	Highest Single	Lowest Monthly % of	Turbidity								
Year	Contaminant	Measurement	Samples Meeting Limits	Limits	Source of Contaminant							
2014	Turbidity (NTLI)	0.42	99 46 %	0.3	Soil runoff.							

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Stephan j	and Other Consertation	Ito HOL MOEN	110 4330			/
Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2014	Aluminum (ppm)	0.0398	0.0398	0.0398	0.2	Abundant naturally occurring element.
2014	Calcium (ppm)	19.1	19.1	19.1	NA	Abundant naturally occurring clement.
2014	Chloride (ppm)	21.5	21.5	21,5	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2014	Copper (ppm)	0.000833	0,000833	0,000833	1	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
2014	Hardness as Ca/Mg (ppm)	64	64	64	NA	Naturally occurring calcium and magnesium.
2014	Magnesium (ppm)	3.99	3.99	3.99	NA	Abundant naturally occurring element.
2014	Manganese (ppm)	0.00126	0.00126	0.00126	0.05	Abundant naturally occurring element.
2014	Nickel (ppm)	0.000657	0.000657	0,000657	NA	Erosion of natural deposits.
2014	Sodium (ppm)	21.3	21.3	21.3	NA	Erosion of natural deposits; byproduct of oil field activity.
2014	Sulfate (ppm)	34.5	34.5	34.5	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2014	Total Dissolved Solids (ppm)	161	161	161	1000	Total dissolved mineral constituents in water.
2014	Zinc (ppm)	0.00588	0.00588	0,00588	5	Moderately abundant naturally occurring element; used in the metal industry.

Secondary and Other Constituents Not Regulated No associated adverse health effects)

VIOLATIONS

ı

Violation Type	Health Effects	Duration •	Explanation	Steps to Correct
MCL Violation – Total Trihalomethantes (TTHM)	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.	7/01/2014 to 9/31/2014 10/01/2014 to 12/31/2014	The water system for the 3 rd and 4 th concerning this is: Alternate treatmer being sought to re MCL.	exceeded the MCL for TTHMs quarters of 2014. Letters sue were mailed to residents. at techniques and chemicals are duce the TTHM levels beneath the

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

HOLIDAY VILLAGES OF LIVINGSTON

1-866-654-7992

The Utility's water system, owned and operated by **SouthWest Water Company**, provides our water customers an annual water quality report to show the source of your water, test results and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have any questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 1-866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from ground water sources. It comes from the Jasper Aquifer. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. **Maximum Contaminant Level Goal (MCLG)** The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU – Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

- pCi/L picocuries per liter (a measure of radioactivity)
- ppm parts per million, or milligrams per liter (mg/L)
- ppb parts per billion, or micrograms per liter (μ g/L)
- ppt parts per trillion, or nanograms per litter
- ppq parts per quadrillion, or picograms per litter

Inorganic Contaminants

Ycar	Contaminant	Avcrage Level	Minimum Level	Maximum Level	MCL	MCLO	Source of Contaminant
2012	Barium (ppm)	0.34	0.23	0.44	2	2	Discharge of drilling wastes, discharge from metal refineries; erosion of natural deposits.
2012	Fluoride (ppm)	0.67	0.65	0.69	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2014	Nitrate (ppm)	0.045	0.03	0.06	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.

Radioactive Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Combined Radium 226 & 228 (pCi/L)	5.6	4.7	8.0	5	0	Erosion of natural deposits
2014	Gross alpha (pCi/L)	10,2	6.1	15.9	15	0	Erosion of natural deposits.
2014	Gross beta emitters (pCi/L)	17.7	12.5	23.1	50	0	Decay of natural and man-made deposits.

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chlorine (ppm)	1.49	0.42	3.50	4,00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2013	Total	3.3	3.3	3,3	80	ppb	Byproduct of drinking water disinfection

Unregulated Initial Distribution System Evaluation for Disinfection Byproducts (DBP2)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Total Haloacetic Acids	1,1	1.1	1,1	60	ррь	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	3.4	3.4	3.4	80	ррь	Byproduct of drinking water disinfection.

Unregulated Contaminants

Bromoform, chloroform, dichlorobromomethane, and dibromochoromethane are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.										
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL.	Unit of Measure	Source of Contaminant			
2011	Bromoform	1	1	1	NA	ppb	Byproduct of drinking water disinfection.			
2011	Dibromochoromethane	0,5	0.5	0.5	NA	ррь	Byproduct of drinking water disinfection.			

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

Ycar	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Measure	Source of Contaminant
2014	Lead	4.5	0	15	ррь	 Corrosion of household plumbing systems; erosion of natural deposits.
2014	Copper	0.26	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity - NOT REQUIRED

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2012	Calcium (ppm)	27.9	18.7	37	NA	Abundant naturally occurring element.
2012	Chloride (ppm)	217	108	326	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2012	Iron (ppm)	0.049	0	0.098	0.3	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
2012	Manganese (ppm)	0.067	0.025	0.11	0.05	Abundant naturally occurring element.
2012	pH (units)	7.6	7,4	7.8	>7.0	Measure of corrosivity of water.
2012	Sodium (ppm)	246	178	314	NA	Erosion of natural deposits; byproduct of oil field activity.
2012	Sulfate (ppm)	1	0	2	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2012	Total Alkalinity as CaCO3 (ppm)	373	321	424	NA	Naturally occurring soluble mineral salts.
2012	Total Dissolved Solids (ppm)	773	553	993	1000	Total dissolved mineral constituents in water.
2012	Total Hardness as CaCO3 (ppm)	73	47	99	NA	Naturally occurring calcium.
2012	Zinc (ppm)	0.01	. 0	0.02	5	Moderately abundant naturally occurring element used in the metal industry.

