<u>DFc</u> 0.5	<u>55</u> <u>0.78</u>	<u>0.68</u>	<u>0.60</u>	<u>0.73</u>
----------------	-----------------------	-------------	-------------	-------------

Table 72. Upstream/Midstream Assumptions for PTHP Heating¹⁷³

Savings coefficient	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
EFLH _H	<u>247</u>	<u>193</u>	<u>40</u>	<u>46</u>	<u>176</u>
<u>DF_H</u>	<u>0.43</u>	<u>0.52</u>	<u>0.23</u>	<u>0.14</u>	<u>0.12</u>

Measure Life and Lifetime Savings

Effective Estimated Useful Life (EUL)

The EUL of PTAC/PTHP units is 15 years, as specified in DEER 2014.¹⁷⁴

The EUL of RAC units is 10 years based on current DOE Final Rule standards for room air conditioners. This value is consistent with the EUL reported in the Department of Energy Technical Support Document for Room Air conditioners.¹⁷⁵

Remaining Useful Life (RUL) for PTAC/PTHP Systems

The RUL of ER replaced systems is provided according to system age in Table 73 Table 73.

For ER units of unknown age, assume a default value <u>equal to the EUL. This corresponds to a</u> <u>default RUL of 2.8 years, ef 15 years, equal to the measure EUL.</u> Default RUL may be used exclusively if applied consistently for all projects. Otherwise, the default should only be used when a project is reported and documented as having a nameplate that is illegible. Both the RUL and EUL are needed to estimate savings for early retirement projects for two distinct periods: The ER period (RUL) and the ROB period (EUL-RUL). The calculations for early retirement projects are extensive, and as such, are provided in Appendix A.

Table 73. Remaining Useful Life of ER PTAC/PTHP Systems^{176,177}

Age of replaced system (years)	PTAC/PTHP RUL (years)	Age of replaced system(years)	PTAC/PTHP RUL (years)
1	14.0	10	5.7
2	13.0	11	5.0
3	12.0	12	4.4
4	11.0	13	3.8

173 Ibid.

174 http://www.deeresources.com/

¹⁷⁵ Technical Support Document: Room Air Conditioners, June 2020, p. ES-14. <u>https://beta.regulations.gov/document/EERE-2014-BT-STD-0059-0013</u>.

¹⁷⁷ Current federal standard effective date is 2/2013. Existing systems manufactured after this date are not eligible to use the early retirement baseline and should use the ROB baseline instead. These values are greyed out in the table and displayed for informational purposes only.

Nonresidential: HVAC PTACs, PTHPs, and Room ACs

¹⁷⁶ PUCT Docket No. 40083, Attachment A describes the process in which the RUL of replaced systems has been calculated.

Age of replaced system (years)	PTAC/PTHP RUL (years)		Age of replaced system(years)	PTAC/PTHP RUL (years)
5	10.0	[14	3.3
6	9.1		15	2.8
7	8.2		16	2.0
8	7.3		17	1.0
9	6.5		18 ¹⁷⁸	0.0

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Decision/action type: ROB, NC, ER, system type conversion
- Building type (except for upstream/midstream programs)
- Climate zone
- Baseline number of units
- Baseline equipment type
- Baseline rated cooling and heating capacities
- For ER only: Baseline age and method of determination (e.g., nameplate, blueprints, Customer reported, not available)
- For ER only: Photograph of retired unit nameplate demonstrating model number, serial number, and manufacturer if blueprints are not provided; if photograph of nameplate is unavailable or not legible, provide a photo or description documenting the reason why the nameplate photo was unobtainable (alternate forms of documentation can be approved at the evaluator's discretion)
- Installed number of units
- Installed equipment type (PTAC, PTHP, RAC)
- Equipment configuration category: Standard/non-standard or room AC
- Installed rated heating and cooling capacities
- · Installed cooling and heating efficiency ratings
- Installed manufacturer and model
- Installed unit AHRI/DOE CCMS certificate or reference number

Nonresidential: HVAC PTACs, PTHPs, and Room ACs

¹⁷⁸ RULs are capped at the 75th percentile of equipment age, 18 years, as determined based on DOE survival curves. Systems older than 18 years should use the ROB baseline. See the January 2015 memo, "Considerations for early replacement of residential equipment," for further detail.

- For retrofit only: Proof of purchase: invoice showing model number; a photo of the model number on product packaging and installed unit(s); OR an evaluator pre-approved inspection approach
- For new construction only: Proof of purchase: invoice showing model number; a photo of the model number on product packaging and installed unit(s); as-built design drawings; HVAC specifications package that provides detailed make and model information on installed unit(s); OR an evaluator pre-approved inspection approach
- For Other building type only: A description of the actual building type, the primary business activity, the business hours, and the HVAC schedule.

References and Efficiency Standards

Petitions and Rulings

- PUCT Docket 36779—Provides EUL for HVAC equipment.
- PUCT Docket 40083—Provides incorporation of early retirement savings for existing commercial HVAC SOP designs and updates for baseline equipment efficiency levels for ROB and new construction projects involving package and split systems.
- PUCT Docket 40885—Provides a petition to revise deemed savings values for commercial HVAC replacement measures. This petition updated demand and energy coefficients for all commercial HVAC systems.

Relevant Standards and Reference Sources

- ANSI/ASHRAE/IES Standard 90.1-2001 through ASHRAE 90.1-2007. Energy Standard for Buildings Except Low-Rise Residential Buildings. Table 6.8.1D.
- ANSI/ASHRAE/IES Standard 90.1-2010. Energy Standard for Buildings Except Low-Rise Residential Buildings. Table 6.8.1D.
- Code of Federal Regulations. Title 10. Part 431—Energy Efficiency Program for Certain Commercial and Industrial Equipment. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid</u> <u>=46</u>
- Code of Federal Regulations. Title 10. Part 430—Energy Efficiency Program for Certain Commercial and Industrial Equipment.
 <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=52</u>
- 2015 International Energy Conservation Code. Table C403.2.3(3).

Document Revision History

Table 74. Nonresidential PTAC/PTHP and Room AC Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.

134

Nonresidential: HVAC PTACs, PTHPs, and Room ACs

TRM version	Date	Description of change
v2.0	04/18/2014	TRM v2.0 update. Updated EUL value for DX units, based on PUCT Docket No. 36779. Updated the minimum baseline efficiencies for Standard PTAC and PTHP based on new federal standards, 10 CFR 431.97, and updated the minimum efficiencies for Room AC units and added specifications for new Casement-only and Casement-slider equipment. Expanded application to "Hotel—Large" business type for PTAC/PTHP equipment and changed the RAC energy and demand coefficients to reference those for DX systems, rather than those for PTAC/PTHP systems.
v2.1	01/30/2015	TRM v2.1 update. Corrections to energy and demand coefficients for heat pumps in Climate Zone 3 (Houston).
v3.0	04/10/2015	TRM v3.0 update. Added energy and demand coefficients for RAC units. Included text to allow for early retirement changes. For PTHPs: Added heating efficiencies and split EFLH into cooling and heating components.
v3.1	11/05/2015	TRM v3.1 update. Added updated building type definitions and descriptions, minor updates to text for clarification and consistency.
v4.0	10/10/2016	TRM v4.0 update. No revisions.
v5.0	10/2017	TRM v5.0 update. Used modeling approach to update DF and EFLH for applicable building types and climate zones. Updated baseline efficiency values for IECC 2015 and added 24-hour building load shapes. Updated RUL table based on DOE survival curves. Added several new building types.
v6.0	10/2018	TRM v6.0 update. Revised early retirement criteria for systems with an overall capacity change.
v7.0	10/2019	TRM v7.0 update. Revised early retirement criteria for systems with an overall capacity change. Added clarification for PTHPs replacing PTACs with electric resistance heating. Program tracking requirements updated.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Clarified use of post capacity for ROB baselines. Added unknown age defaults for early retirement.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. General reference checks and text edits. Incorporated upstream/midstream building type weighted savings coefficients. Clarified default age and RUL. Incremented RUL table for code-compliance.

2.2.5 Computer Room Air Conditioners Measure Overview

- TRM Measure ID: NR-HV-CR Market Sector: Commercial Measure Category: HVAC Applicable Building Types: See <u>Table 76</u>Table 76 and <u>Table 77</u>Table 77 Fuels Affected: Electricity
- Decision/Action Type: Retrofit, new construction
- Program Delivery Type: Prescriptive
- Deemed Savings Type: Deemed savings calculation
- Savings Methodology: Calculator

Measure Description

This section summarizes the deemed savings methodology for the installation of computer room air conditioning (CRAC) systems. A CRAC unit is a device that monitors and maintains the temperature, air distribution, and humidity in a network room or data center. This measure covers assumptions made for baseline equipment efficiencies for early retirement (ER) based on the age of the replaced equipment and replace-on-burnout (ROB) and new construction (NC) situations based on efficiency standards. Savings calculations incorporate the use of only part-load efficiency values, as these types of units are only rated in units of seasonal COP (SCOP). For ER, the actual age of the baseline system should be determined from the equipment nameplate or other physical documentation whenever possible. If the actual age of the unit is unknown, default values are provided.

Eligibility Criteria

For a measure to be eligible to use this deemed savings approach, the following conditions must be met:

- The existing and proposed cooling equipment is electric
- The building type is a network room or data center
- For early retirement projects: ER projects involve the replacement of a working system. Additionally, the ER approach cannot be used for projects involving a renovation where a major structural change or internal space remodel has occurred. A ROB approach should be used for these scenarios.
- In the event that these conditions are not met, the deemed savings approach cannot be used, and the Simplified M&V Methodology or the Full M&V Methodology must be used.

Nonresidential: HVAC Computer Room Air Conditioners

Manufacturer datasheets for installed equipment or documentation of AHRI or DOE CCMS certification must be provided.^{179,180}

Baseline Condition

The baseline conditions related to efficiency and system capacity for early retirement and replace-on-burnout/new construction are as follows:

Early Retirement

Early retirement projects should claim savings using the replace-on-burnout/new construction baseline, as no additional savings are specified for early retirement projects. This section will not apply until the current baseline is updated, allowing the measure to refer to the existing baseline for early retirement projects.

Replace-on-Burnout (ROB) and New Construction (NC)

Baseline efficiency levels for CRACs are provided in Table 75. These baseline efficiency levels reflect the minimum efficiency requirements from IECC 2015, which uses the Sensible Coefficient of Performance (SCOP) as the standard efficiency metric.

System type	Cooling capacity (Btu/hr)	Baseline efficiencies for downflow/upflow units (SCOP)	Source
Air conditioners,	< 65,000	2.20 / 2.09	IECC 2015
air cooled	<u>></u> 65,000 and < 240,000	2.10 / 1.99	
	<u>></u> 240,000	1.90 / 1.79	
Air conditioners,	< 65,000	2.60 / 2.49	
water cooled	<u>></u> 65,000 and < 240,000	2.50 / 2.39	
	<u>></u> 240,000	2.40 / 2.29	
Air conditioners,	< 65,000	2.55 / 2.44	
water cooled with fluid economizer	<u>></u> 65,000 and < 240,000	2.45 / 2.34	
	<u>></u> 240,000	2.35 / 2.24	
Air conditioners,	< 65,000	2.50 / 2.39	
glycol cooled (rated at 40% propylene glycol)	<u>></u> 65,000 and < 240,000	2.15 / 2.04	
	<u>></u> 240,000	2.10 / 1.99	

Table 75. Baseline Efficiency Levels for ROB and NC CRACs¹⁸¹

Nonresidential: HVAC Computer Room Air Conditioners

 ¹⁷⁹ Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Directory: <u>https://www.ahridirectory.org/</u>.
 ¹⁸⁰ Department of Energy Compliance Certification Management System (DOE CCMS):

https://www.regulations.doe.gov/certification-data/.

¹⁸¹ IECC 2015 Table C403.2.3(1) and C403.2.3(2).(9)

System type	Cooling capacity (Btu/hr)	Baseline efficiencies for downflow/upflow units (SCOP)	Source
Air conditioners, glycol cooled (rated at 40% propylene glycol) with fluid economizer	< 65,000	2.45 / 2.34	
	<u>></u> 65,000 and < 240,000	2.10 / 1.99	
	<u>></u> 240,000	2.05 / 1.94	

High-Efficiency Condition

Package and split-systems must exceed the minimum efficiencies specified in <u>Table 29</u>Table 29.

Additional conditions for replace-on-burnout, early retirement, and new construction are as follows:

New Construction and Replace on Burnout

This scenario includes equipment used for new construction and retrofit/replacements that are not covered by early retirement, such as units that are replaced after natural failure.

Early Retirement

Early retirement projects should claim savings using the replace-on-burnout/new construction baseline, as no additional savings are specified for early retirement projects. This section will not apply until the current baseline is updated, allowing the measure to refer to the existing baseline for early retirement projects.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

$$Peak \ Demand \ [kW_{Savings,C}] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times DF_C \times \frac{1 \ kW}{3,412 \ Btuh}$$
Equation 34

$$Energy (Cooling) [kWh_{Savings,C}] = \left(\frac{Cap_{C,pre}}{\eta_{baseline,C}} - \frac{Cap_{C,post}}{\eta_{installed,C}}\right) \times EFLH_C \times \frac{1 \, kWh}{3,412 \, Btu}$$
Equation 35

Where:

·.		
Cap _{C,pre}	=	Rated equipment cooling capacity of the newly installed equipment at AHRI standard conditions [Btuh]; 1 ton = 12,000 Btuh
Cap _{C,post}	=	Rated equipment cooling capacity of the newly installed equipment at AHRI standard conditions [Btuh]; 1 ton = 12,000

138

Nonresidential: HVAC Computer Room Air Conditioners

		Btuh	
<u>Note: AHRI</u> multiplying I		te cooling capacity in kW. In these cases, convert from kW to Btuh by 3,412.	
η baseline, C	=	Cooling efficiency of existing equipment (ER) or standard equipment (ROB/NC) [SCOP]	
η installed, C	=	Rated cooling efficiency of the newly installed equipment (SCOP)—(Must exceed ROB/NC baseline efficiency standards in <u>_Table 29Table 29</u> [SCOP]	 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
Note: Use {	SCOP fo	or both kW and kWh savings calculations.	
DF	=	Seasonal peak demand factor for appropriate climate zone, and equipment type (<u>Table 77Table 77 Table 33 through Table 37</u>)	 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
EFLH _c	=	Cooling equivalent full-load hours for appropriate climate zone, and equipment type [hours] (<u>Table 77</u> Table 77 Table 33 through Table 37)	 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

Early Retirement Savings

Early retirement projects should claim savings using the replace-on-burnout/new construction baseline, as no additional savings are specified for early retirement projects. This section will not apply until the current baseline is updated, allowing the measure to refer to the existing baseline for early retirement projects.

Deemed Energy and Demand Savings Tables

Deemed peak demand factor (DF) and equivalent full-load hour (EFLH) values are presented by building type and climate zone. This measure is restricted to the data center building types, derived from the EIA CBECS study.¹⁸²

The DF and EFLH values for CRAC units are presented in <u>Table 77</u>. A description of the calculation method used to derive these values can be found in Docket No. 40885, Attachment B.

Nonresidential: HVAC Computer Room Air Conditioners

¹⁸² The Commercial Building Energy Consumption Survey (CBECS) implemented by the US Energy Information Administration includes a principal building activity categorization scheme that separates the commercial sector into 29 categories and 51 subcategories based on principal building activity (PBA). For its purposes, the CBECS defines commercial buildings as those buildings greater than 1,000 square feet that devote more than half of their floor space to activity that is neither residential, manufacturing, industrial, nor agricultural. The high-level building types adopted for the TRM are adapted from this CBECS categorization, with some building types left out and one additional building type - Large Multifamily – included.

Table 76. Commercial CRAC Building Type Descriptions and Examples

Building type	Principal building activity	Definition	Detailed business type examples ¹⁸³¹
Data Center	Data Center	Buildings used to house computer systems and associated components.	1) Data Center

¹⁸³ Principal Building Activities are based on sub-categories from 2003 CBECS questionnaire.

140

Nonresidential: HVAC Computer Room Air Conditioners

Table 77.	DF and	EFLH	Values fo	or All	Climate	Zones
Tuble 77.			values lo		onnate	201103

	Building type	CRACs		
Climate zone reference city.	and principal building activity	DFc	EFLHc	
Climate Zone 1: Amarillo	Data Center	0.89	2,048	
Climate Zone 2: Dallas		1.08	3,401	
Climate Zone 3: Houston		1.05	4,022	
Climate Zone 4: Corpus Christi		0.97	4,499	
Climate Zone 5: El Paso		0.88	2,547	

Claimed Peak Demand Savings

A summer peak period value is used for this measure. Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The EUL and RULs for this HVAC equipment are provided below. The reader should refer to the definitions of effective useful life and remaining useful life in the glossary in Volume 1 for guidance on how to determine the decision type for system installations.

Effective Useful Life (EUL)

The EUL for CRACs is 15 years, consistent with the EUL specified for split and packaged air conditioners and heat pumps. $^{\rm I84}$

Remaining Useful Life (RUL)

This section will not apply unless the current baseline is updated, allowing the measure to refer to the existing baseline for early retirement projects.

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Decision/action type: ER, ROB, NC, system type conversion
- Climate zone
- Baseline number of units

Nonresidential: HVAC Computer Room Air Conditioners

¹⁸⁴ The EUL of 15 years has been cited in several places - PUCT Docket No. 36779, DOE 77 FR 28928, 10 CFR Part 431, and in the DEER 2014 update.

- Baseline equipment type
- Baseline equipment rated cooling capacity
- Installed number of units
- Installed equipment type
- Installed equipment rated cooling capacity
- Installed cooling efficiency ratings
- Installed manufacturer and model
- Installed unit AHRI/DOE CCMS certificate or reference number

References and Efficiency Standards

Petitions and Rulings

- PUCT Docket 36779—Provides EUL for HVAC equipment.
- PUCT Docket 40083– Provides incorporation of early retirement savings for existing commercial HVAC SOP designs and updates for baseline equipment efficiency levels for ROB and new construction projects involving package and split systems.
- PUCT Docket 40885—Provides a petition to revise deemed savings values for Commercial HVAC replacement measures. Items covered by this petition include the following:
- Updated baseline efficiencies use for estimating deemed savings for commercial PTAC/PTHP's, Room Air Conditioners, and chilled water systems.
- Approved estimates of RUL of working chilled water systems.
- Updated demand and energy coefficients for all commercial HVAC systems.
- Updated EUL of centrifugal chilled water systems installed in ROB or new construction projects.
- Provide a method for utilizing the early retirement concept developed in the petition in Docket No. 40083 for Packaged and Split DX systems and applied to chilled water systems when the age of the system being replaced cannot be ascertained.
- PUCT Docket 41070—Provides energy and demand savings coefficients for an additional climate zone, El Paso, TX. Prior to this filing, savings for the Dallas-Fort Worth area were used for El Paso, but Dallas-Fort Worth has a colder winter, somewhat more moderate summer, more sunshine, and less precipitation than El Paso.
- PUCT Docket 43681—Updated the approach for calculating early replacement energy and demand savings using a net present value (NPV) method. Documented in Appendix A.

Nonresidential: HVAC Computer Room Air Conditioners

Relevant Standards and Reference Sources

- ANSI/ASHRAE/IES Standard 90.1-2010. Energy Standard for Buildings Except Low-Rise Residential Buildings. Table 6.8.1A through Table 6.8.1D.
- ANSI/ASHRAE/IES Standard 90.1-2010. Energy Standard for Buildings Except Low-Rise Residential Buildings. Table 6.8.1-1 and Table 6.8.1-2.
- 2015 International Energy Conservation Code. Table C403.2.3(1) and Table C403.2.3(2).
- Code of Federal Regulations. Title 10. Part 431—Energy Efficiency Program for Certain Commercial and Industrial Equipment.
 <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid</u>
 <u>=31</u>.

Document Revision History

Table 78. Nonresidential Computer Room Air Conditioners Revision History

'TRM version	Date	Description of change		
v7.0	10/2019	TRM v7.0 origin.		
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Removed text referring to building types other than data centers.		
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. Updated baseline table citation. Added capacity conversion from kW to btu/hr.		

Nonresidential: HVAC Computer Room Air Conditioners

2.2.6 Computer Room Air Handler Motor Efficiency Measure Overview TRM Measure ID: NS-HV-CM Market Sector: Commercial Measure Category: HVAC Applicable Building Types: Data Centers Fuels Affected: Electricity Decision/Action Type: Retrofit Program Delivery Type: Prescriptive Deemed Savings Type: Deemed Savings Calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves improving the operational efficiency of a computer room air handler (CRAH) through the installation of a variable frequency drive (VFD) or electronically commutated motor (ECM). Savings for this measure include fan motor savings resulting from the ability to modulate the fan speed. Any associated cooling energy savings are not captured.

Eligibility Criteria

Eligible equipment includes fan motors and VFDs, 15 horsepower and smaller used to distribute conditioned air throughout a data center¹⁸⁵.

Baseline Condition

The CRAH baseline is a conventional AC motor driven, constant speed fan.

High-Efficiency Condition

The high-efficiency condition is the installation of a variable frequency drive (VFD) and/or electronically commutated motor (ECM).

Nonresidential: HVAC Computer Room Air Handler Motor Efficiency

¹⁸⁵ The existing associated computer room air conditioning (CRAC) unit condenser and evaporator are expected to remain in place for this measure. If those units are also replaced, reference the CRAC measure TRM entry.

Savings Algorithms and Input Variables

Energy and demand savings are estimated using input assumptions taken from site measured motor kW and operating hours for 243 CRAH units. $^{\rm 186}$

Energy Savings Algorithms

Annual Energy Savings $(kWh) = (kW_{pre} - kW/hp_{post} \times hp_{post}) \times hours$

Equation 36

$$kW_{pre} = 0.746 \times hp_{pre} \times \frac{LF}{\eta}$$

Equation 37

Where:

hp_{pre}	-	Rated horsepower of the existing motor
LF	=	Load factor—ratio of the operating load to the nameplate rating of the motor—assumed to be 75% at the fan or pump design 100% per DEER
η	=	Motor efficiency of a standard efficiency Open Drip Proof (ODP) motor operating at 1800 RPM taken from ASHRAE Standard 90.1- 2013

Table 79. Motor Efficiencies for Open Drip Proof Motors at 1,800 RPM

Motor horsepower	Full load efficiency
1	0.855
2	0.865
3	0.895
5	0.895
7.5	0.91
10	0.917
15	0.93

¹⁸⁶ Site data are sourced from 3 data centers in Oncor territory that replaced 243 CRAH fan motors either with ECMs or retrofitted with VFDs.