VIOLATION

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
MCL VIOLATION – Combined Radium 226/228	Some people who drink water containing radium 226 & 228 in excess of the MCL over many years may have an increased risk of getting cancer.	04/01/14 - 06/30/14 07/01/14 - 09/30/14	Drinking water an Combined Radiur for the 2 nd , 3 rd , & notification was is TCEQ. Various s resolve the MCL i	alyses indicate the MCL for n 226 & 228 was exceeded 4 th quarters of 2014, Public sued as required by the teps have been taken to issue with little success. The
		10/01/14 12/31/14	Utility has develo water from a well concentrations. T completed by the	ped plans to supplement with lower radium he project should be end of 2015.

2014 Annual Drinking Water Quality Report

(Consumer Confidence Report)

OAK TRAIL SHORES/ARROWHEAD SHORES

1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have any questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 1-866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from surface water sources. It comes from Lake Granbury. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL) The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below

which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU – Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of radioactivity)

ppm – parts per million, or milligrams per liter (mg/L) ppb – parts per billion, or micrograms per liter (μ g /L) ppt – parts per trillion, or nanograms per litter ppg – parts per quadrillion, or picograms per litter

Inorganic Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Arsenic (ppb)	1.7	1.7	1.7	10	0	Eroston of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
2014	Barlum (ppm)	0.006	0.006	0.006	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
2014	Chromium (ppm)	0.0035	0.0035	0.0035	0,1	0.1	Discharge from steel and pulp mills; erosion of natural deposits.
2014	Floride (ppm)	0.132	0.132	0.132	4	4	Erosion of natural deposits; water additive which promotes strong teet; discharge from fertilizer and aluminum factorles.
2014	Nitrate (ppm)	0,1 ·	0.1	0,1	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2014	Selenium (ppb)	5,83	5.83	5,83	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.

Organic Contaminants TESTING WAIVED. NOT REPORTED OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Levcl	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chloramines (ppm)	1.90	0.25	3.90	4,00	4.00	Disinfectant used to control microbes

Unregulated Initial Distribution system Evaluation for Disinfection Byproducts (DBP2)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Total Haloacetic Acids	23.5	42.8	5.1	60	ррb	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	68.9	201.6	13.6	80	ррb	Byproduct of drinking water disinfection.

Unregulated Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Bromoform	17.5	17.5	17.5	NA	ppb	Byproduct of drinking water disinfection,
2014	Bromodichloromethane	21.8	21.8	21.8	NĂ	ррb	Byproduct of drinking water disinfection.
2014	Chloroform	8.1	8.1	8.1	NA	ррь	Byproduct of drinking water disinfection.
2014	Dibromochloromothane	31.7	31.7	31.7	NA	ррь	Byproduct of drinking water disinfection.

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Unregulated Contaminant Monitoring Rule 2 (UCMR2) TESTING WAIVED, NOT REPORTED OR NONE DECTECTED

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Lead and Copper

Year	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Measure	Source of Contaminant
2014	Lead	4.9	0	15	ррб	Corrosion of household plumbing systems; erosion of natural deposits.
2014	Copper	0.074	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity .

2014

Turbidity (NTU)

 Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth.

 Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

 Highest Single
 Lowest Monthly % of Year

 Contaminant
 Measurement

 Samples Meeting Limits
 Limits

 Source of Contaminant

75%

0.3

Soil runoff.

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

0.83

Year	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2014	Aluminum (ppm)	0.01	0.01	0.01	.05	Abundant naturally occurring element.
2014	Calcium (ppm)	56,9	56.9	56,9	NA	Abundant naturally occurring element.
2014	Chloride (ppm)	344	344	344	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2014	Hardness as Ca/Mg (ppm)	219	219	219	NA	Naturally occurring calcium and magnesium.
2014	Sulfate (ppm)	118	118	118	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2014	Total Dissolved Solids (ppm)	803	803	803	1000	Total dissolved mineral constituents in water.
2014	Zinc (ppm)	0.043	0.043	0.043	5	Moderately abundant naturally occurring element; used in the metal industry.

P.W.S. #1110004

1212

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
MCL Violation — Total Tribalomethantes (TTHM)	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.	10/01/14 12/31/14	The water system TTHMs for the 4 st Letters concerning to residents. The treatment proccss results were below	exceeded the MCL for a quarter of 2014. g this issue were mailed Utility has optimized its and first quarter 2015 w the MCL.
Violation Type	Health Effects	Duration	Explanation	Stops to Correct
MONTHLY COMB FILTER EFFLUENT (Interim Enhanced SWTR)	The Interim Surface Water Treatment Rule improves control of microbial contaminants, particularly Cryptosporidium, in systems using surface water, or ground water under the direct influence of surface water. The rule builds upon the treatment technique requirements of the Surface Water Treatment Rule.	11/01/14 11/30/14	Turbidity levels, exceeded a stand indicated. Turbid are used to measu of drinking water brought back into December 2014.	though relatively low, ard for the month dity (cloudiness) levels are effective filtration . Turbidity levels were o compliance in

P.W.S. #1110004

1213

2014 Annual Drinking Water Quality Report

(Consumer Confidence Report)

PLUM CREEK 1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have any questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 1-866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from ground and surface water sources. Groundwater comes from the Edwards Aquifer and surface water from the Guadalupe Blanco River Authority, who obtains water from Lake Dunlap. The Texas Commission on Environmental Quality (TCEO) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

P.W.S. #1050028

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU -- Nephelometric Turbidity Units