Nonresidential: HVAC Computer Room Air Handler Motor Efficiency

0.746	=	HP to kW conversion factor
kW/hp _{post}	=	Efficient kW per motor hp, 0.27 ¹⁸⁷
hppost	=	Total efficient motor horsepower
hours	=	Annual operating hours, 8760

Demand Savings Algorithms

$$Demand Savings (kW) = \frac{Annual Energy Savings (kWh)}{hours} \times CF$$

Equation 38

Where:

CF

= peak coincidence factor, summer and winter: 0.11¹⁸⁸

Deemed Energy and Demand Savings Tables

There are no deemed savings tables for this measure.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The median estimated useful life (EUL) for premium efficiency motors is 15 years.¹⁸⁹

The estimated useful life (EUL) for HVAC VFD measure is 15 years.

146

¹⁸⁷ Oncor site data. Average kW/hp values are weighted by measure count.

¹⁸⁸ Peak coincidence factors are calculated according to the method in Section 4 of the Texas TRM Vol 1 using average hourly kW trends from Oncor site data. Summer and winter CF ranged from 0.10 to 0.12 across all climate zones, and the average value of 0.11 is used as the default input assumption for calculating demand savings.

¹⁸⁹ U.S. DOE, Technical Support Document, "Energy Efficiency Program for Commercial Equipment: Energy Conservation Standards for Electric Motors", Median of "Table 8.2.23 Average Application Lifetime". Download TSD at: <u>https://www.mercatus.org/system/files/1904-AC28-TSD-Electric-Motors.pdf</u>. Accessed July 2020.

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Motor quantity, type, horsepower, and control; pre-installation
- Motor quantity, type, horsepower, and control; post-installation
- Climate zone

References and Efficiency Standards

Petitions and Rulings

None.

Relevant Standards and Reference Sources

Not applicable.

Document Revision History

Table 80. Nonresidential Computer Room Air Handler Motor Efficiency Revision History

TRM version	Date	Description of change		
v8.0	10/2020	TRM v8.0 origin.		
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. No revisions.		

2.2.7 HVAC Variable Frequency Drives Measure Overview

TRM Measure ID: NR-HV-VF

Market Sector: Commercial

Measure Category: HVAC

Applicable Building Types: See <u>Table 85</u>Table 85 through <u>Table 91</u> Table 91

Fuels Affected: Electricity

Decision/Action Type: Retrofit

Program Delivery Type: Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the installation of a variable frequency drive (VFD) in a commercial HVAC application. Eligible applications include:

- AHU supply fan on a split or packaged HVAC system. The fan is in a variable air volume (VAV) system with terminal VAV boxes or constant air volume (CAV) unit with no control device.
- Hot water distribution pumps
- Chilled water distribution pumps

This measure does not apply to controls installed on the HVAC compressor. This measure accounts for the interactive air conditioning demand savings during the utility defined summer peak period. The savings are on a per-control basis, and the lookup tables show the total savings for eligible scenarios.

Eligibility Criteria

Supply fans may not have variable pitch blades. Supply fans must be less than or equal to 100 hp. New construction systems are ineligible. Equipment used for process loads is ineligible.

Baseline Condition

The AHU supply fan baseline is a centrifugal supply fan with a single-speed motor on a direct expansion (DX) VAV or CAV air conditioning (AC) unit. The motor is a standard efficiency motor based on ASHRAE Standard 90.1-2013, which are provided by horsepower. The AC unit has standard cooling efficiency based on IECC 2015. The part-load fan control is an outlet damper, inlet damper, inlet guide vane, or no control (constant volume systems).

148

Nonresidential: HVAC HVAC Variable Frequency Drives

The HVAC pump baseline is a constant speed pump with a standard-efficiency motor. This measure is applicable to both primary and secondary hot or chilled water pumping systems.

High-Efficiency Condition

The high-efficiency condition is the installation of a VFD on an AHU supply fan, hot water pump, or chilled water pump.

For AHU supply fans, when applicable, the existing damper or inlet guide vane will be removed or set completely open permanently after installation. The VFD will maintain a constant static pressure by adjusting fan speed and delivering the same amount of air as the baseline condition.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Demand Savings are calculated for each hour over the course of the year:

Step 1: Determine the percent flow rate for each of the year (i)

For AHUs:

$$\% CFM_i = m \times t_{db,i} + b$$

Equation 39

Where:

$t_{db,i}$	=	The hourly dry bulb temperature (DBT) using TMY3 ¹⁹⁰ data
т	=	The slope of the relationship between DBT and CFM, see <u>Table</u> Formatted: Font: (Default) Arial, 11 pt, Font color: Auto <u>81</u> Table 81
b	=	The intercept of the relationship between DSBT and CFM, see Table 81 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

The minimum flow rate is set to 60% cfm based on common design practice.¹⁹¹ Determination of the minimum dry bulb temperature assumes that cooling will only operate above the cooling reference temperature of 65°F dry bulb. The maximum DBT is the ASHRAE dry bulb design temperature.¹⁹²

 ¹⁹⁰ National Renewable Energy Laboratory's (NREL) National Solar Radiation Data Base: 1991-2005 Update for Typical Meteorological Year 3 (TMY3). Available at https://sam.nrel.gov/weather-data.html.
 ¹⁹¹ For AHU, a 60% minimum setpoint strategy is assumed, so any results below 60% are set to 60%.

¹⁹² ASHRAE 2017 Fundamentals, Ch 14 Appendix: design conditions for selected locations, 0.4% Cooling DB.

Nonresidential: HVAC HVAC Variable Frequency Drives

Similarly, any results greater than 100% are set to 100%.

Climate zone	Condition	Minimum	Maximum	Slope (<i>m</i>)	Intercept (b)		
Zone 1	Flow Rate (%CFM)	60	100	1.19	-17.38		
	Dry Bulb T (°F)	65	98.6				
Zone 2	Flow Rate (%CFM)	60	100	1.10	-11.43		
	Dry Bulb T (°F)	65	101.4				
Zone 3	Flow Rate (%CFM)	60	100	1.23	-20.00		
	Dry Bulb T (°F)	65	97.5				
Zone 4	Flow Rate (%CFM)	60	100	1.26	-21.76		
	Dry Bulb T (°F)	65	96.8				
Zone 5	Flow Rate (%CFM)	60	100	1.11	-12.02		
	Dry Bulb T (°F)	65	101.1				

Table 81. AHU Supply Fan VFD %CFM Inputs

For chilled water pumps:

$$\% GPM_i = m \times t_{db i} + b$$

Equation 40

Where:

$t_{db,i}$	=	The hourly dry bulb temperature (DBT) using TMY3 data
m	=	The slope of the relationship between DBT and GPM, see <u>Table</u> Formatted: Font: (Default) Arial, 11 pt, Font color: Auto 82 Fable 82
b	=	The intercept of the relationship between DSBT and GPM, see Table 82 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

The minimum flow rate is set to 10% GPM based on the ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual.¹⁹³ Determination of the minimum dry bulb temperature assumes that cooling will only operate above the cooling reference temperature of 65°F dry bulb. The maximum DBT is the ASHRAE dry bulb design temperature.¹⁹⁴

¹⁹³ PNNL, ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual, page 3.249, pump minimum speed default.

¹⁹⁴ ASHRAE 2017 Fundamentals, Ch 14 Appendix: design conditions for selected locations, 0.4% Cooling DB.

Nonresidential: HVAC HVAC Variable Frequency Drives

Table 82. Chilled Water Pump VFD % CFM_GPM_I nputs								
Climate zone	one Condition Minimum Maximum Slope (m); Intercept (۵)							
Zone 1	Flow Rate (%GPM)	10	100	2.68	-164.11			
	Dry Bulb T (°F)	65	98.6					
Zone 2	Flow Rate (%GPM)	10	100	2.47	-150.71			
	Dry Bulb T (°F)	65	101.4					
Zone 3	Flow Rate (%GPM)	10	100	2.77	-170.00			
	Dry Bulb T (°F)	65	97.5					
Zone 4	Flow Rate (%GPM)	10	100	2.83	-173.96			
	Dry Bulb T (°F)	65	96.8					
Zone 5	Flow Rate (%GPM)	10	100	2.49	-152.05			
	Dry Bulb T (°F)	65	101.1					

For hot water pumps:

$$\% GPM_i = m \times t_{db_i} + b$$

Equation 41

Where:

I

$t_{db,i}$	=	The hourly dry bulb temperature (DBT) using TMY3 data ¹⁹⁰
m	=	The slope of the relationship between DBT and GPM, see <u>Table</u> Formatted: Font: (Default) Arial, 11 pt, Font color: Auto <u>83</u> Table 83
Ь	=	The intercept of the relationship between DSBT and GPM, see Table 83 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

The minimum flow rate is set to 10% GPM based on the ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual.¹⁹⁵ Determination of the minimum dry bulb temperature assumes that heating will only operate below the heating reference temperature of 65°F dry bulb. The maximum DBT is the ASHRAE dry bulb design temperature.¹⁹⁶

¹⁹⁵ PNNL, ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual, page 3.249, pump minimum speed default.

¹⁹⁶ ASHRAE 2017 Fundamentals, Ch 14 Appendix: design conditions for selected locations, 99.6% Heating DB.

Nonresidential: HVAC HVAC Variable Frequency Drives

Climate zone	Condition	Minimum	Maximum	Slope (m)	Intercept (b)		
Zone 1	Flow Rate (%GPM)	10	100	-1.64	116.56		
	Dry Bulb T (°F)	65	10.1				
Zone 2	Flow Rate (%GPM)	10	100	-2.16	150.29		
	Dry Bulb T (°F)	65	23.3				
Zone 3	Flow Rate (%GPM)	10	100	-2.65	182.57		
	Dry Bulb T (°F)	65	31.1				
Zone 4	Flow Rate (%GPM)	10	100	-3.15	214.55		
	Dry Bulb T (°F)	65	36.4				
Zone 5	Flow Rate (%GPM)	10	100	-2.26	156.62		
	Dry Bulb T (°F)	65	25.1				

Table 83. Hot Water Pump VFD %CFM GPM Inputs

<u>Step 2</u> - Calculate the %power for the applicable baseline and the new VFD technology: <u>Baseline Technologies</u>

For AHU supply fan: 197

 $\% power_{i,OutletDamper} = 0.00745 \times \% CFM_i^2 + 0.10983 \times \% CFM_i + 20.41905$ Equation 42

Equation 44

Note: %power for constant volume baseline technologies with no fan control is set equal to 1 for each hour where %power is less than 1 for the other baseline control types. When %power exceeds 1 for the other baseline control types, %power for no fan control is set equal to the maximum value from the other baseline control types.

For chilled and hot water pumps198:

 $\% power_{base} = 2.5294 \times \% GPM_i^3 - 4.7443 \times \% GPM_i^2 + 3.2485 \times \% GPM_i + 0$ Equation 45

Nonresidential: HVAC HVAC Variable Frequency Drives

¹⁹⁷ <u>https://focusonenergy.com/sites/default/files/Focus%20on%20Energy_TRM_January2015.pdf</u>, page 225. Please note, the CFM² coefficients in Equation 38 and Equation 39 have the wrong sign in the reference document.

¹⁹⁸ PNNL, ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual, Table 87 Default Part-load CIRC-PUMP-FPLR Coefficients – Constant Speed, no VSD.

VFD Technology

For AHU supply fan¹⁹⁹:

$$\% power_{VFD} = 0.00004 \times \% CFM_i^3 + 0.00766 \times \% CFM_i^2 - 0.19567 \times \% CFM_i + 5.9$$

Equation 46

For chilled and hot water pumps²⁰⁰:

$$\% power_{VFD} = 0.7347 \times \% GPM_i^3 - 0.301 \times \% GPM_i^2 + 0.5726 \times \% GPM_i + 0$$

Equation 47

<u>Step 3</u> - Calculate kW_{full} using the hp from the motor nameplate, <u>LF (75%)</u><u>load factor</u>, and the applicable motor efficiency from ASHRAE 2013, Table 10.8-1 Minimum Nominal Efficiency for General Purpose Electric Motors; Use that result and the %power results to determine power consumption at each hour:

$$kW_{full} = 0.746 \times HP \times \frac{LF}{\eta}$$

Equation 48

$$kW_i = kW_{full} \times \% power_i$$

Equation 49

Where:

%power _i	=	Percentage of full load <u>pump</u> power at the i th hour calculated by an equation based on the control type (outlet damper, inlet box damper, inlet guide vane-IGV, or VFD) ²⁰¹
kW _{full}	=	Fan mM otor power demand operating at the fan design 100% CFM or pump design 100% GPM
kWi	=	Fan or Pump real-time power at the i th hour of a year
HP	=	Rated horsepower of the motor
LF	=	Load factor—ratio of the operating load to the nameplate rating of the motor—assumed to be 75% at the fan or pump dosign 100% per DEER 2005
η	=	Motor efficiency of a standard efficiency Open Drip Proof (ODP) motor operating at 1800 RPM taken from ASHRAE Standard 90.1-

¹⁹⁹ <u>https://focusonenergy.com/sites/default/files/Focus%20on%20Energy_TRM_January2015.pdf</u>, page 225.

Nonresidential: HVAC HVAC Variable Frequency Drives

²⁰⁰ PNNL, ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual, Table 87 Default Part-load CIRC-PUMP-FPLR Coefficients – Default (VSD, No Reset).

²⁰¹ Fan curves by control type are provided in the BPA ASD Calculator, <u>http://www.bpa.gov/EE/Sectors/</u><u>Industrial/Documents/ASDCalculators.xls</u>.

2013

Table 84. Motor Efficiencies	for Open Drip Proof	Motors at 1,800 RPM
------------------------------	---------------------	---------------------

Motor horsepower	Full load efficiency
1	0.855
2	0.865
3	0.895
5	0.895
7.5	0.91
10	0.917
15	0.93
20	0.93
25	0.936
30	0.941
40	0.941
50	0.945
60	0.95
75	0.95
100	0.954

0.746

=

=

HP to kW conversion factor

Step 4 - Calculate the kW savings for each of the top 20 hours within the applicable peak probability analysis for the building's climate zone from Volume 1. Sum the kW savings for each hour multiplied by the peak demand probability factor from the 20 individual hourly calculations, then divide by the sum of the PDPF for the 20 hours to get the average peak demand impact, and then calculate the total peak demand saved by adding peak demand interactive effects:

Hourly Savings Calculations

$$(kW_i)_{Saved} = [(kW_i)_{Baseline} - (kW_i)_{VFD}] \times schedule_i$$

Equation 50

Where:

schedule

1 when building is occupied, 0.2 when building is unoccupied, see <u>Table 85</u>Table 85

Formatted: Font: (Default) Arial, 11 pt

Nonresidential: HVAC HVAC Variable Frequency Drives

Table 65. Yearly N	Weekday	Weekend	Annual motor
Building type	schedule	schedule	operation hours ²⁰⁴
Hospitals- and , Hhealthcare, <u>nursing</u> home, hotel (common areas), large multifamily (common areas)	24 hr	24 hr	8,760
Office— <mark>Ll</mark> arge <u>, medium</u>	8am- 8pm<u>7</u>am- <u>11pm</u>	8am– 10am<u>7am–</u> 7pm (Saturday)	4 <u>,4245,592</u>
Office— <mark>s</mark> Small	8am- 6pm<u>7am-</u> <u>8pm</u>	8am- 10am<u>closed</u>	4, 006<u>4,466</u>
Education—K-12	7am- 5pm<u>8am-</u> <u>11pm</u>	8am- 12pm<u>closed</u>	4 <u>,1734,884</u>
Education—College and University	8am–8pm	8am–12pm	4,590
Convenience store, service, strip mall	<u>9am–10pm</u>	<u>9am–8pm</u> (Saturday) 10am–7pm (Sunday)	<u>5,298</u>
<u>Stand-alone R</u> retail <u>,</u> supermarket	9am– 10pm<u>8am–</u> <u>10pm</u>	<u>8am–11pm</u> (<u>Saturday)</u> <u>10am–7pm</u> (<u>Sunday)</u> 9am – 10pm	5,548<u>5,674</u>
Restaurants Fast Food	6am– 11pm<u>2am</u>	6am– <u>11pm2am</u>	6,716<u>7,592</u>
Restaurants-Sit Down	11am–11pm	11am-11pm	5,256
Warehouse	<u>7am–7pm</u>	<u>closed</u>	<u>4,258</u>
Assembly, worship	<u>9am–11pm</u>	<u>9am–11pm</u>	<u>5,840</u>
Other ²⁰⁵	8am- 6pm<u>7</u>am- <u>7pm</u>	8am- 10am<u>closed</u>	4, 006<u>4,258</u>

Table 85. Yearly Motor Operation Hours by Building Type^{202,203}

Average Peak Demand Saved Calculation, excluding interactive effects

$$kW_{PDPF,Saved} = \frac{\sum_{i=1}^{20} (kW_i)_{Saved} * PDPF_i)}{\sum_{i=1}^{20} (PDPF_i)}$$

Equation 51

155

Nonresidential: HVAC HVAC Variable Frequency Drives

²⁰² Hours for all building types except for Assembly come from the Department of Energy Commercial Building Prototype Models, Scorecards, HVAC Operation Schedule. Motor hours are set to equal 1

Where:

PDPF

Peak demand probability factor from the applicable climate zone table in Volume 1.

Total Peak Demand Saved Calculation, including interactive effects. This applies only to AHU supply fans. Total peak demand savings for pumps are found using <u>Equation 51</u><u>Equation 51</u> above:

$$kW_{TotalSaved} = kW_{PDPF,Saved} \times (1 + \frac{3.412}{Cooling_{EER}})$$

Equation 52

Where:

Cooling_{EER}

=

Air conditioner full-load cooling efficiency, assumed at 11.2, based on IECC 2015 minimum efficiency of a unitary AC system between 5 and 11.3 tons

Energy Savings are calculated in the following manner:

<u>Step 1</u> – For both the baseline and new technology, calculate the sum of individual kWh consumption in each hour of the year:

Annual kWh =
$$\sum_{i=1}^{8760} (kW_i \times schedule_i)$$

Equation 53

Where:

8760 = Total number of hours in a year

<u>Step 2</u> - Subtract the Annual kWh_{new} from the Annual kWh_{baseline} to get the Annual Energy Savings:

when the HVAC Operation Schedule is "on" and 0.2 when the HVAC Operation Schedule is "off." https://www.energycodes.gov/development/commercial/prototype models. Assembly occupied hours come from COMNET Appendix C—Schedules (Rev 3) https://comnet.org/appendix-c-schedules, updated 07/25/2016. The building hours of operation were noted in PUCT Docket 40668 to have been referenced from Commercial Building Energy Consumption Survey (CBECS) 2003. The specific analysis/report could not be confirmed.

²⁰⁴ Motor operation hours are building occupied hours plus 20 percent of unoccupied hours.
 ²⁰⁵ The "other" building type may be used when none of the listed building types apply. The values used for other are the most conservative of the listed building types.

156

Nonresidential: HVAC HVAC Variable Frequency Drives

²⁰³ Data centers are covered in 2.2.6 Computer Room Air Handler Motor Efficiency.

Annual Energy Savings $[kWh] = kWh_{baseline} - kWh_{new}$

Equation 54

Deemed Energy and Demand Savings Tables²⁰⁶

Table 86. AHU Supply Fan Outlet Damper Baseline Savings per Motor HP						
			Climate zone	•		
Building type	1	2	3	4	5	
Ener	gy savings (kWh per mot	tor HP)			
Hospitals- <u>and H, h</u> ealthcare, nursing home, hotel (common areas), large multifamily (common areas)	<u>1,159</u> 1,16 0	<u>1,101</u> 1,10 4	<u>1,070</u> 1,07 4	1,046	1,121	
Office— <u>Ll</u> arge <u>, medium</u>	<u>724</u> 569	<u>682</u> 536	<u>658</u> 515	<u>640</u> 4 99	<u>695</u> 545	
Office— <mark>s</mark> Small	<u>575</u> 514	<u>543</u> 484	<u>522</u> 464	<u>506</u> 44 9	<u>552</u> 4 93	
Education— K-12	<u>632</u> 539	<u>596</u> 508	<u>576</u> 484	<u>560</u> 469	<u>606</u> 517	
Education—College and University	590	555	533	517	565	
Convenience store, service, strip Mall	<u>676</u>	<u>637</u>	<u>613</u>	<u>598</u>	<u>648</u>	
<u>Stand-alone</u> R retail <u>, supermarket</u>	<u>727</u> 710	<u>685</u> 668	<u>660</u> 645	<u>643</u> 629	<u>698</u> 680	
Restaurants Fast Food	<u>994</u> 872	<u>941</u> 823	<u>912</u> 796	<u>891</u> 776	<u>958</u> 838	
Restaurants-Sit Down	674	635	617	603	646	
Warehouse	<u>548</u>	<u>516</u>	<u>495</u>	<u>480</u>	<u>525</u>	
Assembly, worship	<u>750</u>	<u>707</u>	<u>683</u>	<u>667</u>	<u>720</u>	
Other	<u>548</u> 514	<u>516</u> 484	<u>495</u> 464	<u>480</u> 44 9	<u>525</u> 4 93	
Summer kW savings (kW per motor HP)						
All Building Types	<u>0.040</u> 0.04 1	<u>0.023</u> 0.03 2	<u>0.021</u> 0.03 8	<u>0.063</u> 0.06 4	<u>0.042</u> 0.04 1	

Table 86. AHU Supply Fan Outlet Damper Baseline Savings per Motor HP

Table 87. AHU Supply Fan Inlet Damper Baseline Savings per Motor HP

	Climate zone					
Building type	1	2	3	4	5	
Energy savings (kWh per motor HP)						
Hospitals- <u>and-, Hh</u> ealthcare, nursing home, hotel (common areas), large multifamily (common areas)	1,824	1,672	1,597<u>1,59</u> <u>6</u>	1,533	1,722	
Office— <u>Ll</u> arge <u>, medium</u>	<u>1,125</u> 881	<u>1,024</u> 801	<u>967</u> 754	<u>922</u> 716	<u>1,051</u> 822	

 $^{\rm 206}$ Data centers are covered in 2.2.6 Computer Room Air Handler Motor Efficiency.