- MFL million fibers per liter (a measure of asbestos)
 - pCi/L picocuries per liter (a measure of radioactivity)

ppm – parts per million, or milligrams per liter (mg/L)

- ppb parts per billion, or micrograms per liter (mg/L)
- ppt parts per trillion, or nanograms per litter

ppq - parts per quadrillion, or picograms per litter

ND-Not Detected

Inorganic Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLO	Source of Contaminant
2013	Barium (ppm)	0.04	0.04	0.04	2	2	Discharge of drilling wastes; discharge from metal refinerles; erosion of natural deposits.
2013	Chromium (ppm)	0.005	0.005	0.005	0.1	0.1	Discharge from steel and pulp mills; Erosion of natural deposits.
2014	Fluoride (ppm)	1.45	1,4	1.5	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2014	Nitrate (ppm)	0.31	0.30	0.32	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Combined Radium 226 & 228 (pCi/L)	2.4	2.4	2.4	5	0	Brosion of natural deposits.
2014	Gross alpha (pCi/L)	2,4	2.4	2.4	15	Ő	Erosion of natural deposits.

Volatile Organic Contaminants NON DETECTED

Maximum Residual Disinfectant Level

Year Disinfectant Average Minimum Maximum MRDL MRDLG Source of Disinfectant Level Level Level Level Disinfectant used to control National (ppm) National (ppm)								
2014 Chlorine 1.06 0.30 3.30 4.00 4.00 Disinfectant used to control Residual (ppm) microbes	Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
	2014	Chlorine Residual (ppm)	1.06	0.30	3,30	4.00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP2)

_								
Γ	Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
	2014	Total Haloacetic Acids	23.5	23,5	23.5	60	քքն	Byproduct of drinking water disinfection.
Γ	2014	Total Trihalomethanes	57.2	57.2	57.2	80	ppb	Byproduct of drinking water disinfection.

.

Turbidity

Turbidity has Turbidity may cause sympton	Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.									
		Highest Single	Lowest Monthly % of	Turbidity						
Ycar	Contaminant	Measurement	Samples Meeting Limits	Limits	Source of Contaminant					
2014	Turbidity (NTU)	0.16	100%	0.3	Soil runoff.					

Unregulated Contaminants

Bromoform contaminan	, chloroform, dichlorobromo t level for these chemicals at	methane, and the entry poi	dibromochoro nt to distribution	omethane are disir on.	ifection byprodu	ets. There is no maximum
Year	Contaminant	Average Level	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant
2014	Bromoform	5.7	5.7	5.7	ppb	Byproduct of drinking water disinfection.
2014	Bromodichloromethanc	19	19	19	ppb	Byproduct of drinking water disinfection.
2014	Chloroform	12.4	12.4	12.4	ppb	Byproduct of drinking water disinfection.
2014	Dibromochoromethane	20.1	20,1	20.1	ppb	Byproduct of drinking water disinfection.

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

Ycar	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Measure	Source of Contaminant
2013	Lead	3	0	15	ррb	Corrosion of household plumbing systems; crosion of natural deposits.
2013	Copper	0.25	0	1.3	ppm	Corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Total Coliform

Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms themselves, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more-hardy than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

Year	Contaminant	Number of Positive Samples	MCL	Measure	Source of Contaminant
2014	Total Coliform Bacteria	. 2	*	Presence	Naturally present in the environment.

*Two or more coliform found samples in any single month.

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
MCL Violation – Total Coliform	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.	12/2014	The water system Total Coliforms for Samples collected negative for colific this issue were ma	exceeded the MCL for or December 2014. in January 2015 were orm. Letters concerning ailed to residents.

Year	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2014	Chloride (ppm)	26.5	22	31	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2013	Iron (ppm)	0,03	0.03	0.03	.3	Erosion of natural deposits; iron or steel water delivery equipment.
2011	Hardness as Ca/Mg (ppm)	317	314	320	NA	Naturally occurring calcium and magnesium.
2011	Sulfate (ppm)	61,5	45.0	78.0	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2014	Total Dissolved Solids (ppm)	400	393	407	1000	Total dissolved mineral constituents in water.

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

PINWAH PINES ESTATES

1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have any questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 1-866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingüe en español.

Our drinking water is obtained from ground water sources. It comes from the Jasper Aquifer. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL) The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU – Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of

radioactivity)

ppm - parts per million, or milligrams per liter (mg/L)

ppb - parts per billion, or micrograms per liter (mg/L)

ppt - parts per trillion, or nanograms per litter

ppq - parts per quadrillion, or picograms per litter

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2012	Barium (ppm)	0.76	0.76	0.76	2	2	Discharge of drilling wastes, discharge from metal refinerics; erosion of natural deposits.
2013	Fluoride (ppm)	0.28	0.28	0.28	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factorics.
2014	Nitrate (ppm)	0.02	0.02	0.02	10	10	Runoff from fertillzer use; leaching from septic tanks, sewage; crosion of natural deposits.

Radioactive Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLO	Source of Contaminant
2014	Combined Radium 226 & 228 (pCi/L)	8.4	7.7	9.3	5	0	Brosion of natural deposits
2014	Gross alpha emitters (pCi/L)	24.3	19.3	28.7	15	0	Erosion of natural deposits.
2014	Gross beta emitters (pCi/L)	[4,9	12.3	17.7	50	0	Decay of natural and man-made deposits.

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Ycar	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chlorinc Residual (ppm)	1.67	0.32	6.50	4.00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1)

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2013	Total Haloac c tic Acids	18.8	16.1	20.7	60	ррь	Byproduct of drinking water disinfection.
2013	Total Trihalomethanes	88.7	81.0	98,3	80	ppb	Byproduct of drinking water disinfection.