157

Nonresidential: HVAC HVAC Variable Frequency Drives

	Climate zone					
Building type	1	2	3	4	5	
Office— <mark>Ss</mark> mall	<u>893</u> 797	<u>813</u> 724	<u>765</u> 678	<u>726</u> 643	<u>833</u> 743	
Education—K-12	<u>983</u> 837	<u>895</u> 761	<u>847</u> 709	<u>807</u> 673	<u>916</u> 782	
Education—College and University	914	830	780	741	852	
Convenience store, service, strip mall	<u>1,045</u>	<u>950</u>	<u>896</u>	<u>857</u>	<u>975</u>	
<u>Stand-alone</u> <u>Rr</u> etail <u>, supermarket</u>	<u>1,126</u> 1,09 8	<u>1,025</u> 998	<u>966</u> 944	<u>924</u> 904	<u>1,051</u> 1,02 4	
Restaurants - Fast Food	<u>1,555</u> 1,35 8	<u>1,420</u> 1,23 8	<u>1,351</u> 1,17 2	<u>1,296</u> 1,12 2	<u>1,461</u> 1,27 2	
Restaurants—Sit Down	1,044	949	906	870	974	
Warehouse	<u>849</u>	<u>773</u>	<u>726</u>	<u>689</u>	<u>793</u>	
Assembly, worship	<u>1,163</u>	<u>1,057</u>	<u>1,001</u>	<u>960</u>	<u>1,085</u>	
Other	<u>849</u> 797	<u>773</u> 724	<u>726</u> 678	<u>689</u> 643	<u>793</u> 743	
Summer kW Savings (kW per Motor HP)						
All Building Types	<u>0.044</u> 0.04 7	<u>0.026</u> 0.03 7	<u>0.024</u> 0.04 7	<u>0.069</u> 0.06 7	0.047	

158

Nonresidential: HVAC HVAC Variable Frequency Drives

	Climate zone					
Building type	1	2	3	4	5	
Ener	gy savings (kWh per mot	tor HP)			
Hospitals-and-, <u>Hh</u> ealthcare, nursing home, hotel (common areas), large multifamily (common areas)	388	345	324	307	359	
Office— <u>Ll</u> arge <u>, medium</u>	<u>237</u> 485	<u>209</u> 163	<u>194151</u>	<u>182</u> 141	<u>216</u> 169	
Office— <mark>Ss</mark> mall	<u>188</u> 167	<u>166</u> 148	<u>153</u> 135	<u>143</u> 126	<u>171</u> 153	
Education— K-12	<u>207</u> 176	<u>183</u> 156	<u>170142</u>	<u>159</u> 132	<u>189</u> 161	
Education College and University	192	169	156	145	175	
Convenience store, service, strip mall	<u>219</u>	<u>194</u>	<u>179</u>	<u>168</u>	<u>200</u>	
<u>Stand-alone r</u> Retail <u>, supermarket</u>	<u>237</u> 230	<u>209</u> 203	<u>193</u> 189	<u>182</u> 178	<u>216</u> 210	
Restaurants - Fast Food	<u>329</u> 286	<u>292</u> 253	<u>273</u> 236	<u>258</u> 222	<u>303</u> 262	
Restaurants-Sit Down	219	19 4	182	172	200	
Warehouse	<u>179</u>	<u>158</u>	<u>145</u>	<u>135</u>	<u>163</u>	
Assembly, worship	<u>244</u>	<u>216</u>	<u>201</u>	<u>189</u>	<u>223</u>	
Other	<u>179</u> 167	<u>158</u> 148	<u>145</u> 135	<u>135</u> 126	<u>163</u> 153	
Summer kW savings (kW per motor HP)						
All Building Types	<u>0.010</u> 0.00 9	0.009	<u>0.005</u> 0.01	<u>0.012</u> 0.01 4	<u>0.013</u> 0.01	

Table 88. AHU Supply Fan Inlet Guide Vane Baseline Savings per Motor HP

Table 89. AHU Supply Fan No Control Baseline Savings per Motor HP

		(Climate Zone	•	
Building type	1	2	3	4	5
Ener	gy savings (l	kWh per mot	tor HP)		
Hospitals-and H_healthcare, nursing home, hotel (common areas), large multifamily (common areas)	<u>3,299</u> 3,30 0	<u>3,034</u> 3,03 5	<u>2,9022,90</u> 4	<u>2,7912,79 2</u>	<u>3,123</u> 3,12 4
Office— <u>Ll</u> arge <u>, medium</u>	<u>2,035</u> 1,59 5	<u>1,856</u> 1,4 5 3	<u>1,755</u> 1,36 8	<u>1,675</u> 1,29 9	<u>1,906</u> 1,4 9 0
Office— <u>s</u> Small	<u>1,615</u> 1,44 2	<u>1,473</u> 1,31 3	<u>1,387</u> 1,22 8	<u>1,318</u> 1,16 5	<u>1,510</u> 1,34 8
Education— K-12	<u>1,778</u> 1,51 4	<u>1,622</u> 1,38 0	<u>1,538</u> 1,28 5	<u>1,465</u> 1,21 9	<u>1,661</u> 1,41 8
Education—College and University	1,65 4	1,505	1,414	1,344	1,545
Convenience store, service, strip mall	<u>1,890</u>	<u>1,721</u>	<u>1,624</u>	<u>1,554</u>	<u>1,766</u>
<u>Stand-alone Rr</u> etail <u>, supermarket</u>	<u>2,038</u> 1,98 8	<u>1,856</u> 1,80 9	<u>1,752</u> 1,71 2	<u>1,676</u> 1,64 0	<u>1,906</u> 1,85 7

159

Nonresidential: HVAC HVAC Variable Frequency Drives

	Climate Zone					
Building type	1	2	3	4	5	
Restaurants—Fast Food	<u>2,814</u> 2,45 8	<u>2,577</u> 2,24 5	<u>2,455</u> 2,12 8	<u>2,357</u> 2,04 0	<u>2,650</u> 2,30 7	
Restaurants-Sit Down	1,889	1,720	1,644	1,579	1,765	
Warehouse	<u>1,536</u>	<u>1,401</u>	<u>1,316</u>	<u>1,248</u>	<u>1,437</u>	
Assembly, worship	<u>2,104</u>	<u>1,916</u>	<u>1,817</u>	<u>1,742</u>	<u>1,967</u>	
Other	<u>1,536</u> 1,44 2	<u>1,401</u> 1,31 3	<u>1,316</u> 1,22 8	<u>1,248</u> 1,16 5	<u>1,437</u> 1,34 8	
Summer kW savings (kW per motor HP)						
All Building Types	<u>0.0029</u> 0.0 4 9	<u>0.004</u> 0.03 7	<u>0.026</u> 0.06 1	0.0860.08 6	<u>0.024</u> 0.05 4	

Nonresidential: HVAC HVAC Variable Frequency Drives

Table 50. Chilled Water Fullip Savings per Motor HF							
			Climate Zone	2			
Building type	1	2	3	4	5		
Ener	gy savings (kWh per mot	tor HP)				
Hospitals <u>and H, h</u> ealthcare, nursing home, hotel (common areas), large multifamily (common areas)	777	1,154	1,337	1,479	1,049		
Office— <mark>Ll</mark> arge <u>, medium</u>	<u>562</u> 455	<u>775</u> 621	<u>880</u> 699	<u>966</u> 758	<u>734</u> 590		
Office— <mark>Ss</mark> mall	<u>455</u> 411	<u>624</u> 560	<u>702</u> 633	<u>766</u> 683	<u>591</u> 533		
Education— K-12	<u>490</u> 422	<u>683</u> 577	<u>767</u> 655	<u>841</u> 710	<u>646</u> 549		
Education College and University	4 75	644	727	788	613		
<u>Convenience store, service, strip</u> mall	<u>552</u>	<u>747</u>	<u>847</u>	<u>917</u>	<u>705</u>		
<u>Stand-alone Rr</u> etail <u>, supermarket</u>	<u>585</u> 576	<u>795</u> 780	<u>904</u> 888	<u>980</u> 958	<u>753</u> 738		
Restaurants -Fast Food	<u>721662</u>	<u>1,030924</u>	<u>1,181</u> 1,05 7	<u>1,295</u> 1,15 2	<u>959</u> 868		
Restaurants—Sit Down	540	736	837	908	690		
Warehouse	<u>433</u>	<u>594</u>	<u>669</u>	<u>728</u>	<u>563</u>		
Assembly, worship	<u>599</u>	<u>818</u>	<u>931</u>	<u>1,009</u>	<u>772</u>		
Other	<u>433</u> 411	<u>594</u> 560	<u>669</u> 633	<u>728</u> 683	<u>563</u> 533		
Summer kW savings (kW per motor HP)							
All Building Types	0.046	<u>0.018</u> 0.02 9	0.029 <mark>0.03</mark> 5	<u>0.091</u> 0.08 7	<u>0.043</u> 0.04 9		

Table 90. Chilled Water Pump Savings per Motor HP

Table 91. Hot Water Pump Savings per Motor HP

	Climate Zone						
Building type	1	2	3	4	5		
Energy savings (kWh per motor HP)							
Hospitals- <u>and H, h</u> ealthcare, nursing home, hotel (common areas), large multifamily (common areas)	1,304	912	723	597	1,044		
Office— <u>Ll</u> arge <u>, medium</u>	<u>777</u> 600	<u>536</u> 417	<u>419</u> 323	<u>332</u> 257	<u>609</u> 468		
Office— <mark>Ss</mark> mall	<u>612</u> 541	<u>423</u> 378	<u>329</u> 286	<u>261</u> 228	<u>475</u> 421		
Education—K-12	<u>679</u> 572	<u>468</u> 399	<u>369</u> 301	<u>295</u> 239	<u>528</u> 44 8		
Education College and University	620	431	332	264	487		
Convenience store, service, strip mall	<u>708</u>	<u>482</u>	<u>376</u>	<u>301</u>	<u>560</u>		
<u>Stand-alone Rr</u> etail <u>, supermarket</u>	<u>767</u> 746	<u>527</u> 510	<u>411</u> 397	<u>330</u> 321	<u>608</u> 593		
Restaurants Fast Food	<u>1,091</u> 940	<u>757</u> 649	<u>600</u> 510	<u>491</u> 413	<u>867</u> 745		
Restaurants-Sit Down	710	4 87	386	31 4	566		

161

Nonresidential: HVAC HVAC Variable Frequency Drives

	Climate Zone					
Building type	1	2	3	4	5	
Warehouse	<u>581</u>	<u>403</u>	<u>310</u>	<u>246</u>	<u>451</u>	
Assembly, worship	<u>794</u>	<u>544</u>	<u>427</u>	<u>345</u>	<u>632</u>	
Other	<u>581</u> 541	<u>403</u> 378	<u>310286</u>	<u>246</u> 228	<u>451</u> 421	
Winter kW savings (kW per motor HP)						
All Building Types	0.123	0.045	0.047	0.108	0.229	

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID HVAC-VSD-fan.²⁰⁷

The estimated useful life (EUL) for this VFD measure is 15 years per both the PUCT-approved Texas EUL filing (Docket No. 36779) and DEER 2014 (EUL ID—HVAC-VSD-fan).

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Building type
- Application type (AHU supply fan, hot water pump, chilled water pump)
- Climate zone
- Motor horsepower
- For AHU supply fans only: Baseline part-load control type (e.g., outlet damper, inlet damper, inlet guide vane, constant volume/no control).

References and Efficiency Standards

Petitions and Rulings

- PUCT Docket 36779—Provides EUL for VFD equipment
- PUCT Docket 40668—Provides details on deemed savings calculations for VFDs.

162

Nonresidential: HVAC HVAC Variable Frequency Drives

²⁰⁷ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

Relevant Standards and Reference Sources

- ASHRAE Fundamentals 1997: Chapter 26, Table 1B—Cooling and Dehumidification Design Conditions—United States.
- ASHRAE Standard 90.1-2013: Table 10.8-1 Minimum Nominal Full-load Efficiency for General Purpose Electric Motors (Subtype I), Except Fire-Pump Electric Motors and Table 10.8-2 Minimum Nominal Full-load Efficiency for General Purpose Electric Motors (Subtype II), Except Fire-Pump Electric Motors.
- National Renewable Energy Laboratory's (NREL) National Solar Radiation Data Base: 1991- 2005 Update for Typical Meteorological Year 3 (TMY3). Available at <u>https://sam.nrel.gov/weather-data.html</u>.
- California Public Utility Commission. Database for Energy Efficiency Resources, 2005.
- Bonneville Power Authority Adjustable Speed Drive Calculator—Fan curves utilized from that calculator were derived from "Flow Control," a Westinghouse publication, Bulletin B-851, F/86/Rev-CMS 8121.

http://www.bpa.gov/EE/Sectors/Industrial/Documents/ASDCalculators.xls._Accessed 07/09/2020.

Document Revision History

Table 92. Nonresidential HVAC VFD Revision History

163

'TRM version	Date	Description of change	
v1.0	11/25/2013	TRM v1.0 origin.	
v2.0	04/18/2014	TRM v2.0 update. No revisions.	
v3.0	04/10/2015	TRM v3.0 update. Corrected ASHRAE 0.4 percent Dry Bulb Design Temperature references for three climate zone reference cities: DFW, El Paso, and Houston. Updated Valley climate zone reference city to Corpus Christi to be consistent with TRM guidance. Corrected Motor Load Factor to 75 percent.	
v4.0	10/10/2016	TRM v4.0 update. Added reference for percent power and corrected signs for variables in <u>Equation 46</u> .	Formatted: Font: 10 pt
v5.0	10/2017	TRM v5.0 update. Updated deemed energy/demand tables for revised peak demand definition.	
v6.0	10/2018	TRM v6.0 update. Added no control device option for constant volume systems. Corrected error in previous kW and kWh deemed savings calculations for Outlet Damper baseline control.	
v7.0	10/2019	TRM v7.0 update. Renamed measure to HVAC Variable Frequency Drives. Added methodology for chilled and hot water pumps.	
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Added motor efficiency default assumptions.	
<u>v9.0</u>	10/2021	TRM v9.0 update. Expanded available building types and updated occupancy schedules.	

Nonresidential: HVAC HVAC Variable Frequency Drives

2.2.8 Condenser Air Evaporative Pre-Cooling Measure Overview

TRM Measure ID: NR-HV-EP
Market Sector: Commercial
Measure Category: HVAC
Applicable Building Types: See <u>Table 94</u>Table 94 through <u>Table 98</u>Table 98
Fuels Affected: Electricity
Decision/Action Type: Retrofit, new construction
Program Delivery Type: Prescriptive
Deemed Savings Type: Deemed savings calculation
Savings Methodology: Engineering algorithms and estimates

Measure Description

This section summarizes the deemed savings methodology for the installation of an evaporative pre-cooling system onto HVAC equipment. This process reduces the temperature of the outside air before it is used to cool the condenser coil for direct expansion (DX) units or air-cooled chillers. The temperature reduction is achieved by having the incoming air pass through a saturated media or mist wall, which will increase the humidity ratio under adiabatic conditions. This allows the dry bulb temperature to decrease while the wet bulb temperature remains constant, effectively increasing the heat rejection capacity from the condenser coils into the air. This measure is not applicable to the replacement of an air-cooled condenser with an evaporative condenser.

Applicable evaporative pre-cooling product types include:

- · Evaporative media panels that incoming air must pass through
- Misting based system that sprays fine droplets into the air in front of the air intake area.

Eligibility Criteria

For a measure to be eligible to use this deemed savings approach, the following conditions must be met:

- Must have chemical or mechanical water treatment
 - Must have periodic purge control for sump-based systems
- Must have a control system for operation
 - o Minimum temperature controls for sump-based systems
 - o Minimum enthalpy controls for mist-based systems
- All air to condenser coils must pass through the evaporative pre-cooling system
- · Systems must be installed by a qualified contractor and must be commissioned

164

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

- Evaporative effectiveness performance of greater than or equal to 0.75 (i.e., 75 percent) for average dry bulb temperature and humidity during peak hours
- Operation manuals must be provided
- If these conditions are not met, the deemed savings approach cannot be used, and the Simplified M&V Methodology or the Full M&V Methodology must be used.

Baseline Condition

The baseline conditions are the operation of a direct expansion (DX) unit or air-cooled chiller without evaporative pre-cooling.

High-Efficiency Condition

Evaporative pre-cooling systems must exceed the evaporative effectiveness performance of 75 percent for average dry bulb temperature humidity during peak hours. Table 93 contains values that can be used as a reference for evaluating evaporative effectiveness.

Climate zone	Temperature (°F)	Humidity (%)
1—Amarillo	95.8	25
2—Dallas	101.2	34
3—Houston	99.1	37
4—Corpus Christi	92.5	49
5—El Paso	97.4	15

Table 93. Average Weather During Peak Conditions²⁰⁸

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings $[kWh_{savings}] = (Cap_C \times \eta_C) \times EFLH_{reduction}$

Equation 55

Peak Demand $[kW_{Savings}] = (Cap_C \times \eta_C) \times DRF$

Equation 56

²⁰⁸ Extracted from weather data from building models that were used to create summer peak period value used for this measure.

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

Where:

Cap _C	=	Rated equipment cooling capacity of the existing equipment at AHRI standard conditions [Btuh or t on <u>s]; 1 ton = 12,000 Btuh</u>	
η_c	=	Cooling efficiency of existing equipment [Btu/W-h, or kW/ton]	
		Note: For DX systems, use EER for kW savings calculations and SEER/IEER for kWh savings calculations. For air-cooled chillers, use full-load efficiency (kW/ton) for kW savings calculations and part-load efficiency (IPLV) for kWh savings calculations. In the cases where the full-load efficiency is provided in terms of EER or SEER/IEER rather than kW/ton and IPLV, a units conversion to kW/ton needs to be performed using the following conversion:	
		$\frac{kW}{Ton} = \frac{12}{EER}$ Equation 57	
EFLH _{reduction}	=	Annual cooling energy reduction divided by the rated full loaded demand. Annual cooling energy reduction is determined according to the same method as other HVAC coefficients contained in the TRM. Rated full loaded demand is the Cap _c divided by its rated full load efficiency. See <u>Table 94Table 94</u> through <u>Table 98</u> Table	Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
		98 .	Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
DRF	=	Demand reduction factor. The average peak hour energy reduction divided by the rated full loaded demand. See <u>Table</u> 94 Table 94 through Table 98 Table 98 .	Formatted: Font: (Default) Arial, 11 pt, Font color: Auto Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
Note: For DX	´syste	ms, use EER for kW savings calculations and SEER/IEER for kWh savings calculations. For air-cooled chillers, use full-load efficiency (kW/ton) for kW savings calculations and part-load efficiency (IPLV) for kWh savings calculations. In the cases where the full- load efficiency is provided in terms of EER rather than kW/ton, a conversion to kW/ton needs to be performed using the following conversion:	
		$\frac{kW}{Ton} = \frac{12}{EER}$	
ed Energy	y and	d Demand Savings Tables	

Deemed Energy and Demand Savings Tables

Deemed peak demand reduction factor (DRF) and equivalent full-load hour reduction (EFLH_{reduction}) values are presented by building type and climate zone. A description of the building types that are

166

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

used for HVAC systems is presented in Table 30. These building types are derived from the EIA CBECS study. $^{\rm 209}$

The DRF and EFLH_{reduction} values for packaged and split AC are presented in <u>Table 94</u>Table 94 through <u>Table 98</u>. These tables also include an "Other" building type, which can be used for business types that are not explicitly listed. The DRF and EFLH_{reduction} values used for Other are the most conservative values from the explicitly listed building types. When the Other building type is used, a description of the actual building type, the primary business activity, the business hours, and the HVAC schedule <u>must</u> be collected for the project site and stored in the utility tracking data system.

Deemed savings are estimated using building simulation models, which estimate the hourly impacts of installing an evaporative pre-cooling system (i.e., modeling the difference between base and change case). The base models are the same models used to derive values for the other commercial HVAC sections of the TRM. Adjustments are made for the evaporative pre-cooling measure by updating all existing HVAC equipment to operate with evaporative pre-cooling when the outside temperature is above 70°F.

	Principal building	Direct expansion		Air cooled chiller	
Building type	activity	DRF	EELHreduction	DRF	EFLHreduction
Education	College	0.19	130	0.17	150
	Primary School	0.20	83	0.13	69
	Secondary School	0.19	89	0.17	102
Food Sales	Convenience	0.18	125	-	-
	Supermarket	0.08	37	-	-
Food Service	Full-service Restaurant	0.21	134	-	-
	Quick-service Restaurant	0.18	109	-	-
Healthcare	Hospital	0.21	160	0.18	151
	Outpatient Healthcare	0.17	145	-	-
Large Multifamily	Midrise Apartment	0.18	113	0.10	59
Lodging	Large Hotel	0.13	111	0.15	165
	Nursing Home	0.18	115	0.10	60

Table 94. DRF and EFLH Reduction Values for Amarillo (Climate Zone 1)

167

²⁰⁹ The Commercial Building Energy Consumption Survey (CBECS) implemented by the US Energy Information Administration includes a principal building activity categorization scheme that separates the Commercial sector into 29 categories and 51 subcategories based on principal building activity (PBA). For its purposes, the CBECS defines Commercial buildings as those *buildings greater than* 1,000 square feet that devote more than half of their floor space to activity that is neither residential, manufacturing, industrial, nor agricultural. The high-level building types adopted for the TRM are adapted from this CBECS categorization, with some building types left out and one additional building type—Large Multifamily—included.

	Principal building	Direct	expansion	Air cooled chiller		
Building type	activity	DRF EFLH _{reduction}		DRF	EFLH _{reduction}	
	Small Hotel/Motel	0.13	104	-	-	
Mercantile	Stand-alone Retail	0.19	108	0.14	74	
	Strip Mall	0.21	121	-	-	
Office	Large Office	0.25	206	0.18	119	
	Medium Office	0.19	75	-	-	
	Small Office	0.20	111	-	-	
Public Assembly	Public Assembly	0.20	112	0.13	93	
Religious Worship	Religious Worship	0.19	65	0.14	45	
Service	Service	0.21	104	-	-	
Warehouse	Warehouse	0.12	34		-	
Other	Other	0.08	34	0.10	45	

Table 95. DRF and EFLH Reduction Values for Fort Worth (Climate Zone 2)

	Principal building	Direct	expansion	Air co	oled chiller
Building type	activity	DRF	EFLH _{reduction}	DRF	EFLH _{reduction}
Education	College	0.21	192	0.19	195
	Primary School	0.24	120	0.12	80
	Secondary School	0.21	131	0.19	132
Food Sales	Convenience	0.24	214	-	-
	Supermarket	0.15	78	-	-
Food Service	Full-service Restaurant	0.23	194	-	-
	Quick-service Restaurant	0.24	185	-	-
Healthcare	Hospital	0.24	230	0.22	216
	Outpatient Healthcare	0.19	174	-	-
Large Multifamily	Midrise Apartment	0.16	230	0.15	120
Lodging	Large Hotel	0.15	137	0.18	212
	Nursing Home	0.16	234	0.15	122
	Small Hotel/Motel	0.15	133	-	-
Mercantile	Stand-alone Retail	0.24	158	0.19	120
	Strip Mall	0.23	156	-	-

168

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

	Principal building	Direct	expansion	Air cooled chiller	
Buildingtype	activity	DRF	EFLHreduction	DRF'	EFEHreduction
Office	Large Office	0.26	220	0.23	231
	Medium Office	0.20	102	-	-
	Small Office	0.22	156	-	-
Public Assembly	Public Assembly	0.24	161	0.12	108
Religious Worship	Religious Worship	0.24	95	0.19	72
Service	Service	0.23	150	-	-
Warehouse	Warehouse	0.20	93	-	-
Other	Other	0.15	78	0.12	72

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

	Principal building	Direct	expansion	Air co	oled chiller
Building type	activity	IDRF	EFLHreduction	DRF	EFLHreduction
	College	0.20	173	0.17	175
	Primary School	0.21	118	0.10	74
Education	Secondary School	0.20	118	0.17	119
	Convenience	0.22	193	-	-
Food Sales	Supermarket	0.14	76	-	-
	Full-service Restaurant	0.21	171	-	-
Food Service	Quick-service Restaurant	0.22	167	-	-
	Hospital	0.21	202	0.19	187
Healthcare	Outpatient Healthcare	0.18	157	-	-
Large Multifamily	Midrise Apartment	0.17	257	0.14	105
	Large Hotel	0.14	120	0.14	193
	Nursing Home	0.17	261	0.14	107
Lodging	Small Hotel/Motel	0.13	113	-	-
	Stand-alone Retail	0.22	152	0.19	128
Mercantile	Strip Mall	0.21	152	-	-
	Large Office	0.24	203	0.23	150
	Medium Office	0.19	94	-	-
Office	Small Office	0.20	138	-	-
Public Assembly	Public Assembly	0.21	159	0.10	99
Religious Worship	Religious Worship	0.22	92	0.19	77
Service	Service	0.21	132	-	-
Warehouse	Warehouse	0.18	81	-	-
Other	Other	0.13	76	0.10	74

Table 96. DRF and EFLH Reduction Values for Houston (Climate Zone 3)

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

	Principal building	Direct	Direct expansion		oled chiller
Building type	activity	IDRF ,	EFLHreduction	DRF	EFLHreduction
Education	College	0.13	161	0.11	160
	Primary School	0.14	113	0.07	68
	Secondary School	0.13	110	0.11	109
Food Sales	Convenience	0.14	188	-	-
	Supermarket	0.08	74	-	-
Food Service	Full-service Restaurant	0.13	157	-	-
	Quick-service Restaurant	0.14	162	-	-
Healthcare	Hospital	0.15	199	0.09	169
	Outpatient Healthcare	0.12	150	-	-
Large Multifamily	Midrise Apartment	0.14	181	0.09	104
Lodging	Large Hotel	0.08	116	0.10	179
	Nursing Home	0.14	183	0.09	106
	Small Hotel/Motel	0.08	109	-	-
Mercantile	Stand-alone Retail	0.14	148	0.12	120
	Strip Mall	0.13	146	-	-
Office	Large Office	0.16	192	0.13	137
	Medium Office	0.11	90	-	-
	Small Office	0.13	131	-	-
Public Assembly	Public Assembly	0.14	152	0.07	92
Religious Worship	Religious Worship	0.14	89	0.12	72
Service	Service	0.13	122	-	-
Warehouse	Warehouse	0.12	74	-	-
Other	Other	0.08	74	0.07	68

Table 97. DRF and EFLH Reduction Values for Corpus Christi (Climate Zone 4)

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling Texas Technical Reference Manual, Vol. 3 November 2021

171

	Principal building	Direct	Direct expansion		oled chiller
Building type	activity	IDRF	EFLHreduction	DRF	EFLHreduction
Education	College	0.27	240	0.22	254
	Primary School	0.30	161	0.17	120
	Secondary School	0.27	163	0.22	172
Food Sales	Convenience	0.25	232	-	-
	Supermarket	0.12	76	-	-
Food Service	Full-service Restaurant	0.25	223	-	-
	Quick-service Restaurant	0.25	201	-	-
Healthcare	Hospital	0.26	273	0.20	247
	Outpatient Healthcare	0.23	259	-	-
Large Multifamily	Midrise Apartment	0.28	264	0.15	140
Lodging	Large Hotel	0.19	201	0.19	300
	Nursing Home	0.28	268	0.15	142
	Small Hotel/Motel	0.17	193	-	-
Mercantile	Stand-alone Retail	0.25	198	0.18	131
	Strip Mall	0.26	207	-	-
Office	Large Office	0.32	314	0.22	199
	Medium Office	0.25	137	-	-
	Small Office	0.26	215	-	-
Public Assembly	Public Assembly	0.30	217	0.17	162
Religious Worship	Religious Worship	0.25	119	0.18	79
Service	Service	0.25	173	-	-
Warehouse	Warehouse	0.25	82	-	-
Other	Other	0.12	76	0.15	79

Table 98. DRF and EFLH Reduction Values for El Paso (Climate Zone 5)

Claimed Peak Demand Savings

A summer peak period value is used for this measure. Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Texas Technical Reference Manual, Vol. 3 November 2021

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

Measure Life and Lifetime Savings

Pre-cooling components may consist of pumps, sprayers, electronic controllers, and evaporative media, with the evaporative media requiring periodic replacement.

The <u>EUL-estimated useful life (EUL)</u> for Evaporative Pre-cooling System is 10 years, consistent with the typical manufacturer warranty for evaporative pre-cooling equipment.²¹⁰

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Decision/action type: Retrofit or new construction
- Building type
- Climate zone
- Baseline equipment type
- Baseline equipment rated cooling capacity
- Baseline equipment cooling efficiency ratings
- Baseline number of units
- Baseline manufacturer and model
- Installed number of units
- Installed evaporative pre-cooling system manufacturer and model
- Installed evaporative pre-cooling system evaporative effectiveness
- Copy of operation manuals
- For Other building types only: A description of the actual building type, the primary business activity, the business hours, and the HVAC schedule.

References and Efficiency Standards

Petitions and Rulings

• PUCT Docket 47612—Provides deemed savings for Condenser Evaporative Pre-cooling

Relevant Standards and Reference Sources

Not applicable.

173

Nonresidential: HVAC Condenser Air Evaporative Pre-Cooling

²¹⁰ ET13SCE1020: Evaporative Condenser Air Pre-Coolers, Southern California Edison. December 2015. <u>https://wcec.ucdavis.edu/wp-content/uploads/2016/06/et13sce1020_evaporative_pre-cooler_final.pdf.</u>

Document Revision History

Table 99. Nonresidential Condenser Air Evaporative Pre-Cooling Revision History

TRM version	Date	Description of change
v5.0	10/2017	TRM v5.0 origin.
v6.0	10/2018	TRM v6.0 update. No revisions.
v7.0	10/2019	TRM v7.0 update. No revisions.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. Specified that formulas use tons and kW/ton values and added conversion factors from other units.

2.2.9 High-Volume Low-Speed Fans Measure Overview

TRM Measure ID: NR-HV-HF Market Sector: Commercial Measure Category: HVAC Applicable Business Types: Agriculture Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Deemed savings calculation Savings Methodology: Engineering algorithms and estimates

Measure Description

Circulation fans are used in agricultural applications such as dairy, swine, or poultry barns to destratify air, reduce animal heat stress, control insects, dry surfaces, and cool people and animals. This measure applies to the installation of high-volume low-speed (HVLS) fans in a horizontal orientation in such agricultural applications. HVLS fans may be installed in lieu of conventional (small diameter) circulation fans in new construction applications or in replacement of existing (still functioning) conventional circulation fans in retrofit projects.

Deemed savings are provided for displaced fan load only: applications in which HVLS fans are installed to reduce air conditioning requirements may be considered in the future: for now, such applications would require additional M&V to demonstrate (and claim) complete savings.

Eligibility Criteria

Nonresidential: HVAC

High-Volume Low-Speed Fans

While many applications exist for HVLS fans, the guidance in this measure is specific to agricultural operations. Savings estimates may be developed for other applications in future iterations of the TRM.

HVLS fans may be used to replace existing conventional circulating fans or installed in new barns. To claim savings for a retrofit, the conventional fans being replaced should be in proper working condition.

Default values are provided for dairy applications while other facility types are eligible and should use the dairy values until other livestock specific factors are developed.

Baseline Condition

The baseline condition is an installation of conventional fans.

Retrofit (Early Retirement)

When replacing existing (working) fans, the baseline is set by the number of fans to be replaced, with power requirements calculated according to their operating airflow rates (CFM), and rated efficiency (e.g., CFM/watt).

Replace on Burnout/New Construction

When existing fans are reaching the end of their useful life, or for new construction, the baseline assumes installation of conventional fans that would produce a comparable total airflow (CFM) as the HVLS fan to be installed.

High-Efficiency Condition

HVLS fans with diameters of eight to 24 feet typically use 1 hp to 2 hp motors per fan and move between 50,000 CFM and 150,000 or more CFM.²¹¹ To be eligible for this measure, HVLS fans shall be a minimum of 8 feet in diameter and move more cubic feet of air per watt than conventional circulating fans. The fan should be installed in a horizontal orientation and have the ability to operate at different speeds.

Energy and Demand Savings Methodology

Savings are estimated assuming operation of the baseline (conventional) and high efficiency (HVLS) fans at their rated speed and power input during all hours of expected use.

Savings Algorithms and Input Variables

Energy Savings (kWh) =
$$\left(\frac{W_{base} - W_{HVLS}}{1000}\right) \times Hours$$

Equation 58

Summer Demand Savings (kW) = $\left(\frac{W_{base} - W_{HVLS}}{1000}\right) \times CF$

Equation 59

²¹¹ Motor hp from manufacturer product specification sheets available from

<u>https://macroairfans.com/architects-engineers/</u> and <u>https://www.bigassfans.com/aedownloads/</u>. Airflow range from Kammel et al, "Design of High Volume Low Speed Fan Supplemental Cooling System in Dairy Free Stall Barns," available at

https://www.researchgate.net/publication/271433461_Design_of_high_volume_low_speed_fan_suppl emental_cooling_system_in_dairy_freestall_barns, and from MacroAir Fans "Horse Barn Ventilation Systems" white paper, available at <u>https://macroairfans.com/wp-content/uploads/2012/03/Horse-Barn-Ventilation-White-Paper.pdf</u>.

Nonresidential: HVAC High-Volume Low-Speed Fans

Where:

W _{base}	=	power input required to move replaced fans at rated speed
W _{HVLS}	=	power input required to move installed HVLS fans at rated speed
Hours	=	hours of operation in the project application, as described below
CF	=	coincidence factor (1.0, as fans are always operating in summer peak conditions)

Retrofit (Early Retirement)

For early retirement projects, the base wattage (W_{base}) is estimated according to the number of fans replaced and their rated efficiency:

$$W_{base,ER} = \frac{CFM_{base} * N_{base}}{\eta_{base}}$$

Equation 60

Where:

 CFM_{base} = airflow rate produced by replaced fans η_{base} = efficacy of replaced fans (CFM/watt)

Note: For retrofit projects where the baseline equipment ratings cannot be determined, the use of the replace-on-burnout/new construction calculation procedure is permitted.

Replace-on-Burnout/New Construction

For replace-on-burnout or new construction projects, base case power requirements are estimated for conventional fans producing an equivalent/comparable airflow (CFM) as that of the HVLS fan(s) being installed. The efficiency of the baseline conventional fans shall be 22 CFM/watt.²¹²

$$W_{base,ROB/NC} = \frac{CFM_{HVLS}}{22 \ CFM/W}$$

Equation 61

177

Nonresidential: HVAC High-Volume Low-Speed Fans

²¹² Database of circulating fans tested by the Bioenvironmental and Structural Systems Laboratory of the Agricultural and Biological Engineering Dept., University of Illinois at Urbana-Champagne including 231 fan models by 17 manufacturers. Average efficacy ratio (CFM/watt) of single-phase, 230V circulating fans 48" diameter and larger. Available at <u>http://www.bess.illinois.edu/currentc.asp.</u>

Hours of Operation

<u>Table 100</u> Table 100 provides the hours to be used in calculating energy savings for HVLS fan installation by climate zone.

Table 100. Hours of Circulating Fan Operation by Barn Type²¹³

Climate _∎ zoņe	Hours
Climate Zone 1: Amarillo	2,215
Climate Zone 2: Dallas	3,969
Climate Zone 3: Houston	4,750
Climate Zone 4: Corpus Christi	5,375
Climate Zone 5: El Paso	3,034

Claimed Peak Demand Savings

A summer peak period value is used for this measure. Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Deemed Energy and Demand Savings Tables

This section is not applicable as these calculations are entirely dependent on site-specific parameters.

Measure Life and Lifetime Savings

The EUL of an HVLS fan is closely related to that of its motor. The US DOE Advanced Manufacturing Office's Motor Systems Tip Sheet #3²¹⁴ suggests motors should last approximately 35,000 hours. The average annual hours of operation in dairy farms for the Texas TRM zones is about 3,870 hours. Accordingly, the EUL for HVLS fans in Texas is estimated to be 9 years.

²¹⁴ DOE Motor Systems Tip Sheet #3 available at <u>https://www.energy.gov/sites/prod/files/2014/04/f15/extend motor operlife motor systemts3.pdf</u>. Accessed August 2020.

178

Nonresidential: HVAC High-Volume Low-Speed Fans

²¹³ Docket No. 40885 provides demand and energy savings by building type and cooling equipment for the four different climate zones. This original petition was dated 10/29/2012. An amended petition_τ dated 11/13/2012 was approved, which provides the original energy and demand coefficients (Table 2 18: CF and EFLH Values for Amarillo (Climate Zone 1) through Table 2-16, but also amended Tables (B3a through B3d and B4a through B4d).

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

All Projects:

- Barn type (animal)
- Climate zone
- Decision/action type: ROB, NC, or ER
- HVLS fan(s): diameter, rated HP, rated CFM, count
- For early retirement only: replaced fans: count, diameter, rated HP, rated CFM, rated CFM/watt

References and Efficiency Standards

Petitions and Rulings

None.

Relevant Standards and Reference Sources

- Kammel, David and Raabe, and Kappelman, J.- (2003). Design of high-volume lowspeed fan supplemental cooling system in dairy freestall barns. Proceedings of the Fifth International Dairy Housing Conference. 10.13031/2013.11628. Online. Available: <u>https://www.researchgate.net/publication/271433461 Design of high volume low spe</u> ed fan supplemental cooling system in dairy freestall barns.
- <u>https://macroairfans.com/wp-content/uploads/2012/03/Horse-Barn-Ventilation-White-Paper.pdf</u>
- BESS Laboratory Database of Agricultural Fans. Bioenvironmental and Structural Systems Laboratory of the Agricultural and Biological Engineering Dept., University of Illinois at Urbana-Champagne. Online. Data for Circulating Fans available: <u>http://www.bess.illinois.edu/currentc.asp</u>.

Document Revision History

Table 101. Nonresidential High-Volume Low-Speed Fans Revision History

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 origin.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. No revisions.

179

Nonresidential: HVAC High-Volume Low-Speed Fans

2.2.10 Small Commercial Evaporative Cooling Measure Overview

TRM Measure ID: NR-HV-EC

Market Sector: Small Commercial

Measure Category: HVAC

Applicable Building Types: See Table 30 through Table 36 Table 36

Fuels Affected: Electricity

Decision/Action Type: Retrofit, new construction

Program Delivery Type: Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Energy modeling, engineering algorithms, and estimates

Measure Description

This section summarizes the deemed savings methodology for the installation of direct evaporative coolers instead of refrigerated air conditioning systems in small commercial applications. This measure applies to both retrofit and new construction applications.

Eligibility Criteria

Direct evaporative cooling must be the primary whole-building cooling source. Installed systems must have a saturation efficiency of 0.85 or greater. Portable, window, indirect, and hybrid systems are not eligible.

Baseline Condition

The baseline conditions related to efficiency and system capacity for replace-on-burnout and new construction are as follows:

Replace-on-Burnout (ROB) and New Construction (NC)

Baseline efficiency levels for packaged DX air conditioners < 65,000 btuh are provided in Table 29Table 29. These baseline efficiency levels reflect the latest minimum efficiency requirements from the current federal manufacturing standard and IECC 2015.

180

Nonresidential: HVAC <u>High Volume Low Speed FansSmall Commercial Evaporative Cooling</u>

Table 102. Baseline Efficiency Levels for ROB and NC Air Conditioners²¹⁵

<u>System type</u>	<u>Capacity</u> (tons)	<u>Heating</u> section type	<u>Baseline</u> <u>efficiencies</u>	Source ²¹⁶
Packaged Air	<u>< 5.4</u>	All	<u>11.8 EER²¹⁷</u>	DOE Standards/
<u>Conditioner</u>			14.0 SEER	IECC 2015

High-Efficiency Condition

The high-efficiency condition is a direct evaporative cooling system(s) with a saturation efficiency of at least 0.85.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

 $Peak \ Demand \ (Summer) \ [kW_{Savings,C}] = Cap_{C} \times \frac{1}{\eta_{baseline,C}} \times DF_{C} \times \frac{1 \ kW}{1,000 \ W} \times CRF$

Equation 62

$$Energy (Cooling) [kWh_{Savings,C}] = Cap_{C} \times \frac{1}{\eta_{baseline,C}} \times EFLH_{C} \times \frac{1 \ kW}{1,000 \ W} \times CRF$$

Equation 63

Where:

<u>Cap_C</u>	=	Refrigerated cooling load for equivalent evaporative cooling system, default = 36,000 Btuh ²¹⁸ ; 1 ton = 12,000 Btuh	
<u>N</u> baseline, C	=	Cooling efficiency of standard equipment (ROB/NC) [Btuh/W]; see <u>Table 29</u> Table 29	Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
<u>Note: Use E</u>	EER for k	W savings calculations and SEER for kWh savings calculations.	
<u>DFc</u>	=	<u>Seasonal peak demand factor; see Table 36</u>	 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
<u>EFLH_c</u>	=	Cooling/heating equivalent full-load hours [hours]: see <u>Table</u>	 Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
CRF	=	Consumption reduction factor ²¹⁹ = 75%	

²¹⁵ IECC 2015 Table C403.2.3(1) and C403.2.3(2).

²¹⁶ These baseline efficiency standards noted as "DOE Standards" are cited in the Code of Federal Regulations, 10 CFR 431.97. http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012title10-vol3-sec431-97.pdf.

²¹⁷ IECC 2015 Table C403.2.3(1) and C403.2.3(2).

181

Nonresidential: HVAC High Volume Low Speed Fans<u>Small Commercial Evaporative Cooling</u>

²¹⁸ New Mexico TRM assumption based on DX AC cooling load for Las Cruces climate zone.

²¹⁹ Department of Energy, https://www.energy.gov/energysaver/evaporative-coolers.

Deemed Energy and Demand Savings Tables

Deemed peak demand factor (DF) and equivalent full-load hour (EFLH) values match those previously defined for commercial direct expansion (DX) HVAC measures. See measure Split and Packaged Air Conditioners and Heat Pumps Measure OverviewSplit and Packaged Air Conditioners and Heat Pumps Measure.

This measure is restricted to climate zone 5.

Table 103. DF and EFLH values for El Paso (Climate Zone 5)					
	Principal	DX	AC		
Building type	building activity	DFc	<u>EFLHc</u>		
Data Center	Data Center	<u>0.88</u>	2,547		
Education	College/University	<u>0.87</u>	1,092		
	Primary School	<u>0.91</u>	<u>996</u>		
	Secondary School	<u>0.87</u>	<u>742</u>		
Food Sales	Convenience	<u>0.76</u>	<u>1,251</u>		
	Supermarket	<u>0.38</u>	<u>347</u>		
Food Service	Full-service Restaurant	<u>0.76</u>	<u>1,276</u>		
	24-hour Full-service	<u>0.74</u>	<u>1,413</u>		
	Quick-service Restaurant	<u>0.76</u>	<u>1,082</u>		
	24-hour Quick-service	<u>0.77</u>	<u>1,171</u>		
<u>Healthcare</u>	<u>Hospital</u>	<u>0.81</u>	<u>2,555</u>		
	Outpatient Healthcare	<u>0.81</u>	<u>2,377</u>		
Large Multifamily	Midrise Apartment	<u>0.88</u>	<u>1,209</u>		
Lodging	Large Hotel	<u>0.63</u>	<u>1,701</u>		
	Nursing Home	<u>0.88</u>	<u>1,228</u>		
	Small Hotel/Motel	<u>0.63</u>	<u>1,921</u>		
Mercantile	Stand-alone Retail	<u>0.80</u>	<u>904</u>		
	24-hour Stand-alone Retail	<u>0.86</u>	<u>1,228</u>		
	Strip Mall	<u>0.83</u>	<u>931</u>		
Office	Large Office	<u>0.98</u>	2,423		
	Medium Office	<u>0.77</u>	<u>1,173</u>		
	Small Office	<u>0.84</u>	<u>1,037</u>		
Public Assembly	Public Assembly	<u>0.91</u>	<u>1,339</u>		
Religious Worship	Religious Worship	<u>0.63</u>	<u>478</u>		

Table 103. DF and EFLH Values for El Paso (Climate Zone 5)

182

Nonresidential: HVAC High Volume Low Speed Fans<u>Small Commercial Evaporative Cooling</u>

	Principal	DX	AC
Building type	building activity	DFc	<u>EFLHc</u>
Service	Service	<u>0.76</u>	<u>988</u>
Warehouse	Warehouse	<u>0.75</u>	<u>324</u>
Other	<u>Other</u>	<u>0.38</u>	<u>324</u>

Claimed Peak Demand Savings

A summer peak period value is used for this measure. Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID HV-EvapCool.²²⁰

Program Tracking Data and Evaluation Requirements

The below list of primary inputs and contextual data is recommended to be specified and tracked by the program database to inform the evaluation and apply the savings properly.

- Decision/action type: ROB or NC
- Building type
- Baseline number of units
- Baseline rated cooling capacity (CFM)
- Installed number of units
- Installed equipment cooling capacity (CFM)
- Installed manufacturer and model
- For retrofit only: Proof of purchase: invoice showing model number; a photo of the model number on product packaging or installed unit(s); OR an evaluator pre-approved inspection approach
- For new construction only: Proof of purchase: invoice showing model number; a photo
 of the model number on product packaging or installed unit(s); as-built design drawings;
 HVAC specifications package that provides detailed make and model information on
 installed unit(s); OR an evaluator pre-approved inspection approach
- For Other building types only: A description of the actual building type, the primary business activity, the business hours, and the HVAC schedule

²²⁰ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

183

Nonresidential: HVAC High Volume Low Speed Fans<u>Small Commercial Evaporative Cooling</u>

References and Efficiency Standards

Petitions and Rulings

None.

I

Relevant Standards and Reference Sources

- 2015 International Energy Conservation Code. Table C403.2.3(1) and Table C403.2.3(2).
- <u>Code of Federal Regulations. Title 10. Part 431—Energy Efficiency Program for Certain</u>
 <u>Commercial and Industrial Equipment.</u>
 <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid</u>
 <u>=75&action=viewlive.</u>

Document Revision History

Table 104. Nonresidential Small Commercial Evaporative Cooling Revision History

	Date	Description of change
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 origin.