Unregulated Initial Distribution System Evaluation for Disinfection Byproducts (DBP2)

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	MCL.	Unit of Measure	Source of Contaminant
2014	Total Haloacetic Acids	13.0	0	26.3	60	ррь	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	55.7	1	116	80	ррь	Byproduct of drinking water disinfection.

Unregulated Contaminants

Bromoforr contamina	n, chloroform, dichlorobrom nt level for these chemicals a	omethane, an at the entry po	d dibromocho bint to distribut	romethane are tion.	disinfect	ion byproduct	s. There is no maximum
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2011	Bromodichloromethane	0.6	0,6	0.6	NA	ррь	Byproduct of drinking water disinfection.
2011	Chloroform	0.5	0.5	0.5	NA	ррb	Byproduct of drinking water disinfection.
2011	Dibromochoromethane	0.5	0.5	0.5	NA	ррb	Byproduct of drinking water disinfection.

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

Year	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Mcasure	Source of Contaminant
2014	Lead	3.0	0	15	ррь	Corrosion of household plumbing systems; erosion of natural deposits.
2014	Copper	0.67	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity NOT REQUIRED

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
MCL VIOLATION – Combined Radium 226/228	Some people who drink water containing radium 226 & 228 in excess of the MCL over many years may have an increased risk of getting cancer.	04/01/14 - 06/30/14 07/01/14 09/30/14 10/01/14 12/31/14	Drinking water and for Combined Rad exceeded for the 2 2014. Public notifi required by the TC been taken to resol little success. An i has been found and	alyses indicate the MCL lium 226 & 228 was nd , 3 rd , & 4 th quarters of fication was issued as CEQ. Various steps have live the MCL issue with alternate source of water d should be available by
MCL VIOLATION Gross Alpha	Certain minerals are radioactive and may etnit a form of radiation know as alpha radiation. Some people who drink water containing alpha radiation in excess of the MCL over many years may have an increased risk of getting cancer.	04/01/14 - 06/30/14 07/01/14 - 09/30/14 10/01/14 12/31/14	the end of 2015. Drinking water and for Gross Alpha P exceeded for the 2 2014. Public notifi required by the TC been taken to resol little success. An has been found and the end of 2015.	alyses indicate the MCL article Activity was ^{ad} , 3 rd , & 4 th quarters of fication was issued as CEQ. Various steps have lve the MCL issue with alternate source of water d should be available by
MCL VIOLATION – Total Trihalomethantes (TTHM)	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.	10/01/14 - 12/30/14	The water system TTHMs for the 3 rd concerning this iss residents. The Uti different disinfecta TTHM levels belo	exceeded the MCL for quarter of 2014. Letters sue were mailed to lity has converted to a ant which has reduced w the MCL.
MCL VIOLATION LEAD & COPPER RULE	The Lead & Copper Rule protects health by minimizing lead & copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead & copper containing plumbing materials.	01/01/14 06/30/14 07/01/14 12/31/14	We failed to test o contaminant and p of this failure, we quality of our drin period indicated. were collected and approved contract of the samples exc determined by TC	our drinking water for the beriod indicated. Because cannot be sure of the king water during the Lead & Copper samples d submitted to a state- lab in August 2014. None seeded the Action Limit as EQ.

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

TANGLEWOOD ON TEXOMA

1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have any questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Espan lol; Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en espan lol, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingue en espan lol.

Our drinking water is obtained from surface water and ground water sources. It comes from Lake Texoma and the Woodbine Aquifer. The Utility also purchases water from Preston Shores Water System, The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contains.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water. The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU -- Nephelometric Turbidity Umts

MFL – million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of radioactivity)

ppm – parts per million, or milligrams per liter (mg/L)

ppb – parts per billion, or micrograms per liter (mg/L)

ppt - parts per trillion, or nanograms per litter

ppg – parts per quadrillion, or picograms per litter

Inorganic Co	ataminants						
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Arsenic (ppb)	0.47	0	0.93	10	0	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
2014	Barium (ppm)	0,05	0,044	0.056	2	2	Discharge of drilling wastes, discharge from metal refineries; erosion of natural deposits.
2014	Chromium (pph)	0,75	0.62	0.87	100	100	Discharge from steel and pulp mills; crosion of natural deposits.
2014	Fiuoride (ppm)	0.92	0.33	1.71	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2014	Nitrate (ppm)	1.13	0.037	2.6	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2014	Nitrite (ppm)	1.5	1.5	1.5	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2014	Selenium (ppb)	0.9	0	1.8	50	50	Discharge from petroleum and metal refinerles; erosion of natural deposits; discharge from mines.

Radioactive Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2014	Combined Radium 226 & 228 (nCi/L)	1.0	1,0	1.0	5	0	Brosion of natural deposits.
2014	Uranium (ppb)	1.4	1.4	1.4	30	0 ·	Decay of natural and man-made deposits.

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chlorine Residual (ppm)	2.00	0.50	4.00	4.00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1)

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2013	Total Haloacetic	19.3	11.7	32,4	60	ррb	Byproduct of drinking water disinfection,
2013	Total Tribalomethanes	74.9	54.8	89	80	ррр	Byproduct of drinking water disinfection.

Unregulated]	[nitial Distribution S	ystem Evalu	ation for Disin	fection Bypro	ducts (DBP2)	,
Year	Contaminant	Average	Minimum	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Total Haloacetic	11.9	0	36,8	60	ррb	Byproduct of drinking water disinfection.
2014	Total Tribalomethanes	58	3.0	309	80	ррь	Byproduct of drinking water disinfection.

Unregulated Contaminants

Bromoform, ch	Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.										
Year	Contaminant	Average Level	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant					
2014	Bromoform	1.3	1.3	1.3	ррb	Byproduct of drinking water disinfection.					

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Co	pper					
Ycar	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Measure	Source of Contaminant
2014	Lead	1.7	0 .	15	ppb	Corrosion of household plumbing systems; crosion of natural deposits.
2014	Copper	0.087	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Total Coliform

Highest Monthly MCL Unit of Year Contaminant Number of Measure Source of Contaminant	
Positive Samples	ŕ
2014 Total Coliform 1 * Presence Naturally present in the Bacteria	environment.

*Two or more coliform found samples in any single month.

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Turbidity

Turbidity has no may indicate the	Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a meaning for microbial growth. Further, may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.									
Ycar	Contaminant	Highest Single Measurements	Lowest Monthly % of Samples Meeting Limits	Turbidity Limits	Source of Contaminant					
2014	Turbidity (NTU)	0.5	99%	0.3	Soil runoff.					

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Year	Contaminant	Average Levol	Minimum Level	Maximum Level	Limit	Source of Contaminant
2014	Calcium (ppm)	66.7	125	8.36	NA	Abundant naturally occurring clement.
2014	Chloride (ppm)	299	42.2	481	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2014	Hardness as Ca/Mg (ppm)	186	32.6	340	NA '	Naturally occurring calcium.
2014	Sulfate (ppm)	55	30	84	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2014	Total Dissolved Solids (ppm)	930	432	1180	1000	Total dissolved mineral constituents in water.
2014	Zinc	0.045	0,0097	0,081	5	Moderately abundant naturally occurring element used in the metal industry.

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct		
MCL Violation – Total Tribalomethantes	Some people who drink water containing trihalomethanes in excess	04/01/14 - 06/30/14	The water system TTHMs for the 2 Letters concernin	n exceeded the MCL for nd , 3 rd , & 4 th quarters of 2014. In this issue were mailed to		
(ТТНМ)	experience problems with their liver, kidneys, or central nervous systems,	07/01/14 - 09/30/14	residents. The Utility has converted to a different disinfectant which should lower the TTFIM concentration in the distribution			
	and may have an mercased risk of getting cancer.	10/01/14 12/31/14	system.			
Violation Type	Health Effects	Duration	Explanation	Steps to Correct		
MCL Violation – Nitrite Single Sample	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	07/01/14 09/30/14	A water sample showed that the amount of this contaminant in our drinking water was above its standard (called a maximum contaminant level and abbreviated MC) for the period indicated. Letters concerning this issue were mailed to residents.			

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

WESTWOOD BEACH

1-866-654-7992

The Utility's water system, owned and operated by SouthWest Water Company, provides our water customers an annual water quality report to show the source of your water, test results, and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Espan loi: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en espan loi, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingue en espan loi.

Our drinking water is obtained from ground water sources. It comes from the Wilcox, Carrizo Sand Aquifer. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

- NTU Nephelometric Turbidity Umits
- MFL million fibers per liter (a measure of asbestos)
- pCi/L picocuries per liter (a measure of radioactivity)

ppm – parts per million, or milligrams per liter (mg/L)

- ppb parts per billion, or micrograms per liter (μ g/L)
- ppt parts per trillion, or nanograms per litter
- ppq parts per quadrillion, or picograms per litter

Inorganic C	ontaminants						a fill the least
Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2012	Fluoride (ppm)	0.19	0.18	0,20	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2011	Nitrite (ppm)	0.02	0.02	0.02	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2014	Nitrate (ppm)	0.041	0.0345	0.052	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; crosion of natural deposits.

Radioactive Contaminants

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant	
2012	Combined Radium	1.0	1.0	1.0	5	0	Erosion of natural deposits	

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chlorine (ppm)	2.35	1.00	3.90	4,00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1)

Distiniection Dyproduces (Dal 1)						Contraction of the second		
Year	Contaminant	Average	Minimum Level	Maximum Leyel	MCL	Unit of Measure	Source of Contaminant	
2013	Total Haloacetic	1	1	1	60	ppb	Byproduct of drinking water disinfection.	
2013	Total Trihalomethanes	5.5	5.5	5.5	80	ррь	Byproduct of drinking water disinfection.	

Unregulated Initial Distribution System Evaluation for Disinfection Byproducts (DBP2)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2014	Total Haloacetic	2.9	2,9	2.9	60	ppb	Byproduct of drinking water disinfection.
2014	Total Trihalomethanes	5.8	5.8	5.8	80	ррь	Byproduct of drinking water disinfection.

Unregulated Contaminants

On egunted Containing the provide the second s									
Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfection byproducts. There is no maximum									
Year	Contaminant	Average	Minimum	Maximum	Unit of Measure	Source of Contaminant			
		Level	revel	Level	INCOSOLC				
2012	Chloroform	1.76	1.47	2.05	ppb	Byproduct of drinking water disinfection.			
2012	Bromodichloromethane	1.30	1.03	1,58	ррь	Byproduct of drinking water disinfection.			
2012	Dibromochloromethane	0,54	0	1.07	ррь	Byproduct of drinking water disinfection.			

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper Source of Contaminant The 90th Action Unit of Number of Sites Year Contaminant Measure Percentile Exceeding Level Action Level Corrosion of household plumbing systems; 0 15 ppb 2.2 2008 Lcad erosion of natural deposits. Corrosion of household plumbing systems; 1.3 ppm 0 0.032 2008 Copper crosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gow/safewater/lead.