184

Nonresidential: HVAC High Volume Low Speed Fans<u>Small Commercial Evaporative Cooling</u>

2.3 NONRESIDENTIAL: BUILDING ENVELOPE

2.3.1 ENERGY STAR[®] Cool Roofs Measure Overview

TRM Measure ID: NR-BE-CR

Market Sector: Commercial

Measure Category: Building envelope

Applicable Building Types: All commercial

Fuels Affected: Electricity

Decision/Action Type: Retrofit

Program Delivery Type: Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Energy modeling, engineering algorithms, and estimates

Measure Description

Reflective roofing materials reduce the overall heat load on a building by reducing the total heat energy absorbed into the building system from incident solar radiation. This reduction in total load provides space cooling energy savings during the cooling season but reduces free heat during the heating season, so the measure saves energy in the summer but uses more energy in winter. Cool roofs are most beneficial in warmer climates and may not be recommended for buildings where the primary heat source is electric resistance. The measure is for retrofit of existing buildings.

Eligibility Criteria

Measures installed through utility programs must be a roof that is compliant with the current ENERGY STAR[®] specification, effective July 2017.²²¹ For nonresidential facilities, these criteria for a high-efficiency roof include:

- An existing roof undergoing retrofit conditions as further defined under high-efficiency condition below; a roof installed in a new construction application is not eligible for applying these methodologies.
- A roof with a low-slope of 2:12 inches or less²²²
- An initial solar reflectance of greater than or equal to 65 percent

²²¹ ENERGY STAR[®] Roof Products Specification.

https://www.energystar.gov/products/building products/roof products/key product criteria. 222 As defined in proposed ASTN Standard E 1918-97.

- Maintenance of solar reflectance of greater than or equal to 50 percent three years after installation under normal conditions
- 75 percent of the roof surface over conditioned space must be replaced
- No significant obstruction of direct sunlight to roof
- The facility must be conditioned with cooling, heating, or both
- Be listed on the ENERGY STAR[®] list of qualified products²²³ or have a performance rating that is validated by the Cool Roof Rating Council (CRRC). ENERGY STAR[®] test criteria²²⁴ allows for products already participating in the CRRC Product Rating Program²²⁵ to submit solar reflectance and thermal emittance product information derived from CRRC certification.
- The ENERGY STAR[®] specification for roof products will sunset effective June 1, 2022.²²⁶ No new roof products will be certified as of June 1, 2021. At this point, ENERGY STAR[®] legacy or CRRC product certification will be required to demonstrate compliance with the previous ENERGY STAR[®] specification.

If one of these conditions is not met, the deemed savings approach cannot be used, and the Simplified M&V Methodology or the Full M&V Methodology must be used.

Baseline Condition

The baseline is the thermal resistance (i.e., R-value) of the existing roof make-up and the solar reflectance and emissivity of the surface layer. The R-value is estimated based on code envelope requirements applicable in the year of construction. Solar reflectance and emissivity of the surface layer are assumed to be 0.2 and 0.9, respectively, based on roof properties listed in the LBLN Roofing Materials Database.²²⁷

The cooling and heating efficiencies are assumed based on the space conditioning of the top floor of the building and are based on typical code requirements applicable in the year of construction.

²²⁷ Lawrence Berkeley National Lab Cool Roofing Material Database. <u>https://heatisland.lbl.gov/resources/cool-roofing-materials-database</u>. Accessed 08/2018.

186

Nonresidential: Building Envelope <u>ENERGY STAR®</u>Cool Roofs

²²³ ENERGY STAR[®] Certified Roofs. <u>http://www.energystar.gov/productfinder/product/certified-roof-products/</u>. Accessed 08/15/2016.

²²⁴ ENERGY STAR[®] Program Requirements for Roof Products v2.1.

<u>https://www.energystar.gov/ia/partners/product_specs/program_regs/roofs_prog_reg.pdf</u>. ²²⁵ CRRC Rated Products Directory: <u>https://coolroofs.org/directory</u>.

²²⁶ ENERGY STAR[®] Roof Products Sunset Decision Memo. <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Roof%20Products%20Sunset%</u> <u>20Decision%20Memo.pdf</u>.

Year of construction; applicable code	RTU	PTHP	PTHP heating	Air cooled chiller	Water cooled chiller
Before 2011; 2000 IECC	2.9	2.9	2.9	2.5	4.2
Between 2011-2016; 2009 IECC	3.8	3.1	2.9	2.8	5.5
After 2016; 2015 IECC	3.8	3.1	2.9	2.8	5.5

Table 105. Cool Roofs—Assumed Cooling and Heating Efficiencies (COP)

High-Efficiency Condition

The high-efficiency condition depends on the project scope. The project scope is defined as one of:

- Adding surface layer only
- Adding insulation and surface layer
- · Rebuilding entire roof assembly

If the project scope is only to add a new ENERGY STAR[®] material as the new surface layer, then the R-value used for the baseline condition is used for the high-efficiency condition. If the project scope is to add insulation and an ENERGY STAR[®] material as the new surface layer, then the R-value of the additional insulation is added to the R-value used for the baseline condition. If the entire roof assembly is rebuilt, then the R-value for each layer of the new roof construction is summed to get a total new R-value.

The measure requires installation of roof products that have been rated by the CRRC and demonstrate compliance with ENERGY STAR[®] certified roof product performance specifications for the relevant roof application. Initial and 3-year reflectance ratings must meet or exceed the minimum thresholds specified in Table 106.

Table 106. Cool Roofs—ENERGY STAR[®] Specification²²⁸

Roof slope	Characteristic	Performance specification
Low Slope	Initial Solar Reflectance	<u>></u> 0.65
<u>≤ 2/12</u>	3-Year Solar Reflectance	<u>≥</u> 0.50

²²⁸ ENERGY STAR[®] Roof Products Specification. <u>https://www.energystar.gov/products/building_products/roof_products/key_product_criteria</u>.

187

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy savings are estimated using EnergyPlus v8.3.0 whole-building simulation. The prototype building characteristics match those used for developing commercial HVAC demand factors and EFLH and can be found from

<u>Table 108</u>

Table 108 through

Table 112 Table 112. The savings represent the difference of the modeled energy use of the baseline condition and the high-efficiency condition divided by the square foot of the roof area. The demand savings are calculated following the method described in TRM Volume 1.

The deemed energy and demand savings factors are used in the following formulas to calculate savings:

	$Energy \ Savings = Roof \ Area \times ESF$	
Equation		
10 ⁻⁵	Peak Summer Demand Savings = Roof Area \times PSDF \times	
Equation		
10-6		
Equation	$Peak Winter Demand Savings = Roof Area \times PWDF \times$	
_ duation		

Where:

505			C	
ESF	=	Energy Savings Factor from		Formatted: Font: (Default) Arial, 11 pt, Font color: Au
		<u>Table 108</u>		
		Table 108 through	(Formatted: Font: (Default) Arial, 11 pt, Font color: Au
		<u>Table 112</u>		
		Table 112 by building type, pre/post insulation levels, and		
		heating/cooling system.		
PSDF	=	Peak Summer Demand Factor from	(Formatted: Font: (Default) Arial, 11 pt, Font color: Au
		<u>Table 108</u>		
		Table 108 through		Formatted: Font: (Default) Arial, 11 pt, Font color: Au
		Table 112		
		Table <u>112</u> by building type, pre/post insulation levels, and		
		heating/cooling system.		
PWDF	=	Peak Winter Demand Savings Factor from	(Formatted: Font: (Default) Arial, 11 pt, Font color: Au
		<u>Table 108</u>		
		Table 108 through		Formatted: Font: (Default) Arial, 11 pt, Font color: Au
		Table 112	(
		<u></u>		

Nonresidential: Building Envelope ENERGY STAR® Cool Roofs

Table 112 by building type, pre/post insulation levels, and heating/cooling system.

If the insulation levels are unknown, use the mapping in <u>Table 107</u> to estimate the R-value based on the year of construction.

Table 107. Cool Roofs—Estimated R-Value based on Year of Construction

Year of construction	Estimated R ⁻ value ²²⁹
Before 2011	R ≤ 13
Between 2011 - 2016	13 < R ≤ 20
After 2016	20 < R

Table 108. Cool Roofs—Savings Factors for Amarillo (Climate Zone 1)

			-	;	
Building type	Pre R-value	Post R-value	ESF	IPSDF'	PWDF'
Retail	R ≤ 13	R ≤ 13	0.72	19.28	31.74
	R ≤ 13	13 < R ≤ 20	1.26	36.23	36.71
	R ≤ 13	20 < R	1.25	38.58	35.31
	13 < R ≤ 20	13 < R ≤ 20	0.13	4.81	1.88
	13 < R ≤ 20	20 < R	0.12	6.47	0.48
	20 < R	20 < R	0.09	3.32	1.30
Education - Chiller	R ≤ 13	R ≤ 13	0.65	11.80	8.31
	R ≤ 13	13 < R ≤ 20	1.10	21.76	31.52
	R ≤ 13	20 < R	1.25	25.53	37.31
	13 < R ≤ 20	13 < R ≤ 20	0.26	4.85	4.59
	13 < R ≤ 20	20 < R	0.38	7.80	9.20
	20 < R	20 < R	0.17	3.40	1.17
Education - RTU	R ≤ 13	R ≤ 13	0.26	8.26	2.62
	R ≤ 13	13 < R ≤ 20	0.43	15.47	12.49
	R ≤ 13	20 < R	0.49	18.20	14.02
	13 < R ≤ 20	13 < R ≤ 20	0.12	4.11	2.05
	13 < R ≤ 20	20 < R	0.18	6.67	3.58
	20 < R	20 < R	0.08	2.91	0.28
Office - Chiller	R ≤ 13	R ≤ 13	0.21	6.80	1.43
	R ≤ 13	13 < R ≤ 20	0.31	3.44	3.50
	R ≤ 13	20 < R	0.33	19.30	3.87
	13 < R ≤ 20	13 < R ≤ 20	0.09	16.58	0.11

²²⁹ Estimates R-values are based on applicable code requirements in the year of construction.

Nonresidential: Building Envelope <u>ENERGY STAR[®]</u>Cool Roofs

I

Building type	Pre R-value	Post R-value	ESF	IPSDF ¹	PWDF ⁱ
Bananig type	13 < R ≤ 20	20 < R	0.11	5.94	0.47
	20 < R	20 < R	0.06	2.36	0.08
Office - RTU	R ≤ 13	R ≤ 13	0.28	7.46	11.88
	R ≤ 13	13 < R ≤ 20	0.87	15.48	168.51
	R ≤ 13	20 < R	1.10	18.61	236.76
	13 < R ≤ 20	13 < R ≤ 20	0.15	4.12	-1.23
	13 < R ≤ 20	20 < R	0.38	6.73	67.02
	20 < R	20 < R	0.11	2.92	-2.61
Hotel	R ≤ 13	R ≤ 13	0.07	1.33	-2.60
	R ≤ 13	13 < R ≤ 20	0.07	1.83	6.98
	R ≤ 13	20 < R	0.07	2.03	11.77
	13 < R ≤ 20	13 < R ≤ 20	0.04	0.81	-1.45
	13 < R ≤ 20	20 < R	0.04	1.00	3.39
	20 < R	20 < R	0.03	0.60	-1.12
Warehouse	R ≤ 13	R ≤ 13	0.04	3.83	-0.20
	R ≤ 13	13 < R ≤ 20	0.11	6.99	3.89
	R ≤ 13	20 < R	0.14	8.07	5.35
	13 < R ≤ 20	13 < R ≤ 20	0.01	1.35	-0.10
	13 < R ≤ 20	20 < R	0.04	2.24	1.36
	20 < R	20 < R	0.01	0.90	-0.07
Other	R ≤ 13	R ≤ 13	0.04	1.33	-2.60
	R ≤ 13	13 < R ≤ 20	0.07	1.83	3.50
	R ≤ 13	20 < R	0.07	2.03	3.87
	13 < R ≤ 20	13 < R ≤ 20	0.01	0.81	-1.45
	13 < R ≤ 20	20 < R	0.04	1.00	0.47
	20 < R	20 < R	0.01	0.60	-2.61

Table 109. Cool Roofs—Savings Factors for Dallas (Climate Zone 2)

Building type	Pre R-value	Post R-value	ESF	IPSDF'	PWDF'
Retail	R ≤ 13	R ≤ 13	0.61	22.03	13.53
	R ≤ 13	13 < R ≤ 20	0.97	37.67	17.30
	R ≤ 13	20 < R	0.98	40.54	17.32
	13 < R ≤ 20	13 < R ≤ 20	0.16	7.57	1.28
	13 < R ≤ 20	20 < R	0.17	9.67	1.29
	20 < R	20 < R	0.13	6.22	1.04

190

Nonresidential: Building Envelope <u>ENERGY STAR[®]</u>Cool Roofs

Ι

Building type	Pre R-value	Post R-value	iESF [,]	iPSDF ¹	PWDF ⁱ
Education - Chiller	R ≤ 13	R ≤ 13	0.56	10.49	5.11
	R ≤ 13	13 < R ≤ 20	0.82	16.50	8.60
	R ≤ 13	20 < R	0.92	18.86	11.17
	13 < R ≤ 20	13 < R ≤ 20	0.32	5.41	2.36
	13 < R ≤ 20	20 < R	0.20	7.28	4.55
	20 < R	20 < R	0.30	4.37	1.88
Education - RTU	20 < R R ≤ 13	R ≤ 13	0.24	10.65	1.53
	R ≤ 13 R ≤ 13	R ≤ 13 13 < R ≤ 20		18.31	3.68
			0.39		
	R ≤ 13	20 < R	0.43	21.33	4.89
	13 < R ≤ 20	13 < R ≤ 20	0.17	7.21	0.77
	13 < R ≤ 20	20 < R	0.21	10.08	1.97
	20 < R	20 < R	0.13	5.88	0.60
Office - Chiller	R ≤ 13	R ≤ 13	0.23	11.99	0.81
	R ≤ 13	13 < R ≤ 20	0.33	27.48	1.78
	R ≤ 13	20 < R	0.34	30.55	1.93
	13 < R ≤ 20	13 < R ≤ 20	0.13	6.68	0.10
	13 < R ≤ 20	20 < R	0.15	9.76	0.26
	20 < R	20 < R	0.10	6.01	0.08
Office - RTU	R ≤ 13	R ≤ 13	0.27	12.14	14.86
	R ≤ 13	13 < R ≤ 20	0.52	24.53	84.63
	R ≤ 13	20 < R	0.62	29.45	112.16
	13 < R ≤ 20	13 < R ≤ 20	0.18	7.25	11.53
	13 < R ≤ 20	20 < R	0.28	11.09	39.06
	20 < R	20 < R	0.15	6.03	8.66
Hotel	R ≤ 13	R ≤ 13	0.07	1.71	-0.64
	R ≤ 13	13 < R ≤ 20	0.07	2.30	0.78
	R ≤ 13	20 < R	0.07	2.56	1.39
	13 < R ≤ 20	13 < R ≤ 20	0.05	1.17	-0.46
	13 < R ≤ 20	20 < R	0.05	1.42	0.17
	20 < R	20 < R	0.05	1.01	-0.36
Warehouse	R ≤ 13	R ≤ 13	0.05	4.01	-0.07
	R ≤ 13	13 < R ≤ 20	0.09	6.54	1.47
	R ≤ 13	20 < R	0.16	11.16	2.38
	13 < R ≤ 20	13 < R ≤ 20	0.02	1.18	-0.05
	13 < R ≤ 20	20 < R	0.08	4.94	0.86
	20 < R	20 < R	0.01	1.02	-0.03
l	20 4 1	20 41	0.01	1.52	0.00

Nonresidential: Building Envelope <u>ENERGY STAR[®]</u>Cool Roofs

Ι

Building type:	Pre R-value	Post R-value	ESF	IPSDF	PWDF
Other	R ≤ 13	R ≤ 13	0.05	1.71	-0.64
	R ≤ 13	13 < R ≤ 20	0.07	2.30	0.78
	R ≤ 13	20 < R	0.07	2.56	1.39
	13 < R ≤ 20	13 < R ≤ 20	0.02	1.17	-0.46
	13 < R ≤ 20	20 < R	0.05	1.42	0.17
	20 < R	20 < R	0.01	1.01	-0.36

Table 110. Cool Roofs—Savings Factors for Houston (Climate Zone 3)

Building type	Pre R-value	Post R-value	iESF'	PSDF	PWDF
Retail	R ≤ 13	R ≤ 13	0.62	17.21	9.86
	R ≤ 13	13 < R ≤ 20	1.00	29.60	17.11
	R ≤ 13	20 < R	1.01	31.61	16.52
	13 < R ≤ 20	13 < R ≤ 20	0.41	10.43	7.67
	13 < R ≤ 20	20 < R	0.41	11.89	7.07
	20 < R	20 < R	0.14	4.66	1.07
Education - Chiller	R ≤ 13	R ≤ 13	0.62	9.56	-0.28
	R ≤ 13	13 < R ≤ 20	0.87	15.28	3.52
	R ≤ 13	20 < R	0.95	17.53	4.52
	13 < R ≤ 20	13 < R ≤ 20	0.33	5.04	-0.28
	13 < R ≤ 20	20 < R	0.39	6.81	0.50
	20 < R	20 < R	0.26	4.05	-0.29
Education - RTU	R ≤ 13	R ≤ 13	0.29	9.39	-0.03
	R ≤ 13	13 < R ≤ 20	0.40	15.76	0.90
	R ≤ 13	20 < R	0.44	18.26	1.08
	13 < R ≤ 20	13 < R ≤ 20	0.18	6.21	-0.01
	13 < R ≤ 20	20 < R	0.22	8.58	0.16
	20 < R	20 < R	0.14	5.08	-0.07
Office - Chiller	R ≤ 13	R ≤ 13	0.25	9.45	0.70
	R ≤ 13	13 < R ≤ 20	0.33	21.39	1.26
	R ≤ 13	20 < R	0.34	23.54	1.23
	13 < R ≤ 20	13 < R ≤ 20	0.17	10.75	0.65
	13 < R ≤ 20	20 < R	0.18	12.84	0.61
	20 < R	20 < R	0.12	4.54	0.12

192

Nonresidential: Building Envelope <u>ENERGY STAR[®]</u>Cool Roofs

Ι

	1				
Building type	Pre R-value	Post R-value	IEŠF '	PSDF	PWDF
Office - RTU	R ≤ 13	R ≤ 13	0.28	8.30	6.91
	R ≤ 13	13 < R ≤ 20	0.46	18.66	37.60
	R ≤ 13	20 < R	0.54	22.36	50.18
	13 < R ≤ 20	13 < R ≤ 20	0.19	5.42	4.29
	13 < R ≤ 20	20 < R	0.26	8.39	16.87
	20 < R	20 < R	0.15	4.35	3.35
Hotel	R ≤ 13	R ≤ 13	0.08	1.69	0.54
	R ≤ 13	13 < R ≤ 20	0.07	2.26	0.17
	R ≤ 13	20 < R	0.07	2.50	-0.02
	13 < R ≤ 20	13 < R ≤ 20	0.06	1.21	0.37
	13 < R ≤ 20	20 < R	0.05	1.43	0.21
	20 < R	20 < R	0.05	1.03	0.32
Warehouse	R ≤ 13	R ≤ 13	0.05	2.96	-0.09
	R ≤ 13	13 < R ≤ 20	0.09	5.13	0.76
	R ≤ 13	20 < R	0.16	9.21	1.26
	13 < R ≤ 20	13 < R ≤ 20	0.02	1.32	-0.07
	13 < R ≤ 20	20 < R	0.08	4.66	0.43
	20 < R	20 < R	0.01	0.79	0.08
Other	R ≤ 13	R ≤ 13	0.05	1.69	-0.28
	R ≤ 13	13 < R ≤ 20	0.07	2.26	0.17
	R ≤ 13	20 < R	0.07	2.50	-0.02
	13 < R ≤ 20	13 < R ≤ 20	0.02	1.21	-0.28
	13 < R ≤ 20	20 < R	0.05	1.43	0.16
	20 < R	20 < R	0.01	0.79	-0.29

Table 111. Cool Roofs—Savings Factors for Corpus Christi (Climate Zone 4)

Building type	Pre R-value	Post R-value	IESF'	PSDF	PWDF
Retail	R ≤ 13	R ≤ 13	0.62	13.05	54.33
	R ≤ 13	13 < R ≤ 20	0.99	21.99	35.94
	R ≤ 13	20 < R	1.00	23.21	34.63
	13 < R ≤ 20	13 < R ≤ 20	0.41	8.08	16.20
	13 < R ≤ 20	20 < R	0.41	8.95	14.89
	20 < R	20 < R	0.13	3.42	2.05

Ι

Building type	Pre R-value	Post R-value	ESF	PSDF	PWDF
Education - Chiller	R ≤ 13	R ≤ 13	0.60	8.46	0.28
	R ≤ 13	13 < R ≤ 20	0.83	13.55	17.33
	R ≤ 13	20 < R	0.90	15.49	30.14
	13 < R ≤ 20	13 < R ≤ 20	0.31	4.48	-3.69
	13 < R ≤ 20	20 < R	0.36	6.00	6.37
	20 < R	20 < R	0.24	3.64	-0.06
Education - RTU	R ≤ 13	R ≤ 13	0.28	7.34	-0.41
	R ≤ 13	13 < R ≤ 20	0.38	11.78	5.15
	R ≤ 13	20 < R	0.41	13.53	8.09
	13 < R ≤ 20	13 < R ≤ 20	0.17	4.64	-1.46
	13 < R ≤ 20	20 < R	0.20	6.29	1.47
	20 < R	20 < R	0.14	3.77	-0.14
Office - Chiller	R ≤ 13	R ≤ 13	0.22	6.44	2.33
	R ≤ 13	13 < R ≤ 20	0.31	13.55	2.86
	R ≤ 13	20 < R	0.32	15.30	2.47
	13 < R ≤ 20	13 < R ≤ 20	0.17	6.34	1.78
	13 < R ≤ 20	20 < R	0.18	7.96	1.40
	20 < R	20 < R	0.10	3.27	0.45
Office - RTU	R ≤ 13	R ≤ 13	0.26	5.02	23.11
	R ≤ 13	13 < R ≤ 20	0.40	8.66	78.05
	R ≤ 13	20 < R	0.45	10.09	100.16
	13 < R ≤ 20	13 < R ≤ 20	0.18	3.61	15.10
	13 < R ≤ 20	20 < R	0.24	4.83	37.21
	20 < R	20 < R	0.15	2.95	10.35
Hotel	R ≤ 13	R ≤ 13	0.07	1.13	1.99
	R ≤ 13	13 < R ≤ 20	0.07	1.44	-1.23
	R ≤ 13	20 < R	0.07	1.57	-2.70
	13 < R ≤ 20	13 < R ≤ 20	0.05	0.78	1.36
	13 < R ≤ 20	20 < R	0.05	0.90	0.00
	20 < R	20 < R	0.04	0.67	1.19
Warehouse	R ≤ 13	R ≤ 13	0.05	2.10	0.22
	R ≤ 13	13 < R ≤ 20	0.09	3.51	1.39
	R ≤ 13	20 < R	0.16	6.54	1.35
	13 < R ≤ 20	13 < R ≤ 20	0.02	1.21	0.28
	13 < R ≤ 20	20 < R	0.08	3.71	0.24
	20 < R	20 < R	0.01	0.70	-0.07

Nonresidential: Building Envelope <u>ENERGY STAR[®]</u>Cool Roofs Texas Technical Reference Manual, Vol. 3 November 2021

1

Building type	Pre R'-value	Post R-value	ESF	PSDF	PWDF
Other	R ≤ 13	R ≤ 13	0.05	1.13	-0.41
	R ≤ 13	13 < R ≤ 20	0.07	1.44	-1.23
	R ≤ 13	20 < R	0.07	1.57	-2.70
	13 < R ≤ 20	13 < R ≤ 20	0.02	0.78	-3.69
	13 < R ≤ 20	20 < R	0.05	0.90	0.00
	20 < R	20 < R	0.01	0.67	-0.14

Table 112. Cool Roofs—Savings Factors for El Paso (Climate Zone 5)
--

				, 	1
Building type	Pre R-value	Post R-value	iESF'	PSDF	PWDF
Retail	R ≤ 13	R ≤ 13	0.67	16.55	42.72
	R ≤ 13	13 < R ≤ 20	1.01	26.85	67.80
	R ≤ 13	20 < R	1.02	28.78	65.27
	13 < R ≤ 20	13 < R ≤ 20	0.19	5.83	6.64
	13 < R ≤ 20	20 < R	0.19	7.24	4.12
	20 < R	20 < R	0.15	4.74	5.40
Education - Chiller	R ≤ 13	R ≤ 13	0.69	9.09	3.85
	R ≤ 13	13 < R ≤ 20	0.97	14.42	4.87
	R ≤ 13	20 < R	1.07	16.52	5.43
	13 < R ≤ 20	13 < R ≤ 20	0.36	4.80	1.87
	13 < R ≤ 20	20 < R	0.44	6.47	2.34
	20 < R	20 < R	0.28	3.91	1.19
Education - RTU	R ≤ 13	R ≤ 13	0.30	8.21	3.09
	R ≤ 13	13 < R ≤ 20	0.42	13.43	4.02
	R ≤ 13	20 < R	0.46	15.49	4.27
	13 < R ≤ 20	13 < R ≤ 20	0.18	5.16	1.47
	13 < R ≤ 20	20 < R	0.22	7.09	1.72
	20 < R	20 < R	0.14	4.14	0.86
Office - Chiller	R ≤ 13	R ≤ 13	0.29	9.72	7.27
	R ≤ 13	13 < R ≤ 20	0.39	17.57	12.46
	R ≤ 13	20 < R	0.42	20.35	13.25
	13 < R ≤ 20	13 < R ≤ 20	0.17	6.68	0.12
	13 < R ≤ 20	20 < R	0.20	9.22	0.79
	20 < R	20 < R	0.14	5.39	2.02

Texas Technical Reference Manual, Vol. 3 November 2021

Nonresidential: Building Envelope <u>ENERGY STAR[®]</u>Cool Roofs

Ι

Sec. 1 of Second Second		See 25 an los	ESF	DODE	PWDF
Building type Office - RTU	Pre R-value R ≤ 13	Post R-value R ≤ 13	1 ESI F 0.31	PSDF 9.93	PWDF 24.02
	R ≤ 13	13 < R ≤ 20	0.55	16.57	105.15
	R ≤ 13	20 < R	0.64	19.26	135.96
	13 < R ≤ 20	13 < R ≤ 20	0.20	5.75	16.21
	13 < R ≤ 20	20 < R	0.29	7.78	47.02
	20 < R	20 < R	0.16	4.70	12.77
Hotel	R ≤ 13	R ≤ 13	0.10	1.33	7.04
	R ≤ 13	13 < R ≤ 20	0.08	1.58	1.80
	R ≤ 13	20 < R	0.08	1.68	-0.78
	13 < R ≤ 20	13 < R ≤ 20	0.07	0.95	4.98
	13 < R ≤ 20	20 < R	0.06	1.04	2.57
	20 < R	20 < R	0.06	0.81	4.27
Warehouse	R ≤ 13	R ≤ 13	0.04	2.76	-0.61
	R ≤ 13	13 < R ≤ 20	0.09	4.91	1.33
	R ≤ 13	20 < R	0.15	8.27	2.06
	13 < R ≤ 20	13 < R ≤ 20	0.02	1.31	-0.42
	13 < R ≤ 20	20 < R	0.07	3.98	0.30
	20 < R	20 < R	0.01	0.76	-0.19
Other	R ≤ 13	R ≤ 13	0.04	1.33	-0.61
	R ≤ 13	13 < R ≤ 20	0.08	1.58	1.33
	R ≤ 13	20 < R	0.08	1.68	-0.78
	13 < R ≤ 20	13 < R ≤ 20	0.02	0.95	-0.42
	13 < R ≤ 20	20 < R	0.06	1.04	0.30
	20 < R	20 < R	0.01	0.76	-0.19

Deemed Energy and Demand Savings Tables

There are no deemed energy or demand savings tables for this measure. Please use algorithms and inputs, as described above.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

<u>The estimated useful life (EUL) is 15 years, as specified in the California Database of Energy</u> <u>Efficiency Resources (DEER) READI tool for EUL ID BldgEnv-CoolRoof.</u>²³⁰

²³⁰ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

196

Nonresidential: Building Envelope <u>ENERGY STAR®</u>Cool Roofs

Estimated Useful Life is 15 years for cool roofs, as discussed in PUCT Docket Nos. 36779 and 41070. The DEER 2014 update also provides a 15 year life for cool roofs (EUL ID—BidgEnv-CoolRoof).²³¹

Program Tracking Data and Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

- Climate zone or county location
- <u>Building type</u>
- Total and treated roofing square footage (over conditioned space)
- Roof slope
- Existing roof insulation R-value, or year of building construction
- New roof insulation R-Value, if adding insulation
- New roofing initial solar reflectance
- New roofing 3-year solar reflectance
- New roofing rated life
- Copy of ENERGY STAR® certification or alternative
- Copy of proof of purchase including date of purchase, manufacturer, and model

Building Type References and Efficiency Standards

Petitions and Rulings

• PUCT Docket 36779—Provides EUL for Commercial Cool Roof.

Relevant Standards and Reference Sources

- ENERGY STAR[®] Certified Cool Roof Products. <u>http://www.energystar.gov/productfinder/product/certified-roof-products/</u>.
- IECC 2000 Table 802.2(17), 2009 Table 502.2(1), and 2015 Table C402.1.4
- DEER 2014 EUL update.

Document Revision History

Table 113. Nonresidential ENERGY STAR® Roofs Revision History

²³¹-Database for Energy Efficiency Resources (DEER), <u>http://www.deeresources.com/</u>.

197

Nonresidential: Building Envelope <u>ENERGY STAR®</u>Cool Roofs

'TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. Clarified that reflectance is three years basis. Rounded off values, too many insignificant digits.
v3.0	04/10/2015	TRM v3.0 update. No revisions.
v4.0	10/10/2016	TRM v4.0 update. Clarified eligibility criteria, baseline condition, and high-efficiency condition. Added R-values for more materials. Added new high-performance roof calculator for use in determining ENERGY STAR [®] roof savings.
v5.0	10/2017	TRM v5.0 update. No revisions.
v6.0	10/2018	TRM v6.0 update. Changed savings methodology from algorithms to simulation models. Deemed savings are presented per square foot by building type and climate zone.
v7.0	10/2019	TRM v7.0 update. Minor error updates to Savings Factor Table for greater than and less than symbols. Program tracking requirements updated.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Removed EStar qualification requirement and defers to meeting criteria.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. Added building type to tracking data requirements. Updated EUL reference.

Ι

198

2.3.2 Window Treatments Measure Overview

- TRM Measure ID: NR-BE-WT
- Market Sector: Commercial
- Measure Category: Building Envelope
- Applicable Building Types: All commercial building types
- Fuels Affected: Electricity
- Decision/Action Type: Retrofit
- Program Delivery Type: Prescriptive
- Deemed Savings Type: Deemed savings calculation
- Savings Methodology: Engineering algorithms and estimates

Measure Description

This section presents the deemed savings methodology for the installation of window films and solar screens. The installation of window treatments decreases the window-shading coefficient and reduces the solar heat transmitted to the building space. During months when perimeter cooling is required in the building, this measure decreases cooling energy use_and summer demand.

Eligibility Criteria

This measure is applicable for treatment of single or double-paned clear glass windows without reflective or low-E coatings in south or west facing orientations (as specified in <u>Table 114Table</u> 114). Existing windows must have no solar films/screens, interior shades, or exterior awnings or overhangs, and must be installed in buildings that are mechanically cooled (DX or chilled water).

This methodology may be adapted for windows with existing shading devices on an individual project basis with prior evaluator approval of baseline solar heat gain coefficient (SHGC).

Baseline Condition

Nonresidential: Building Envelope

Window Treatments

The baseline condition is single-pane clear glass, without existing window treatments.

High-Efficiency Condition

The high-efficiency condition is an eligible window treatment applied to eligible windows.

199

Energy and Demand Savings Methodology

The demand and energy savings equations in this section originated in calculations by the EUMMOT utilities, as presented in the EUMMOT program manual *Commercial Standard Offer Program: Measurement and Verification Guidelines for Retrofit and New Construction Projects.* The method estimates the reduction in solar heat gain/insolation attributable to a given window treatment using shading coefficients for the treated and untreated window and solar heat gain estimates by window orientation, according to ASHRAE Fundamentals. The reduction in building energy use attributable to the reduction in cooling system energy use is estimated based on the reduced heat removal requirement for a standard efficiency cooling system.

Savings Algorithms and Input Variables

 $Demand \ Savings_o \ [kW] = \frac{A_{film,o} \times SHGF_o \times (SHGC_{pre,o} - SHGC_{post,o})}{3,412 \times COP}$

Equation 67

 $Peak Demand Savings [kW] = DemandSaving_{o,max}$

Equation 68

$$Energy Savings_o [kWh] = \frac{A_{film,o} \times SHG_o \times (SHGC_{pre,o} - SHGC_{post,o})}{3,412 \times COP}$$

Equation 69

$$Energy Savings [kWh] = \sum Energy Savings_o$$

Equation 70

Where:

Demand Savings	=	Peak demand savings per window orientation
Energy Savings	=	Energy savings per window orientation
A _{film,o}	=	Area of window film applied to orientation [ft ²]
SHGF₀	=	Peak solar heat gain factor for orientation of interest [Btu/hr-ft²-year]. See <u>Table 114Table 114</u> . Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
SHG₀	=	Solar heat gain for orientation of interest [Btu/ft2-year]. See <u>Table 114Table 114</u> . Formatted: Font: (Default) Arial, 11 pt, Font color: Auto
SHGC _{pre}	=	Solar heat gain coefficient for existing glass with no interior-shading device. See <u>Table 115</u> . Formatted: Font: (Default) Arial, 11 pt, Font color: Auto

SHGC_{post} = Solar heat gain coefficient for new film/interior-shading device, from manufacturer specs

Note: Shading coefficients (SC) have been retired, but if a product specification lists SC instead of SHGC, you can convert to SHGC by multiplying SC by 0.87.²³²

COP = Cooling equipment COP based on <u>Table 116 Table 116</u> or Formatted: Font: (Default) Arial, 11 pt, Font color: Auto actual COP equipment, whichever is greater-; if building construction year is unknown, assume IECC 2009 as applicable code

3,412

Conversion factor [Btu/kWh]

Table 114. Windows Treatments—Solar Heat Gain Factors²³³

	Solar heat gain	Peak hour solar heat gain (SHGF) (Btu/hr-ft²-year)				
Orientation	(SHG) (Btu/ft ² -year)	Zone 1 ²³⁴	Zone 2	Zone 3	Zone 4	Zone 5
South-East	158,844	28	30	26	27	35
South-South-East	134,794	28	31	28	28	37
South	120,839	37	44	47	45	56
South-South-West	134,794	88	94	113	113	101
South-West	158,844	152	151	170	173	141
West-South-West	169,696	191	184	201	206	160
West	163,006	202	189	201	207	155
West-North-West	139,615	183	167	171	178	128
North-West	107,161	136	120	115	121	85

Table 115. Windows Treatment— Recommended Clear Glass SHGCpre by Window Thickness²³⁵

Existing window thickness (inches)	SHGC _{pre}
Single-pane 1/8-inch clear glass	0.87<u>0.86</u>
Single-pane 1/4-inch clear glass	0.83<u>0.81</u>
Single-pane 1/2-inch clear glass	0.77

²³² 2001 ASHRAE Handbook: Fundamentals, p. 30.39.

Nonresidential: Building Envelope Window Treatments

1.15.

²³³ Values are taken from the 1997 ASHRAE Fundamentals, Chapter 29 Table 17, based on the amount of solar radiation transmitted through single-pane clear glass for a cloudless day at 32°N Latitude for the 21st day of each month by hour of day and solar orientation. The SHG values listed above have been aggregated into daily totals for weekdays during the months of April through October.

 ²³⁴ Coincidence factors specific to Climate Zone 1 could not be calculated since utility load data are not currently available for this region. In their absence, Climate Zone 2 values may be used.
 ²³⁵ 2017 ASHRAE Handbook: Fundamentals, Chapter 15 Fenestration, Table 10 Solar Heat Gain Coefficient (SHGC), 1997 ASHRAE Fundamentals, Table 29. Converted to SHGC by multiplying SC by

Double-pane <u>1/8-inch</u> clear glass ²³⁶	0.70<u>0.76</u>
Double-pane 1/4-inch clear glass	<u>0.70</u>

²³⁶ Not defined in 1997 ASHRAE Fundamentals. SHGC established as conservative end of range determined by general product review.

202

Nonresidential: Building Envelope Window Treatments

Year of construction; applicable code	AC/HP	PTAC/PTHP	Air-cooled chiller	Water-cooled chiller	
Before 2011; 2000 IECC	2.9	2.9	2.5	4.2	
Between 2011-2016; 2009 IECC	3.8	3.1	2.8	5.5	
After 2016; 2015 IECC	3.8	3.1	2.8	5.5	

Table 116. Recommended COP by HVAC System Type²³⁷

Deemed Energy and Demand Savings Tables

There are no deemed energy or demand savings tables for this measure. Please use algorithms and inputs, as described above.

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 10 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID GlazDaylt-WinFilm.²³⁸

Estimated Useful Life is 10 years for solar screens, as discussed in PUCT Docket Nos. 36779 and 41070. The DEER 2014 update also provides an EUL of 10 years for this measure (EUL ID—GlazDayIt-WinFilm).²³⁹

Program Tracking Data and Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

- Existing window type, thickness, and SHGC
- Description of existing window presence of exterior shading from other buildings or obstacles
- Window film or solar screen SHGC
- Eligible window treatment application area by orientation (e.g., S, SSW, SW)
- Year of construction, if available
- Cooling equipment type
- Cooling equipment rated efficiency

Nonresidential: Building Envelope Window Treatments

²³⁷ Based on review applicable codes, including IECC 2000, 2009, and 2015.

²³⁸ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.
²³⁹ Database for Energy Efficiency Resources (DEER), <u>http://www.deeresources.com/</u>.

References and Efficiency Standards

Petitions and Rulings

• PUCT Docket 36779—Provides EUL for reflective window films and sunscreens.

Relevant Standards and Reference Sources

- 1997 ASHRAE Fundamentals, Chapter 29, Table 17.
- International Energy Conservation Code (IECC) 2000, 2009, and 2015DEER 2014 EUL update

Document Revision History

Table 117. Nonresidential Window Treatment Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. Eliminated east-facing windows from consideration for energy savings.
v3.0	04/10/2015	TRM v3.0 update. References to EPE-specific deemed savings removed (EPE to adopt methods used by the other utilities). Demand savings: Frontier Energy updated to incorporate new peak demand definition. Provided deemed values for shading coefficients and HVAC efficiencies. SHGF: Used CZ2 savings for CZ1 until better values can be developed.
v4.0	10/10/2016	TRM v4.0 update. No revisions.
v5.0	10/2017	TRM v5.0 update. No revisions.
v6.0	10/2018	TRM v6.0 update. No revisions.
v7.0	10/2019	TRM v7.0 update. No revisions.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Updated peak demand values for climate zones and PDPF values.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. Corrected footnote for SC to SHGC conversion. Updated performance factors to 2017 ASHRAE Fundamentals. Updated EUL reference.

204

Nonresidential: Building Envelope

Window Treatments

2.3.3 Entrance and Exit Door Air Infiltration Measure Overview

TRM Measure ID: NR-BE-DIMarket Sector: CommercialMeasure Category: Building EnvelopeApplicable Building Types: All commercial building typesFuels Affected: ElectricityDecision/Action Type: RetrofitProgram Delivery Type: PrescriptiveDeemed Savings Type: Deemed savings calculationSavings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to the installation of weather stripping or door sweeps on entrance and exit doors for a contained, pressurized space. Entrance and exit doors often leave clearance gaps to allow for proper operation. The gaps around the doors allow for the infiltration of unconditioned air into the building, adding to the cooling and heating load of the HVAC system. Weatherstripping and door sweeps are designed to be installed along the bottom and jambs of exterior doors to prevent air infiltration to conditioned space.

Eligibility Criteria

Weatherstripping or doors sweeps must be installed on doors of a conditioned and/or heated space. Treated doors must have visible gaps of at least 1/8–3/4 inches along the outside edge of the door. Spaces with interior vestibule doors are not eligible.

Baseline Condition

Nonresidential: Building Envelope

Entrance and Exit Door Air Infiltration

The baseline standard for this measure is a commercial building with exterior doors that are not sealed from unconditioned space.

High-Efficiency Condition

The high-efficiency condition for this measure is a commercial building with exterior doors that have been sealed from unconditioned space using weather stripping and/or brush style door sweeps.

Energy and Demand Savings Methodology

This savings methodology was derived by analyzing TMY3 weather data for each Texas weather zone representative city.

Derivation of Pre-Retrofit Air Infiltration Rate

The pre-retrofit air infiltration rate for each crack width is calculated by applying the methodologies presented in Chapter 5 of the ASHRAE Cooling and Heating Load Calculation Manual (CHLCM).²⁴⁰ Building type characteristics for a typical commercial building were found in the DOE study PNNL-20026,²⁴¹ and an average building height of 20 feet is assumed for the deemed savings approach.

Because air infiltration is a function of differential pressure due to stack effect, wind speed, velocity head, and the design conditions of the building, TMY3 for each Texas weather zone reference city was applied to account for the varying weather conditions that are characteristic throughout an average year.

Figure 5.13 from the ASHRAE CHLCM provides the infiltration rate based on various crack width and the corresponding pressure difference across a door. Figures 5.1 and 5.2 (CHLCM) provide the differential pressure due to stack and wind pressure necessary to determine the total pressure difference across the door.

Applying a regression analysis to Figure 5.1 returns an equation that allows solving for the pressure difference due to stack effect, Δp_s . The aggregate curve fit for Figure 5.1 is shown below where *x* is based on the dry bulb temperature from the TMY3 data, and the design temperature based on the appropriate seasonal condition.

$$\Delta p_s / C_d = 0.0000334003x - 0.00014468$$

Equation 71

Where C_d is an assumed constant, 0.63, and the neutral pressure distance is 10 feet.

From Figure 5.2, $\Delta p_w/C_p$ is determined by applying a polynomial regression, which returns an equation for solving for the pressure difference due to wind, Δp_w . The curve fit for Figure 5.2 is shown below where *x* is the wind velocity based on TMY3 data.

$$\Delta p_w/C_p = 0.00047749x^2 - 0.00013041x$$

Equation 72

Where C_{ρ} is an assumed constant, 0.13 (average wind pressure coefficient from Table 5.5 from CHLCM).

206

Nonresidential: Building Envelope Entrance and Exit Door Air Infiltration

²⁴⁰ ASHRAE Cooling and Heating Load Calculation Manual, p. 5.8. 1980. http://portal.hud.gov/hudportal/documents/huddoc?id=doc 10603.pdf.

²⁴¹ Cho, H., K. Gowri, and B. Liu, "Energy Saving Impact of ASHRAE 90.1 Vestibule Requirements: Modeling of Air Infiltration through Door Openings." November 2010. <u>http://www.pnl.gov/main/publications/external/technical_reports/PNNL-20026.pdf</u>.

This yields the total pressure difference across the door, *Ap_{Total}*.

$$\Delta p_{Total} = \Delta p_s + \Delta p_w$$

Equation 73

Solving for Δp_{Total} allows for the air infiltration rate per linear foot to be determined in Figure 5.13 (CHLCM). Applying a power regression analysis for each crack width (described in inches) represented in Figure 5.13 returns the equations listed below. In these equations, Q is the infiltration rate in cubic feet per minute through cracks around the door, and P is the perimeter of the door in feet.

$Q/P_{1/8"} = 41.572x^{0.5120}$	
	Equation 74
$Q/P_{1/4"} = 81.913x^{0.5063}$	
	Equation 75
$Q/P_{1/2"} = 164.26x^{0.5086}$	
Q/1 _{1/2} = 104.20x	Equation 76
0.5007	Equation 70
$Q/P_{3/4"} = 246.58x^{0.5086}$	
	Equation 77

These infiltration rates were further disaggregated based on TMY3 average monthly day and night conditions.