Turbidity NOT REQUIRED

Total Coliform

Total coliform disease-causing bacteria are mo microbiologica	bacteria are used as ind g organisms themselve pre-hardy than many di ally safe for human con	dicators of microbial cont s, they are often found in sease-causing organisms sumption.	tamination of dri association with therefore, their	inking water beca to other microbes to absence from wa	hat are capable of causing disease. Coliform ter is a good indication that the water is
Ycar	Contaminant	Highest Monthly Number of Positive Samples	MCL	Unit of Measure	Source of Contaminant
2014	Total Coliform Bacteria	2	*	Presence	Naturally present in the environment.
		I alter and almala manth			

*Two or more coliform found samples in any single month.

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Ycar	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2012	Chloride (ppm)	9.12	7.87	9.76	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2012	Sulfate (ppm)	14.5	14.0	14.9	300	Naturally occurring; common industrial by product; byproduct of oil field activity.
2012	Total Alkalinity as	109	107	111	NA	Naturally occurring soluble mineral salts.
2012	Total Dissolved	146	141	156	1000	Total dissolved mineral constituents in water.

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
Violation Type Health Effects MCL Violation Total Collform Collform Collforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Collforms were found in more samples than allowed and this was a warning of potential problems		09/01/2014 09/30/2014	The water system Coliforms for Sep concerning this is	exceeded the MCL for Total tember 2014. Letters sue were mailed to residents.

• .

P.W.S. #1070085

1231

2014 Annual

Drinking Water Quality Report

(Consumer Confidence Report)

WEST MEADOW SUBDIVISION

1-866-654-7992

The Utility's water system, owned and operated by **SouthWest Water Company**, provides our water customers an annual water quality report to show the source of your water, test results, and general information for those with health concerns. The analysis was made using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. If you have questions concerning water quality or the source of your water, please call our Regulatory Department at (512) 219-2294.

OUR DRINKING WATER IS REGULATED

by the Texas Commission on Environmental Quality (TCEQ) and they have determined that certain water quality issues exist which prevent our water from meeting all of the requirements as stated in the Federal Drinking Water Standards. Each issue is listed in this report as a violation and we are working closely with the TCEQ to achieve solutions.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Public Participation Opportunities

The Utility does not hold regularly scheduled meetings. However, if you wish to contact the owners, please call our Customer Care Department at 866-654-7992.

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

En Espan lol: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en espan lol, favor de llamar al tel 1-866-654-7992 para hablar con una persona bilingue en espan lol.

Our drinking water is obtained from ground water sources. It comes from the Paluxy Aquifer. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About the Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below

which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a

disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU – Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of radioactivity)

ppm – parts per million, or milligrams per liter (mg/L) ppb – parts per billion, or micrograms per liter (mg/L) ppt – parts per trillion, or nanograms per litter ppq – parts per quadrillion, or picograms per litter

Inorganic Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Levei	MCL	MCLG	Source of Contaminant
2013	Fluoride (ppm)	0.23	0.23	0.23	4	. 4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2014	Nitrate (ppm)	0.044	0.044	0.044	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.

Radioactive Contaminants

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Source of Contaminant
2012	Combined Radium 226 & 228 (pCi/L)	1.0	1.0	1.0	5	0	Erosion of natural deposits.

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Source of Disinfectant
2014	Chlorine Residual (ppm)	1.49	0.20	4.00	4.00	4.00	Disinfectant used to control microbes

Disinfection Byproducts (DBP1)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2011	Total Tribalomethanes	9.1	9.1	9.1	80	ppb	Byproduct of drinking water disinfection.

Unregulated Initial Distribution System Evaluation for Disinfection Byproducts WAIVED OR NOT YET SAMPLED

Unregulated Contaminants

Bromoform, chloroform, dichlorobromomethane, and dibror	nochoromethane are disinfection byproducts.	There is no maximum contaminant
level for these chemicals at the entry point to distribution.		

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Source of Contaminant
2011	Bromoform	3	3	3	NA	ppb	Byproduct of drinking water disinfection.
2011	Bromodichloromethane	2.2	2,2	2.2	NA	ррь	Byproduct of drinking water disinfection.
2011	Dibromochoromethane	3.9	3.9	3.9	NA	ppb	Byproduct of drinking water disinfection.

Unregulated Contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Lead and Copper

WANG HILD CON						
Ycar	Contaminant	The 90 th Percentile	Number of Sites Exceeding Action Level	Action Level	Unit of Mcasure	Source of Contaminant
2010	Lead	0.41	0	15	ppb	Corrosion of household plumbing systems; erosion of natural deposits.
2010	Copper	0.00686	0	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing companents. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking water Hotline or at htt://www.epa.gov/safewater/lead.

Turbidity NOT REQUIRED

Total Coliform REPORTED MONTHLY TESTS FOUND NO TOTAL COLIFORM BACTERIA

Fecal Coliform REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA

Secondary and Other Constituents Not Regulated (No associated adverse health effects)

Year	Contaminant	Average Level	Minimum Level	Maximum Level	Limit	Source of Contaminant
2013	Chloride (ppm)	16.6	16.6	16.6	300	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2010	Copper (ppm)	0,005	0.002	0.008	1	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
2009	Hardness as Ce/Mg (ppm)	4	4	4	NA	Naturally occurring calcium and magnesium.
2013	Sulfate (ppm)	26,5	26.5	26.5	300	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2013	Total Alkalinity as CaCO3 (ppm)	288	288	288	NA	Naturally occurring soluble mineral salts.
2013	Total Dissolved Solids (ppm)	382	382	382	1000	Total dissolved mineral constituents in water.

VIOLATIONS

Violation Type	Health Effects	Duration	Explanation	Steps to Correct
Follow-up or Routine Tap M/R (LCR)	The Lead & Copper Rule protects health by minimizing lead & copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead & copper containing plumbing materials.	01/01/2014 06/30/2014	We failed to test of Copper at the cor- months of 2014, collected at the co- to a state-approve None of the samp as determined by	our drinking water for Lead & rect locations during the first six Lead & Copper samples were prrect addresses, and submitted ad contract lab in August 2014. les exceeded the Action Limit TCEQ.

Monarch Utilities I, L.P. Docket No. 45570 Test Year Ending 6/30/2015 WP/VI-1.d Compliance with TCEQ Rules Witness: Timothy Williford

See attached Noncompliance Reports

HUOF

Water Quality Noncompliance Notification *See back of Form for Guidance for Completion*

🔀 Unauthorized Discharge] Reportab	e Effluent Violation		🗌 Other
ieneral Information	An a di la cana da antara da a	an a	elsel about the second second second	i in a standard areas	the first of the second
Entity Name: Lake Fork Estates			Telephone No (#########	#): (903)	268-5913
Permittee TCEQ Region:	R5 - Tyler	County	Wood *F	Permit Number:	TX0117455
] Subscriber		_			···· · · · · · · · · · · · · · · · · ·
Voncompliance Summary	alan kalèn di ka			<u></u>	<u>04402/0802/4972</u>
Description and Cause of Noncom	npliance (include loc	ation, discl	harge route, and estimated vo	lume of unautho	orized discharge
2" sewer line crossing creek at Lots Discharged in to Searcy Branch, ap discharge.	129 and 130 Choctav proximately 2,000 ga	w broke due Nons. Valve	to 12 Inches of rain washing ou d off on both sides of creek, ope	it creek bank. n flush valves up:	tream of
Duration:					
Start Date: 10/29/15 End Da Time: 07:00 Time:	ate: 10/29/15	<u>Or</u> Da	te Expected to be Corrected:	11/6/15	
Potential Danger to Human Healt	h and Safety or the	Environme	nt:		
None					
None					
Actions Taken	C. S.		Standard and to be		
Vionitoring Data: Data should be	attached or submit	ted to TCEC	when available.		
Field Measurements	Laboratory Sam	ples	Fish Kill(If yes, estim	ated number kll	led):
TYes 🕅 No	🗌 Yes 🛛 Na)	.] Ye	s 🔀 No	
Actions Taken to Mitigate Advers	e Effects;				
Valved off.					
		<u></u>	•		
Actions Taken to Correct the Prol	blem and Prevent Re	ecurrence:			
Valved off on both side of creek, w	ill Install casing wher	n repair is pe	rformed		
	-	• •			
			••		
Verification information A				<u>e narode a de la composición de</u>	
Information Reported By (Name/	/Títle); John Salma	ins.Jr		Date Reporte	d: Oct 29,2015
Signature:					
<u>Note</u> : If this form is being used for a TCEQ, Compliance Monitoring Team	5-day written report, (MC224), Enforcemen	a copy of the t Division, P	form should be sent to the TCEQ ,O, Box 13087, Austin, TX 78711-3	Region Office, and 3087.	d the original to:
* If the noncompliance is an unauthor which the collection system is tied. If	brized discharge from f you are uncertain of f	a wastewate this permit r	r collection system, use the perm umber, you may call the TCEQ Re	it number of the tigional Office for a	reatment plant to ssistance.
			•		

			1-1004
Water	Quality Noncomplia	nce Notific	ation
E Usanthorized Discharge	🗌 Reportable Effluent V	Iolation	🗌 Other
Several Information	•		
Entity Name: Lake Fork E	states Tel	ephone No: (903)268-5913
Permittee 🛛 Su	bscriber		and the second second
TCEQ Region: TYLER \$\$ 5	County: Wood	*Permit N	umber: 7×0/17455
Homeonoliance Summary	······	•	
Bescription of Noncompliance (Int 185 Pillsbury Cr. Fram Grad dracinge ditch. Cause of Noncompliance: 12 40° ELL SI. pped out	Clude location, discharge route 1 Vie sewer line dou Approx. 1,000 gals. To OFF of pipe	9, and estimated en. h. 11 to a Th: 5 w 45 M 1 1015 Am 03	volume of unauthorized discharge): prevent pound portal to John Salm. alights about concerns.
Describer: Start Date and Time	a: Reported to on car	<i>3/15/15۰73</i> Date Expect	ed to be Corrected:
	3//5//5~ /030 St.	nment:	
· Potestial Danger to Human Healt	in and Batery of the Environ	Mont	·
Coops Taken			
Wenitoring Data: Data should be Yes No F Yes No L	attached or submitted to 1 eld Measurements aboratory Samples leb Kill If yes, estimated a	ſCEQ.when ava number kìlledt	ilablə.
Actions Taken to Mitigate Advers	e Effects: Link was ra	epaired, lit	then ground dires up
Actions Taken to Correct the Prol Will build ground up	blem and Prevent Recurrer of the Krep From r	ice: Gland Cupility in	new 90°EL and blocks. pond.
Menneation Information			
Information Reported By (Name,	Title): John Sel-	ngastr.	Field Supervisor
Date Reported: 53/17/15	Signature:	hole-	<u>Q.</u>
Engles IF this form is being used for the second s	or a 5-day written report, a 1 TCEQ, Compliance Monito 1-3087.	a copy of the fo oring Team (MC	orm should be sent to the TCEQ C224), Enforcement Division,
Fif the noncompliance is an unauthoring the prestment plant to which the coll TCEQ Regional Office for assistance.	orized discharge from a waste ection system is tied, If you a	water collection re uncertain of t	system, use the permit number of his permit number, you may call the
TCEQ - 00501 (Rev. 09-07-10)			Page 1 of 2

disease.