Derivation of Design and Average Outside Ambient Temperatures

Taking average daytime and nighttime outdoor temperature values, standard set points, and setbacks for daytime and nighttime design cooling and heating will yield the temperature difference needed for the sensible heat equation:

 $\Delta T = T_{design} - T_{avg outside ambient}$

Equation 78

Where:

T _{design}	=	Daytime and nighttime design temperature (°F, see <u>Table</u> Formatted: Font: Italic <u>119</u> Table 119 Formatted: Font: Italic
\mathcal{T}_{avg} outside ambient	=	Average outside ambient temperature, specified by month (°F, see <u>Table 118</u> Table 118)

207

Nonresidential: Building Envelope Entrance and Exit Door Air Infiltration

	Climate Ama	zone 1 Irillo		zone 2 las		zone 3 ston		zone 4 Christi		zone 5 aso
Month	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
Jan	41.5	31.5	48.1	40.3	54.8	47.0	58.1	50.9	50.9	42.4
Feb	44.9	34.5	52.8	44.8	59.4	50.5	61.7	54.4	55.8	45.2
Mar	52.9	40.7	63.6	54.4	65.5	56.8	69.1	61.3	61.0	48.2
April	65.4	52.7	71.4	62.7	73.1	64.7	75.9	67.7	72.7	60.5
May	69.2	57.2	77.6	68.7	79.4	71.1	80.5	72.0	80.9	69.0
June	79.9	69.7	85.3	75.0	85.1	76.2	86.4	77.9	88.2	76.1
July	84.5	72.1	90.4	80.6	87.8	78.0	88.6	78.0	86.7	76.5
Aug	81.4	69.7	89.1	79.2	88.0	77.5	88.0	78.4	84.2	74.4
Sept	75.3	64.3	84.5	73.8	85.5	73.6	85.0	75.2	80.9	67.3
Oct	63.6	50.4	70.2	59.9	75.4	61.8	77.5	67.9	70.2	59.7
Nov	48.5	38.5	59.3	52.3	67.6	57.9	72.3	63.8	57.3	47.0
Dec	41.8	32.4	49.5	41.8	59.2	50.0	60.4	53.7	49.1	39.4

Table 118. Average Monthly Ambient Temperatures (°F)²⁴²

Table 119. Daytime and Nighttime Design Temperatures

Temperature description	T _{design} (°F)
Daytime Cooling Design Temperature	74
Daytime Heating Design Temperature	72
Nighttime Cooling Design Temperature ²⁴³	78
Nighttime Heating Design Temperature ²⁴⁴	68

Savings Algorithms and Input Variables

To calculate HVAC load associated with air infiltration, the following sensible heat equation is used:

Electric Cooling Energy Savings

Cooling Energy Savings [kWh]_{Day}

 $= \frac{CFM_{pre,day} \times CFM_{reduction} \times 1.08 \times \Delta T \times 1.0 \frac{kW}{ton} \times Hours_{day}}{12,000 Btuh/ton}$

Equation 79

²⁴² TMY3 climate data.

²⁴³ Assuming 4-degree setback.

²⁴⁴ Ibid.

208

Nonresidential: Building Envelope Entrance and Exit D∞r Air Infiltration

Cooling Energy Savings [kWh]_{Night}

$$=\frac{CFM_{pre,night} \times CFM_{reduction} \times 1.08 \times \Delta T \times 1.0\frac{kW}{ton} \times Hours_{night}}{12,000 Btuh/ton}$$

Equation 80

. . . .

Cooling Energy Savings [kWh]

= Cooling Energy Savings [kWh]_{Day} + Cooling Energy Savings [kWh]_{Night}

Equation 81

Electric Heating Energy Savings

Heating Energy Savings [kWh]_{Day}

$$= \frac{CFM_{pre,day} \times CFM_{reduction} \times 1.08 \times \Delta T \times 1.0\frac{kW}{ton} \times Hours_{day}}{COP \times 3,412 Btuh/kW}$$

Equation 82

Heating Energy Savings [kWh]_{Night}

 $=\frac{CFM_{pre,night} \times CFM_{reduction} \times 1.08 \times \Delta T \times 1.0 \frac{kW}{ton} \times Hours_{night}}{COP \times 3,412 Btuh/kW}$

Equation 83

Heating Energy Savings [kWh]

= $Cooling Energy Savings [kWh]_{Day} + Cooling Energy Savings [kWh]_{Night}$

Equation 84

Electric Cooling Demand Savings (weighted by climate zone peak hour probability)

Summer Demand Savings
$$[kW]_{Day} = \frac{CFM_{pre,day} \times CFM_{reduction} \times 1.08 \times \Delta T \times 1.0\frac{kW}{ton}}{12,000 Btuh/ton}$$

Equation 85

. . . .

Electric Heating Demand Savings (weighted by climate zone peak hour probability)

Winter Demand Savings [kW]_{Day/Night}

$$=\frac{CFM_{pre,day/night} \times CFM_{reduction} \times 1.08 \times \Delta T \times 1.0\frac{KW}{ton}}{COP \times 3,412 Btuh/kW}$$

Equation 86

7-147

209

Nonresidential: Building Envelope Entrance and Exit Door Air Infiltration

Where:

CFM _{pre}	=	Calculated pre-retrofit air infiltration (cubic feet per minute)
CFM _{reduction}	=	59% ²⁴⁵ x TDF
TDF	=	Technical degradation factor = 85% ²⁴⁶
1.08	=	Sensible heat equation conversion ²⁴⁷
ΔT	=	Change in temperature across gap barrier (°F)
Hours _{day}	=	12 hour cycles per day, per month = 4,380 hours
Hours _{night}	=	12 hour cycles per night, per month = 4,380 hours
СОР	=	Heating coefficient of performance; 1.0 for electric resistance and 3.3 for heat pumps

Deemed Energy and Demand Savings Tables

Deemed energy and demand savings per linear foot of installed weather stripping or door sweep are specified below based on climate zone and existing door gap width. The length measurement should be initially measured to the nearest ¼ inch and converted to linear feet rounded to hundredths (0.02) including any segments that are not sealed due to corners, hinges, handles, or other obstructions. The width of the door gap should be rounded to nearest gap width in inches in <u>Table 120</u>Table 120 through <u>Table 125</u>Table 125. Heating savings are specified for both electric resistance (ER) and heat pump (HP) heating. Cooling savings are available for buildings with electric cooling and gas heat, but no heating savings should be claimed for buildings with gas heat.

Table 120. Deemed Cooling Energy Savings per Linear Foot of Weather Stripping/Door Sweep

	Gap width (inches)				
Climate zone	1/8	174	1/2	3/4,	
Zone 1: Amarillo	1.90	3.83	7.60	11.42	
Zone 2: Dallas	3.90	7.88	15.65	23.49	
Zone 3: Houston	3.01	6.09	12.09	18.14	
Zone 4: Corpus Christi	5.00	10.08	20.03	30.06	
Zone 5: El Paso	2.81	5.69	11.28	16.93	

²⁴⁵ CLEAResult, "Commercial Door Air Infiltration Memo". March 18, 2015. Average reduction in Arkansas based on test results from the CLEAResult Brush Weather Stripping Testing Method and Results (59% infiltration reduction).

210

²⁴⁷ 2013 ASHRAE Handbook of Fundamentals; Equation 33, p. 16.11.

²⁴⁶ This factor is applied to account for the difference between the laboratory test from the "Commercial Door Air Infiltration Memo" and the real-world ability to seal the openings around a door. In the absence of research regarding the actual difference, this factor was set to 0.85.

Table 121. Deemed ER Heating Energy Savings per Linear Foot of Weather Stripping/Door Sweep

	Gap width (inches)			
Climate zone	1/8	1/4	1/2	3/4
Zone 1: Amarillo	101.26	204.24	405.72	609.05
Zone 2: Dallas	48.90	98.82	196.15	294.44
Zone 3: Houston	27.18	55.06	109.19	163.91
Zone 4: Corpus Christi	22.78	46.02	91.35	137.13
Zone 5: El Paso	45.59	92.23	182.99	274.69

Table 122. Deemed HP Heating Energy Savings per Linear Foot of Weather Stripping/Door Sweep

	Gap width (inches)				
Climate zone	1/8	1/4	1/2	3/4	
Zone 1: Amarillo	30.69	61.89	122.94	184.56	
Zone 2: Dallas	14.82	29.95	59.44	89.22	
Zone 3: Houston	8.24	16.69	33.09	49.67	
Zone 4: Corpus Christi	6.90	13.94	27.68	41.56	
Zone 5: El Paso	13.81	27.95	55.45	83.24	

Table 123. Deemed Summer Demand Savings per Linear Foot of Weather Stripping/Door Sweep

	Gap width (inches)				
Climate zone	1/8	1/4	1/2	3/4	
Zone 1: Amarillo	0.0053	0.0105	0.0210	0.0315	
Zone 2: Dallas	0.0044	0.0090	0.0179	0.0269	
Zone 3: Houston	0.0043	0.0087	0.0173	0.0259	
Zone 4: Corpus Christi	0.0041	0.0082	0.0164	0.0246	
Zone 5: El Paso	0.0041	0.0083	0.0165	0.0247	

Table 124. Deemed ER Winter Demand Savings per Linear Foot of Weather Stripping/Door Sweep

	Gap width (inches)				
Climate zone	1/8	1/4	1/2	3/4	
Zone 1: Amarillo	0.0268	0.0541	0.1074	0.1612	
Zone 2: Dallas	0.0412	0.0828	0.1648	0.2474	
Zone 3: Houston	0.0211	0.0425	0.0844	0.1267	
Zone 4: Corpus Christi	0.0190	0.0383	0.0762	0.1144	
Zone 5: El Paso	0.0099	0.0202	0.0400	0.0602	

211

Table 125. Deemed HP Winter Demand Savings per Linear Foot of We	ather Stripping/Door Sweep
Table 1201 Beelinea III Tiniter Beinana Garnige per Eniear Feet er fre	

	Gap width (inches)			
Climate zone	1/8	1/4	1/2	3/4
Zone 1: Amarillo	0.0138	0.0277	0.0550	0.0825
Zone 2: Dallas	0.0178	0.0357	0.0710	0.1066
Zone 3: Houston	0.0102	0.0207	0.0410	0.0615
Zone 4: Corpus Christi	0.0087	0.0175	0.0348	0.0523
Zone 5: El Paso	0.0049	0.0099	0.0197	0.0296

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 11 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID BS-Wthr.²⁴⁸ The EUL for this measure is 11 years, according to the California Database of Energy Efficiency Resources (DEER 2014).²⁴⁹ This measure life is consistent with the residential air infiltration measure in the Texas TRM.

Program Tracking Data and Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

- Climate zone
- Existing gap width (1/8", 1/4", 1/2", or 3/4")
- Installed measure (weather stripping or door sweep)
- Linear feet (to nearest 0.02 feet = 1/4") of installed weather stripping or door sweep

References and Efficiency Standards

Petitions and Rulings

Nonresidential: Building Envelope

Entrance and Exit Door Air Infiltration

 Docket No. 48265. Petition of AEP Texas Inc., CenterPoint Energy Houston Electric, LLC, El Paso Electric Company, Entergy Texas, Inc., Oncor Electric Delivery Company LLC, Southwestern Electric Power Company, Southwestern Public Service Company, and Texas-New Mexico Power Company. Petition to Approve Deemed Savings for New Nonresidential Door Air Infiltration, Nonresidential Door Gaskets, and Residential ENERGY STAR[®] Connected Thermostats. Public Utility Commission of Texas.

²⁴⁹ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.
²⁴⁹ Database for Energy Efficient Resources, <u>http://www.deeresources.com/.</u>

212

Relevant Standards and Reference Sources

• Not applicable.

Document Revision History

 Table 126. Nonresidential Entrance and Exit Door Air Infiltration Revision History

'TRM	version	Date	Description of change
v6.0		10/2018	TRM v6.0 origin.
v7.0		10/2019	TRM v7.0 update. Minor text revisions.
v8.0		10/202 2 0	TRM v8.0 update. General reference checks and text edits. Degradation factor added to deemed savings values. Guidance clarified for measuring gap sizes.
<u>v9.0</u>		<u>10/2021</u>	TRM v9.0 update. Updated EUL reference.

213

2.4 NONRESIDENTIAL: FOOD SERVICE EQUIPMENT

2.4.1 ENERGY STAR[®] Combination Ovens Measure Overview

TRM Measure ID: NR-FS-CO Market Sector: Commercial Measure Category: Food Service Equipment Applicable Business Types: See Eligibility Criteria Fuels Affected: Electricity Decision/Action Type: Retrofit, new construction Program Delivery Type: Prescriptive Deemed Savings Type: Look-up tables Savings Methodology: Engineering algorithms and estimates

Measure Description

This section presents the deemed savings methodology for the installation of high efficiency combination ovens. Combination ovens are convection ovens that include the added capability to inject steam into the oven cavity and typically offer at least three distinct cooking modes: combination mode to roast or bake with moist heat, convection mode to operate purely as a convection oven providing dry heat, and straight pressure-less steamer. The energy and demand savings are determined on a per-oven basis.

Eligibility Criteria

Eligible units must <u>meet-be compliant with the current</u> ENERGY STAR[®] <u>qualifications</u><u>specifications</u>, with half-size and full-size ovens as defined by <u>ENERGY STAR</u>[®] <u>below</u> and a pan capacity \geq 5 and \leq 20.²⁵⁰.251

- Half-size combination oven: capable of accommodating a single 12 x 20 x 2½-inch steam table pan per rack position, loaded from front-to-back or lengthwise.
- Full-size combination oven: capable of accommodating two 12 x 20 x 2½-inch steam table pans per rack position, loaded from front-to-back or lengthwise.

²⁵⁰ ENERGY STAR[®] Program Requirements for Commercial Ovens. <u>Eligibility Criteria Version 2.2.</u> <u>https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Version%202.2%20</u> <u>Specification.pdf</u>.-Accessed 07/2020.

214

Nonresidential: Food Service Equipment ENERGY STAR[®] Combination Ovens

²⁵¹ ENERGY STAR[®] Qualified Product Listing: https://www.energystar.gov/productfinder/product/certifiedcommercial-ovens/results.

Eligible building types include independent restaurants, chain restaurants, elementary and secondary schools, colleges and universities, corporate and industrial foodservice operations, healthcare, hospitality, and supermarkets.²⁵²

The following products are excluded from the ENERGY STAR® eligibility criteria:

- 2/3-sized combination ovens
- Dual-fuel heat source combination ovens
- Gas combination ovens
- Electric combination ovens with a pan capacity < 5 or > 20
- Hybrid ovens not defined as eligible above (e.g., those incorporating microwave settings)
- Electric rack ovens
- Conventional or standard ovens, conveyor, slow cook-and-hold, deck, range, rapid cook, and rotisserie

Baseline Condition

The baseline condition for retrofit situations is a half-size or full-size combination oven with a pan capacity \geq 5 and \leq 20.

High-Efficiency Condition

Eligible Eligible equipment must be compliant with the current ENERGY STAR[®] v2.2 specification, effective October 7, 2015. Qualified products must meet the minimum energy efficiency and idle energy rate requirements from Table 127Table 127.

 Table 127. Combination Ovens – ENERGY STAR[®] Specification
 Cooking Energy Efficiency and Idle

 Energy Rate Requirements²⁵³

Energy rate requirements			
Operation	ldle rate (kW) ²⁵⁴	Cooking energy efficiency (%)	
Steam Mode	≤ 0.133P + 0.6400	≥ 55	
Convection Mode	≤ 0.080P + 0.4989	≥ 76	

²⁵² CEE Commercial Kitchens Initiative's overview of the Food Service Industry: <u>https://library.cee1.org/system/files/library/4203/CEE_CommKit_InitiativeDescription_Mar2021.pdf.http://library.cee1.org/sites/.default/files/library/4203/CEE_CommKit_InitiativeDescription_June2014.pdf. <u>Accessed 07/2020.</u></u>

²⁵³ ENERGY STAR[®] <u>Commercial Ovens Key Product Criteria.</u> <u>https://www.energystar.gov/products/commercial food service equipment/commercial ovens/key product criteria.</u> <u>oduct criteria.</u> Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment. Calculator: <u>http://www.energystar.gov/buildings/sites/default/uploads/files/Commercial_kitchen_equipment_calculator.xlsx. Accessed 07/2020.</u>

215

²⁵⁴ P = Pan Capacity.

Nonresidential: Food Service Equipment ENERGY STAR[®] Combination Ovens

Furthermore, Pan Capacity^{255} must be ≥ 5 and ≤ 20 (for both half- and full-size combination ovens).

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

The deemed values are calculated by using the following algorithms:

$$Energy Savings [kWh] = kWh_{base} - kWh_{postES}$$

Equation 87

 $\frac{Peak \ Demand \ [kW]}{t_{hrs} \times t_{days}} \times CF$

 $kWh_{base} = kWh_{ph,base} + kWh_{conv,base} + kWh_{st,base}$

Equation 87

Equation 88

 $kWh_{postES} = kWh_{ph,ES} + kWh_{conv,ES} + kWh_{st,ES}$

Equation 89

<u> kWh_{conv} </u> and kWh_{st} are each calculated the same for both the base (baseline) and post (ENERGY STAR[®]-) cases, as shown in Equation 90Equation 90Equation 88 and Equation 89, except they require their respective η (Cooking Efficiencies), E_{idle} (Idle Energy Rates) and C_{eep} (Production Capacity)-input assumptions relative to preheat, cooking and idle operation in Convection and Seteem M_{modes} as seen in Table 128Table 128.

$$kWh = \left(E_{ph} + \left(\frac{W_{food} \times E_{food} \times 50\%}{\eta_{cooking}}\right) + E_{idle} \times \left(\left(t_{kourson} - \frac{W_{food}}{C_{eap}}PC\right) \times 50\%\right)\right) \times \frac{t_{days}}{1000}$$

Equation 90

Where:

kWh _{base} =	Baseline annual energy consumption [kWh]
<u>kWh_{post}kWh_{ES} =</u>	Post_ <u>ENERGY</u> STAR [®] annual energy consumption [kWh]
<u>Eph</u> =	Preheat energy [Wh/BTU]
$\Delta E_{ph} =$	Difference in baseline and ENERGY STAR® preheat energy

²⁵⁵ Pan Capacity is defined as the number of steam table pans the combination oven is able to<u>can</u> accommodate as per the ASTM F-1495-05 standard specification.

216

Nonresidential: Food Service Equipment ENERGY STAR[®] Combination Ovens

ŧ _{dayo}		Facility operating days per year
ŧ _{hours}	=	— Equipment operating hours per day
CF	_	Peak coincidence factor
W _{food}	=	Pounds of food cooked per day [lb/day]
E _{food}	=	ASTM energy to food [Wh/lb] . (Differs for Convection-Mode and Steam-Mode[®]. See Table 120)
Eidle	=	Idle energy rate [W] . (Differs for Convection Mode and Steam- Mode, for Baseline and ENERGY STAR [®] . See Table 120
$\eta_{ ext{cook}}$ ing	=	Cooking energy efficiency [%] . (Differs for Convection-Mode and Steam-Mode, for Baseline and ENERGY STAR [®] . See Table 120)
<u>Р</u> С _{Сар}	=	Production capacity per pan [lb/hr] . (Differs for Convection Mode and Steam-Mode, for Baseline and ENERGY STAR [®] . See Table 120)
<u>t_{on}</u>	=	Equipment operating hours per day [hr/day]
<u>t_{days}</u>	=	Facility operating days per year [days/year]
1000	=	Wh to kWh conversion
CF	=	Peak coincidence factor

217

Table 128. Combination Ovens – ENERGY STAR® Commercial Food Service Calculator Inputs²⁵⁶Deemed Variables for Energy and Demand Savings Calculations

	inputs	Convecti	on modo	-	n-mode
Para	meter	Baseline	ENERGY STAR®	Baseline	ENERGY STAR®
kWh_{base}					See Table 119
kWh_{post}					
F .	<u>P < 15</u>		<u>3,000</u>		<u>1,500</u>
<u>Eph</u>	<u>P≥15</u>		<u>3,750</u>		2,000
	P < 15				200
Wfood	P ≥ 15				250
Thours				12	
T_{days}				365	
CF ²⁵⁷					0.82
Efood		73.2		30.8	
ηcook ing		72%	76%	49%	55%
Eidle	P < 15	1,320	(0.133<u>0.080</u>P +	5,260	(0.080<u>0.133</u>P +
	P ≥ 15	2,280	<u>0.64000.4989</u>) ≛ <u>x</u> 1000	8,710	<u>0.49890.6400</u>) <u>*x</u> 1000
PC _{eap} ²⁵⁸	P < 15	79	119	126	177
	P ≥ 15	166	201	295	349
<u>T</u> on					<u>12</u>
<u>T_{davs}</u>			<u>365</u>		
CF ²⁵⁹		0.90			

Deemed Energy and Demand Savings Tables

Nonresidential: Food Service Equipment

ENERGY STAR® Combination Ovens

The <u>following deemed</u> energy and demand savings of High efficiency Combination Ovens in Table 121 are calculated in the Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment using the default parameters shown above in <u>are based on the input</u> assumptions from Table 128Table 128.

²⁶⁷ California End Use Survey (CEUS), Building workbooks with load shapes by end use. Accessed 07/12.2012, http://capabilities.itron.com/CeusWeb/Chart.aspx.

²⁵⁸ The 3/2021 ENERGY STAR[®] calculator update no longer varies C_{cap} by pan capacity. However, this is assumed to be an error. The values specified for pan capacity of 15 or greater are specified in the previous calculator version.

 Z59
 Itron, Inc., "2004-2005 Database for Energy Efficiency Resources (DEER) Update Study: Final

 Report." Prepared for Southern California Edison. December 2005. Table 3-14, p. 3-17.

^{2&}lt;sup>56</sup> ENERGY STAR[®] Commercial Food Service Equipment Calculator. 7/15/21 amendment to March 2021 update. https://www.energystar.gov/products/commercial food service equipment.

Pan capacity	Annual energy savings (kWh)	Peak Demand Savings (kW)
5	<u>4,015</u> 8,440	<u>0.723</u> 1.773
6	<u>4,677</u> 8,026	<u>0.857</u> 1.686
7	<u>5,356</u> 7,611	<u>0.994</u> 1.599
8	<u>6,051</u> 7,197	<u>1.1341.512</u>
9	<u>6,761</u> 6,782	<u>1.278</u> 1.425
10	<u>7,488</u> 6,368	<u>1.425</u> 1.338
11	<u>8,231</u> 5,953	<u>1.575</u> 1.250
12	<u>8,990</u> 5,539	<u>1.729</u> 1.163
13	<u>9,765</u> 5,124	<u>1.886</u> 1.076
14	<u>10,556</u> 4,710	<u>2.046</u> 0.989
15	<u>11,363</u> 13,890	<u>2.210</u> 2.918
16	<u>12,187</u> 13,459	<u>2.376</u> 2.827
17	<u>13,026</u> 13,028	<u>2.546</u> 2.737
18	<u>13,881</u> 12,597	<u>2.720</u> 2.646
19	<u>14,753</u> 12,167	<u>2.897</u> 2.556
20	<u>15,640</u> 11,736	<u>3.077</u> 2.465

Table 129. Combination Ovens – Deemed Energy and Demand Savings Values²⁶⁰

Claimed Peak Demand Savings

Nonresidential: Food Service Equipment

ENERGY STAR® Combination Ovens

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 12 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID Cook-ElecCombOven.²⁶¹

The EUL has been defined for this measure as 12 years, consistent with the ENERGY STAR® calculator and with the DEER 2014 EUL update (EUL ID—Cook-ElecCombOven).