HUOF

Water Quality Noncompliance Notification *See back of Form for Guidance for Completion*

🔀 Unauthorized Discharge		🔲 Reportab	le Effluent Violation	······	🗌 Other
General Information	an a			and the first and the particulation	Alexandri, that i dear in the state of the second
Entity Name: Lake Fork Estates			Telephone No (####	######):	(903) 268-5913
Permittee TCEQ Region:	R5 - Tyler	County	Wood	*Permit Num	ber: TX0117455
Subscriber	L	1 -			
Noncompliance Summary			· · · · · · · · · · ·		
Description and Cause of Noncom	pliance (include l	ocation, disci	narge route, and estimat	ted volume of un	authorized discharge
2° sewer line crossing creek at Lots Discharged in to Searcy Branch, ap discharge.	129 and 130 Choci proximately 2,000 g	taw broke due gallons. Valvec	to 12 Inches of rain wash I off on both sides of cree	ing out creek ban k, open flush valve	<, 25 upstream of
Duration:				·····	
Start Date: 10/29/15 End Da	te; 10/29/15	<u>Or</u> Da	le Expected to be Correc	cted: 11/6/15	
	11:00				
Potential Danger to Human Healt	n and Safety or th	e Environmer	nt;		
None					
Actions Taken		A CARACTER S	·/·		
Monitoring Data: Data should be a	stached or submi	itted to TCEO	when evailable.	An Art want in a second	1999-1994 (1999) - NGAH (1997-1994) - N
Field Measurements	Laboratory Sar	nples	Fisḥ Kill (If yes,	estimated numbe	rkilled):
🗂 Yes 🖾 No	TYes XIN	0	I	Yes 🕅 No	
Actions Taken to Mitigate Adverse	Éffects;		-		
Valved off.					·····
· ·				•	
Actions Taken to Correct the Probl	lem and Prevent F	Recurrence:			
Valved off on both side of creek, wil	Install casing whe	en repair is per	formed		
Verification information	GENERAL			ANNA KARA	
Information Bangstod By (Name/T	Itle)	ane ly]	Date Rep	arted: Oct 29,2015
tinormation reported by (ramer	Met Dour ann				
Signature:		·····			
<u>Note</u> : If this form is being used for a 5- TCEQ, Compliance Monitoring Team (I	day written report, MC 224), Enforceme	a copy of the f nt Division, P.C	orm should be sent to the), Box 13087, Austin, TX 78	TCEQ Region Office 711-3087.	, and the original to:
* If the noncompliance is an unauthori which the collection system is tied. If y	zed discharge from	a wastewater	collection system, use the pro-	permit number of t	he treatment plant to
weren nie ennemmen skerenne nem n à	www.m.n.eturacratit.cu	MILLING MELTING (IN	HINCH YOU HINDY LODE LICE I LE	ere the Brouter Attice I	and extended and fit register

		1-100P	
Water Quality Noncompliance Notification *See back of Form for Guidance for Completion*			
Cauthorized Discharge	🗌 Reportable Effluent Violation	🗌 Other	
Several Information	· · · · · · · · · · · · · · · · · · ·		
Entity Name: Lake Fork ES	tetes Telephone	No: (903)268-5913	
Permittee Sut	oscriber		
TCEQ Region: TYLER XX 5	County: Wood *Pe	ermit Number: 7X0//7433	_1
Managementance Summary	1		
Description of Noncompliance (Incl 185 Pilsbury Cr. From God dracinge difet. Cause of Noncompliance: 112 90° ELL 51. pped out	ude location, discharge route, and en 142 server like down. h.ill Approx. 1:000 gals. This w @ 1018 A off off pipe	timated volume of unauthorized discharge) to a private pound of reported to John Sala m 03/17/15 about concerns	ן - די איזאי די 5,
	Road al to on call 3/15	115.930Am	
Denation: Start Date and Time End Date and Time:	: Keportan 10 Cr Date 3/15/15- 1030 Or Date	Expected to be Corrected;	
Polential Danger to Human Health	and Safety or the Environment:	· •	
Terretan Terretan		······································	
Menuarino Data: Data should be a	attached or submitted to TCEQ wi	nen available.	
☐ Yes ☐ No Fit ☐ Yes ☐ No La ☐ Yes ᠘ No Fis	ald Measurements boratory Samples sh Kili If yes, estimated number	killed:	e,
Will fill in sinkhoke	Effects: Line was repaire and spread Fresh de	d, lime spread alites up	£.
Actions Taken to Correct the Prob Will build ground up	lem and Prevent Recurrence: G to Krep From Fundi	land new 90°EL and block. D'a in pond.	Fd,
Venncation Information			
Toformation Reported By (Name/	Title): John Selmens	Jr. Field Supervisor	<u> </u>
Dester Reported: 03/17/15	Signature:Sh	il.	-
Better IF this form is being used fo Region Office, and the original to P.O. Box 13087, Austin, TX 78711	r a 5-day written report, a copy o TCEQ, Compliance Monitoring Te -3087.	f the form should be sent to the TCEQ am (MC224), Enforcement Division,	
Fif the noncompliance is an unauthor fire freatment plant to which the colle TCEQ Regional Office for assistance.	rized discharge from a wastewater co ction system is tied, If you are uncer	illection system, use the permit number of tain of this permit number, you may call the	e
TCEQ - 00501 (Rev. 09-07-10)		Pàge 1 of 2	•