Program Tracking Data and Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

219

²⁶⁰ ENERGY STAR[®]. Savings Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment Calculator: <u>http://www.energystar.gov/buildings/sites/default/uploads/files/Commercial kitchen</u> <u>equipment calculator.xlsx.</u>

²⁶¹ DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

- •___High efficiency mManufacturer make and model number
- Pan capacity
- ENERGY STAR® idle rate
- ENERGY STAR[®] High efficiency heavy load-cooking efficiency
- High efficiency equipment idle rate
- Oven size
- Pan capacity
- Copy of ENERGY STAR® certification or alternative
- Copy of proof of purchase including date of purchase, manufacturer, and model number

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

- ENERGY STAR® Equipment Standards for Commercial Ovens.
 <u>http://www.energystar.gov/products/certified-products/detail/Commercial-ovens</u>
- DEER 2014 EUL update.

Document Revision History

Table 130. Nonresidential ENERGY STAR[®] Combination Ovens Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. No revisions.
v3.0	04/10/2015	TRM v3.0 update. Updated previous method based upon the Food Service Technology Center (FSTC) assumptions to an approach using the newly developed ENERGY STAR [®] Commercial Ovens Program Requirements Version 2.1, which added combination ovens under this version. Simplified calculation methodology to a single representative building type consistent with the ENERGY STAR [®] Commercial Kitchen Equipment Savings Calculator.
v3.1	11/05/2015	TRM v3.1 update. Updated title to reflect ENERGY STAR [®] measure.
v4.0	10/10/2016	TRM v4.0 update. No revisions.
v5.0	10/2017	TRM v5.0 update. No revisions.
v6.0	10/2018	TRM v6.0 update. No revisions.

Nonresidential: Food Service Equipment ENERGY STAR[®] Combination Ovens

220

TRM version	Date	Description of change
v7.0	10/2019	TRM v7.0 update. Program tracking requirements updated.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Removed EStar qualification requirement and defers to meeting criteria.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. Incorporated March 2021 calculator updates. Corrected ENERGY STAR [®] idle rate formulas. Updated tracking system requirements and EUL reference.

221

2.4.2 ENERGY STAR[®] Electric Convection Ovens Measure Overview

- TRM Measure ID: NR-FS-CV
- Market Sector: Commercial
- Measure Category: Food Service Equipment
- Applicable Building Types: See Eligibility Criteria
- Fuels Affected: Electricity
- Decision/Action Type: Retrofit, new construction
- Program Delivery Type: Prescriptive
- Deemed Savings Type: Look-up tables
- Savings Methodology: Engineering algorithms and estimates

Measure Description

This section covers the savings from retrofit (early retirement), replacement, or new installation of a full-size or half-size high efficiency electric convection oven. Convection ovens cook their food by forcing hot dry air over the surface of the food product. The rapidly moving hot air strips away the layer of cooler air next to the food and enables the food to absorb the heat energy. The energy and demand savings are deemed and based on oven energy rates, cooking efficiencies, operating hours, production capacities, and building type. Average energy and demand consumption, used to calculate the savings, are determined using these assumed default input values on a per-oven basis.

Eligibility Criteria

Eligible units must meet be compliant with the current ENERGY STAR® qualifications_pecification, with half-size and full-size electric ovens as defined by ENERGY STAR® below.^{262,263}

- Full-size convection oven: capable of accommodating standard full-size sheet pans measuring 18 x 26 x 1-inch.
- Half-size convection oven: capable of accommodating half-size sheet pans measuring 18 x 13 x 1-inch.

262 ENERGY STAR® Program Requirements for Commercial Ovens.

https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Version%202.2%20 Specification.pdf. Accessed 07/2020.

Nonresidential: Food Service Equipment ENERGY STAR[®] Electric Convection Ovens

 <u>263 ENERGY STAR® Qualified Product Listing: https://www.energystar.gov/productfinder/product/certified-</u>
 <u>commercial-ovens/results.</u>

 222

Eligible building types include independent restaurants, chain restaurants, elementary and secondary schools, colleges and universities, corporate foodservice operations, healthcare, hospitality, and supermarkets.²⁶⁴

Convection ovens eligible for rebate do not include ovens that <u>have the ability to can</u> heat the cooking cavity with saturated or superheated steam. However, eligible convection ovens may have moisture injection capabilities (e.g., baking ovens and moisture-assist ovens). Ovens that include a "hold feature" are eligible under this specification as long as <u>if</u> convection is the only method used to fully cook the food.

The following products are excluded from the ENERGY STAR® eligibility criteria:

- Hybrid ovens not defined as eligible above (e.g., those incorporating microwave settings)
- Electric rack ovens
- Conventional or standard ovens, conveyor, slow cook-and-hold, deck, range, rapid cook, and rotisserie

Baseline Condition

The baseline condition for retrofit situations is an electric convection oven.

High-Efficiency Condition

Eligible equipment must be compliant with the current ENERGY STAR[®] v2.2 specification, effective October 7, 2015. Qualified products must meet the minimum energy efficiency and idle energy rate requirements from <u>Table 131</u>Table 131.

 Table 131. Convection Ovens – ENERGY STAR[®] Specification²⁶⁵Convection Oven Cooking Energy

 Efficiency and Idle Energy Requirements

Oven capacity <u>size</u>	ldle rate (W)	Cooking energy efficiency (%)
Full-Size	≤ 1,600	≥ 71
Half-Size	≤ 1,000	

 ²⁶⁴ CEE Commercial Kitchens Initiative's overview of the Food Service Industry: <u>https://library.cee1.org/system/files/library/4203/CEE_CommKit_InitiativeDescription_Mar2021.pdfhttp:</u> <u>//library.cee1.org/sites/default/files/library/4203/CEE_CommKit_InitiativeDescription_June2014.pdf.</u> <u>Accessed 07/2020.</u>

 265 ENERGY STAR[®] Commercial Ovens Key Product Criteria.

https://www.energystar.gov/products/commercial food service equipment/commercial ovens/key pr oduct criteria.

223

Energy and Demand Savings Methodology

Savings Calculations and Input Variables

The deemed savings from these ovens are based on the following algorithms:

$$Energy \ Savings \ [\Delta kWh] = kWh_{base} - kWh_{ES}$$

$$Equation 91$$

$$kWh_{base} = kWh_{ph,base} + kWh_{cook,base} + kWh_{idle,base}$$

$$Equation 92$$

 $kWh_{ES} = kWh_{ph,ES} + kWh_{cook,ES} + kWh_{idle,ES}$

Equation 93

<u>kWh_{ph}, kWh_{cook}, and kWh_{idle} are each calculated the same for both the baseline and ENERGY</u> STAR[®] cases, as shown in Equation 94Equation_94, except they require their respective input assumptions relative to preheat, cooking, and idle operation as seen in Table 132Table 132.

$$kWh = \left(E_{ph} + \left(\frac{W_{food} \times E_{food}}{\eta_{cook}}\right) + E_{idle} \times \left(t_{on} - \frac{W_{food}}{PC}\right)\right) \times \frac{t_{days}}{1000}$$

Equation 94

$$Peak \ Demand \ [\Delta kW] = \frac{\Delta kWh - \left(\frac{\Delta E_{ph} \times t_{days}}{1000}\right)}{t_{on} \times t_{days}} \times CF$$

Equation 95

$$\frac{Energy \left[kWh\right] = \left(E_{base} - E_{HE}\right) \times \frac{days}{1000}$$

Equation 91

$$\frac{Peak \ Demand \ [kW]}{T_{one}} = \frac{(E_{base} - E_{HE})}{T_{one}} \times \frac{CF}{1000}$$

Equation 92

$$E_{base} = \frac{LB \times E_{Food}}{EFF_{base}} + \left[IDLE_{base} \times \left(T_{on} - \frac{LB}{PC_{base}}\right)\right]$$

Equation 93

$$E_{HE} = \frac{LB \times E_{FOOD}}{EFF_{HE}} + \left[IDLE_{HE} \times \left(T_{on} - \frac{LB}{PC_{HE}}\right)\right]$$

Equation 94

Where:

224

Texas

Texas Technical Reference Manual, Vol. 3 November 2021

Nonresidential: Food Service Equipment ENERGY STAR[®] Electric Convection Ovens

<u>kWh_{base}</u>	=	Baseline annual energy consumption [kWh]
<u>kWh_{ES}</u>	=	ENERGY STAR [®] annual energy consumption [kWh]
<u>E_{ph}</u>	=	Preheat energy [Wh/BTU]
<u>ΔE_{ph}</u>	=	Difference in baseline and ENERGY STAR® preheat energy
Wfood	Ξ	Pounds of food cooked per day [lb/day]
<u>E_{food}</u>	=	ASTM energy to food of energy absorbed by food product during cooking [Wh/Ib]
<u>n_{cook}</u>	=	Cooking energy efficiency [%]
<u>E_{Idle}</u>	=	Idle energy rate [W]
<u>PC</u>	=	Production capacity [lb/hr]
<u>ton</u>	=	Operating hours per day [hr/day]
<u>t_{davs}</u>	=	Facility operating days per year [days/year]
<u>1000</u>	=	Wh to kWh conversion
<u>CF</u>	=	Coincidence Factor
E _{base}		Baseline daily energy consumption (kWh/day)
E _{HE}	-	High efficiency daily energy consumption (kWh/day)
LB	-	Pounds of food cooked per day [lb/day]
Days	_	Number of operating days per year [days/yr]
Efood		ASTM energy to food of energy absorbed by food product during cooking [Wh/lb]
EFF _{base}	<u> </u>	Baseline heavy load cooking energy efficiency [%]
EFF _{HE}		High efficiency heavy load cooking energy efficiency [%]
IDLE _{base}		Baseline idle energy rate [kW]
IDLE _{HE}	_	High officiency idle energy rate [kW]
PC _{base}		Baseline production capacity [lbs./hr]
PC _{HE}		High efficiency production capacity [lbs/hr]

225

Inputs ²⁰⁰ Deemed variables for	r Energy and Demand Savings Calculations**
Variable	Full-size
48 ²³¹	
Days	
CF ²⁶⁸	
<mark>€_{food}²⁶⁰</mark>	
EFF _{base} ²³⁴	65%
EFF _{HE} ²³¹	
IDLEbase 231	2,000
IDLEHE ²³¹	1,600
∓ _{on}	
PCbase ²³¹	90
PCHE ²³¹	90
<u>Full</u>	l-size Half-size

Table 132. Convection Ovens – ENERGY STAR[®] Commercial Food Service Calculator Inputs²⁶⁶Deemed Variables for Energy and Demand Savings Calculations²⁶⁷

	<u>Full-size</u>		Half-size	
<u>Parameter</u>	<u>Baseline</u>	ENERGY STAR®	<u>Baseline</u>	ENERGY STAR®
<u>Eph</u>	<u>1,563</u>	<u>890</u>	<u>1,389</u>	<u>700</u>
<u>WV_{food}</u>	<u>100</u>			
Efood	<u>73.2</u>			
<u>n</u> cook	<u>65%</u>	<u>71%</u>	<u>68%</u>	<u>70.67%</u>
<u>Eidle</u>	<u>2,000</u>	<u>1,600</u>	<u>1,030</u>	<u>1,000</u>
<u>PC</u>	<u>90</u>	<u>90</u>	<u>45</u>	<u>50</u>
<u>T</u> on				<u>12</u>
<u>T_{davs}</u>				<u>365</u>
<u>CF²⁷⁰</u>	<u>0.90</u>			

266 ENERGY STAR® Commercial Food Service Equipment Calculator. 7/15/21 amendment to March 2021 update. https://www.energystar.gov/products/commercial food service equipment.

247 ENERGY STAR®, Savings Calculator for ENERGY STAR® Qualified Commercial Kitchen Equipment, Calculator:

http://www.energystar.gev/buildings/sites/default/upleads/files/Commercial_kitchen_equipment_calcul ator.xlsx. Accessed 07/2020.

²⁶⁸ California End Use Survey (CEUS), Building workbooks with load shapes by end use. Accessed 07/12/2012.

²⁶⁹ Default values in ENERGY STAR® calculator for Convection Ovens.

2⁷⁰ Itron, Inc., "2004-2005 Database for Energy Efficiency Resources (DEER) Update Study: Final Report." Prepared for Southern California Edison. December 2005. Table 3-14, p. 3-17.

226

Nonresidential: Food Service Equipment ENERGY STAR® Electric Convection Ovens

Deemed Energy and Demand Savings Tables

The <u>following deemed</u> energy and demand savings of high efficiency convection ovens are deemed values based on the assumed capacity for an average convection oven installed. The following tables provide these deemed values.input assumptions from Table 132Table 132.

Table 133. Convection Ovens – Deemed Energy and Demand Savings Values

Oven size	Annual energy savings (kWh)	Peak demand savings (kW)
Full-Size	1,937<u>2,001</u>	0.410<u>0.398</u>
Half-Size	192 244	0.040<u>0.036</u>

Claimed Peak Demand Savings

Refer to Volume 1, Section 4 for further details on peak demand savings and methodology.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is 12 years, as specified in the California Database of Energy Efficiency Resources (DEER) READI tool for EUL ID Cook-ElecConvOven.²⁷¹

The EUL has been defined for this measure as 12 years, consistent with ENERGY STAR® research and with the DEER 2014 EUL update (EUL ID—Cook-ElecConvOven).

Program Tracking Data and Evaluation Requirements

The following primary inputs and contextual data should be specified and tracked within the program database to inform the evaluation and apply the savings properly.

- High efficiency equipment mManufacturer and model number
- Oven size
- ENERGY STAR[®] idle rate
- <u>ENERGY STAR®</u> High efficiency equipment heavy load cooking efficiency
- High efficiency equipment idle rate
- Oven size
- Copy of ENERGY STAR[®] certification or alternative
- Copy of proof of purchase including date of purchase, manufacturer, and model number

271 DEER READI (Remote Ex-Ante Database Interface). http://www.deeresources.com/index.php/readi.

227

Nonresidential: Food Service Equipment ENERGY STAR[®] Electric Convection Ovens

References and Efficiency Standards

Petitions and Rulings

Not applicable.

Relevant Standards and Reference Sources

- ENERGY STAR[®] requirements for Commercial Ovens.
 <u>http://www.energystar.gov/index.cfm?c=ovens.pr_crit_comm_ovens</u>.-Accessed 07/2020.
- ENERGY STAR[®] list of Qualified Commercial Ovens. <u>https://www.energystar.gov/productfinder/product/certified-commercial-ovens/results</u>. <u>Accessed 07/2020.</u>
- DEER 2014 EUL update.

Document Revision History

Table 134. Nonresidential ENERGY STAR® Convection Oven Revision History

TRM version	Date	Description of change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. No revisions.
v3.0	04/10/2015	TRM v3.0 update. Updated to newer ENERGY STAR [®] Commercial Ovens Program Requirements Version 2.1. Simplified calculation methodology to a single representative building type consistent with the ENERGY STAR [®] Commercial Kitchen Equipment Savings Calculator.
v3.1	11/05/2015	TRM v3.1 update. Updated title to reflect ENERGY STAR [®] Measure.
v4.0	10/10/2016	TRM v4.0 update. No revisions.
v5.0	10/2017	TRM v5.0 update. No revisions.
v6.0	10/2018	TRM v6.0 update. No revisions.
v7.0	10/2019	TRM v7.0 update. Corrected convection oven definitions. Program tracking requirements updated.
v8.0	10/2020	TRM v8.0 update. General reference checks and text edits. Removed EStar qualification requirement and defers to meeting criteria.
<u>v9.0</u>	<u>10/2021</u>	TRM v9.0 update. Incorporated changes from March 2021 calculator update. Updated EUL reference.

228

2.4.3 ENERGY STAR[®] Commercial Dishwashers Measure Overview

- TRM Measure ID: NR-FS-DW
- Market Sector: Commercial
- Measure Category: Food Service Equipment
- Applicable Building Types: See Eligibility Criteria
- Fuels Affected: Electricity
- Decision/Action Type: Retrofit, new construction
- Program Delivery Type: Prescriptive
- Deemed Savings Type: Look-up tables
- Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the deemed savings methodology for the installation of an-ENERGY STAR[®] commercial dishwashers. <u>On average, Co</u>ommercial dishwashers that have earned the ENERGY STAR[®] label-certification are, on average, 25 percent more energy-efficient and 25 percent more water-efficient than standard models. The energy savings associated with ENERGY STAR[®] commercial dishwashers are primarily due to reduced water use and reduced need to heat water. A commercial kitchen may have external booster water heaters, or booster water heaters may be internal to specific equipment. Both primary and booster water heaters may be either gas or electric; therefore, dishwasher programs need to ensure the savings calculations used are appropriate for the water heating equipment installed at the participating customer's facility. The energy and demand savings are determined on a per-dishwasher basis.

Eligibility Criteria

The dishwasher<u>Eligible units</u> must be <u>compliant with the current</u>ENERGY STAR[®] certified <u>specification</u> and fall under one of the following categories_^{272,273}, and <u>These categories</u> are described in <u>Table 135</u>Table 135:

- Under counter dishwasher
- Stationary rack, single tank, door type dishwasher
- Single tank conveyor dishwasher

2⁷² ENERGY STAR[®] Program Requirements Product Specifications for Commercial Dishwashers. Eligibility Criteria Version 3.0.

https://www.energystar.gov/sites/default/files/Commercial%20Dishwashers%20Final%20Version%203 .0%20Specification 0.pdf.

273 ENERGY STAR[®] Qualified Product Listing: https://www.energystar.gov/productfinder/product/certifiedcommercial-dishwashers/results.

229

Nonresidential: Food Service Equipment ENERGY STAR[®] Commercial Dishwashers

- Multiple tank conveyor dishwasher
- Pot, pan, and utensil

Eligible building types include independent restaurants, chain restaurants, elementary and secondary schools, colleges and universities, corporate foodservice operations, healthcare, hospitality, and supermarkets.²⁷⁴

Dishwashers intended for use in residential or laboratory applications are not eligible for ENERGY STAR[®] under this product specification. Steam, gas, and other non-electric models also do not qualify.

Additionally, though <u>Ss</u>ingle and <u>Mm</u>ultiple <u>t</u>Tank <u>Ff</u>light <u>Ttype <u>Sc</u>onveyor dishwashing</u> machines (where the dishes are loaded directly on the conveyor rather than transported within a rack – also referred to as a rackless conveyor) are eligible as per the version <u>23</u>.0 specification²⁷⁵, they are considered ineligible for this measure, since default values are not available for <u>Ff</u>light <u>Ttype</u> dishwashers in the <u>Savings Calculator for</u> ENERGY STAR[®] <u>Qualified</u> Commercial Kitchen Equipment <u>Calculator</u>.²⁷⁶.

Table 135. <u>Dishwashers – Nonresidential</u> ENERGY STAR[®] Commercial Dishwashers Equipment Type Descriptions

Equipment type	Equipment description
Under Counter Dishwasher	A machine with an overall height of 38" or less, in which a rack of dishes remains stationary within the machine while being subjected to sequential wash and rinse sprays and is designed to be installed under food preparation workspaces. Under counter dishwashers can be either chemical or hot water sanitizing, with an internal booster heater for the latter. For purposes of this specification, only those machines designed for wash cycles of ten minutes or less can qualify for ENERGY STAR®.
Stationary Rack, Single Tank, Door Type Dishwasher	A machine in which a rack of dishes remains stationary within the machine while subjected to sequential wash and rinse sprays. This definition also applies to machines in which the rack revolves on an axis during the wash and rinse cycles. Subcategories of stationary door type machines include single and multiple wash tank, double rack, pot, pan and utensil washers, chemical dump type, and hooded wash compartment ("hood type"). Stationary rack, single tank, door type models are covered by this specification and can be either chemical or hot water sanitizing, with an internal or external booster heater for the latter.
Single Tank Conveyor Dishwasher	A washing machine that employs a conveyor or similar mechanism to carry dishes through a series of wash and rinse sprays within the machine. Specifically, a single tank conveyor machine has a tank for wash water followed by a final sanitizing rinse and does not have a pumped rinse tank. This type of machine may include a pre-

²⁷⁴ CEE Commercial Kitchens Initiative's overview of the Food Service Industry:

https://library.cee1.org/system/files/library/4203/CEE_CommKit_InitiativeDescription_Mar2021.pdfhttp: //library.cee1.org/sites/default/files/library/4203/CEE_CommKit_InitiativeDescription_June2014.pdf. Accessed 04/30/2015.

230

²⁷⁵ ENERGY STAR® Program Requirements Product Specification for Commercial Dishwashers, Version 2.0.

https://www.energystar.gov/products/commercial_food_service_equipment/commercial_dishwashers.²⁷⁶ ENERGY STAR[®] Use Calculator for ENERGY STAR[®] Qualified Commercial Kitchen Equipment.[#] Accessed 07/2020.

Equipment type	Equipment description		
	washing section before the washing section. Single tank conveyor dishwashers can either be chemical or hot water sanitizing, with an internal or external booster heater for the latter.		
Multiple Tank Conveyor Dishwasher	A conveyor type machine that has one or more tanks for wash water and one or more tanks for pumped rinse water, followed by a final sanitizing rinse. This type of machine may include one or more pre-washing sections before the washing section. Multiple tank conveyor dishwashers can be either chemical or hot water sanitizing, with an internal or external hot water booster heater for the latter.		
Pot, Pan, and Utensil	A stationary rack, door type machine designed to clean and sanitize pots, pans, and kitchen utensils.		

Baseline Condition

Baseline equipment is either a low-temperature²⁷⁷ or high temperature²⁷⁸ machine as defined by <u>Table 135</u>, which is not used in a residential or laboratory setting. For low-temperature units, the DHW is assumed to be electrically heated. For high-temperature units, the DHW can either be heated by electric or natural gas methods. For units heated with natural gas, the unit shall have an electric booster heater attached to it.

High-Efficiency Condition

Qualifying equipment must be compliant with the current ENERGY STAR® v23.0 specification, effective February 1, 2013July 27, 2021. High-temperature equipment sanitizes using hot water and requires a booster heater. Booster heaters must be electric. Low-temperature equipment uses chemical sanitization and does not require a booster heater. Qualified products must be less than or equal to the maximum idle energy rate and water consumption requirements from Table 136Table 136.

Table 136. <u>Dishwashers – ENERGY STAR® SpecificationHigh-Efficiency Requirements for</u> Commercial Dishwashers²⁷⁹²⁸⁰

	Low-temperature efficiency requirements		High-temperature efficiency requirements	
Machine type	ldle energy rate (kW)	Water consumption (gal/rack)	ldle energy rate (kW)	Water consumption (gal/rack)

²⁷⁷ Low temperature machines apply a chemical sanitizing solution to the surface of the dishes to achieve sanitation.

231

²⁷⁸ High temperature machines apply only hot water to the surface of the dishes to achieve sanitation.
²⁷⁹ ENERGY STAR[®] Commercial Dishwashers Key Product Criteria.

https://www.energystar.gov/products/commercial food service equipment/commercial dishwashers/k ev product criteria.

²⁸⁰ Table 128 values are provided in the ENERGY STAR[®] Program Requirements Product Specification for Commercial Dishwashers, Version 2.0.

https://www.energystar.gov/products/commercial_food_service_equipment/commercial_dishwashers.