Table 287 presents the deemed energy savings tables for high usage HPWHs for the five Texas climate zones.

		HPWH Tank	H Tank Conditioned Space			
Clir	mate Zone	Size Range (Gallons)	Gas Heat	Electric Resistance	Heat Pump	Unconditioned Space
		55-69	652	652	652	677
1	Panhandle	70-79	769	769	769	799
		80+	478	478	478	497
		55-69	546	546	546	550
2	North	70-79	644	644	644	649
		80+	401	401	401	404
		55-69	511	511	511	502
3	South	70-79	603	603	603	593
		80+	375	375	375	369
		55-69	477	477	477	467
4	Valley	70-79	563	563	563	551
		80+	351	351	351	343
		55-69	562	562	562	566
5	West	70-79	663	663	663	668
		80+	412	412	412	416

 Table 287: High Usage Residential HPWH Deemed Annual Energy Savings (kWh)

Deemed Summer Demand Savings Tables

.

Table 288 presents the deemed summer demand savings for medium usage heat pump water heaters across the five Texas climate zones.

Clir	mate Zone	HPWH Tank Size Range (Gallons)	Conditioned Space	Unconditioned Space
`		<55	0.31	0.27
1	Panhandle	55-69	0.07	0.06
I	rannanue	70-79	0.07	0.06
		80+	0.07	0.07
		<55	0.24	0.20
2	North	55-69	0.05	0.04
2	NOTUT	70-79	0.05	0.04
		80+	0.05	0.04
		<55	0.24	0.20
3	South	55-69	0.05	0.04
3	South	70-79	0.05	0.04
		80+	0.05	0.04
		<55	0.23	0.19
4	Valley	55-69	0.05	0.04
4	valley	70-79	0.05	0.04
		80+	0.05	0.04
5		<55	0.26	0.22
	West	55-69	0.05	0.05
5	VVESL	70-79	0.06	0.05
		80+	0.06	0.05

 Table 288: Medium Usage Residential HPWH Deemed Summer Demand Savings (kW)

Table 289 presents the deemed summer demand savings for medium usage heat pump water heaters across the five Texas climate zones.

Clim	nate Zone	HPWH Tank Size Range (Gallons)	Conditioned Space	Unconditioned Space
		55-69	0.07	0.07
1	Panhandle	70-79	0.09	0.08
		80+	0.05	0.05
		55-69	0.05	0.05
2	North	70-79	0.06	0.06
		80+	0.04	0.03
		55-69	0.05	0.05
3	South	70-79	0.06	0.06
		80+	0.04	0.04
		55-69	0.05	0.05
4	Valley	70-79	0.06	0.05
		80+	0.04	0.03
		55-69	0.06	0.05
5	West	70-79	0.07	0.06
		80+	0.04	0.04

Table 289: High Usage Residential HPWH Deemed Summer Demand Savings (kW)

Deemed Winter Demand Savings Tables

Table 290 presents the deemed winter demand savings for medium usage heat pump water heaters across the five Texas climate zones.

	:	HPWH Tank	Сс	onditioned Spa	ice	
Cli	mate Zone	Size Range (Gallons)	Gas Heat	Electric Resistance	Heat Pump	Unconditioned Space
		<55	0.57	0.00	0.44	0.54
1	Panhandle	55-69	0.16	0.16	0.16	0.18
4	Farmanule	70-79	0.16	0.16	0.16	0.18
		80+	0.17	0.17	0.17	0.18
		<55	0.53	0.00	0.40	0.51
2	North	55-69	0.15	0.15	0.15	0.16
2	norai	70-79	0.15	0.15	0.15	0.17
	·	80+	0.15	0.15	0.15	0.17
		<55	0.48	0.00	0.36	0.47
3	South	55-69	0.14	0.14	0.14	0.15
3	South	70-79	0.14	0.14	0.14	0.15
		80+	0.14	0.14	0.14	0.15
		<55	0.46	0.00	0.33	0.45
4	Valley	55-69	0.13	0.13	0.13	0.14
4	valley	70-79	0.13	0.13	0.13	0.14
		80+	0.13	0.13	0.13	0.14
		<55	0.52	0.00	0.39	0.51
5	\M/oct	55-69	0.15	0.15	0.15	0.16
5	West	70-79	0.15	0.15	0.15	0.16
		80+	0.15	0.15	0.15	0.16

Table 290: Medium Usage Residential HPWH Deemed Winter Demand Savings (kW)

Table 291 presents the deemed winter demand savings for high usage heat pump water heaters across the five Texas climate zones.

	4	HPWH Tank	Cc	onditioned Spa	Ce	
Cli	mate Zone	Size Range (Gallons)	Gas Heat	Electric Resistance	Heat Pump	Unconditioned Space
		55-69	0.18	0.18	0.18	0.20
1	Panhandle	70-79	0.21	0.21	0.21	0.23
		80+	0.13	0.13	0.13	0.15
		55-69	0.17	0.17	0.17	0.18
2	North	70-79	0.20	0.20	0.20	0.21
		80+	0.12	0.12	0.12	0.13
		55-69	0.15	0.15	0.15	0.16
3	South	70-79	0.18	0.18	0.18	0.19
		80+	0.11	0.11	0.11	0.12
		55-69	0.14	0.14	0.14	0.15
4	Valley	70-79	0.17	0.17	0.17	0.18
		80+	0.11	0.11	0.11	0.11
		55-69	0.16	0.16	0.16	0.18
5	West	70-79	0.19	0.19	0.19	0.21
		80+	0.12	0.12	0.12	0.13

Table 291: High Usage Residential HPWH Deemed Winter Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life for this measure is 13 years. This EUL is consistent with the judgment of the American Council for an Energy-Efficient Economy as listed on its website.²⁷⁶

²⁷⁶ Water Heating. American Council for an Energy Efficient Economy. Online. Available: <u>http://www.aceee.org/consumer/water-heating</u>. Accessed: September 2011.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Approximate volume of the replacement heat pump water heater tank in gallons
- Baseline uniform energy factor (UEF)
- UEF of the replacement water heater
- First-hour rating (FHR) of the replacement water heater
- Water heater type (e.g., heat pump, electric resistance)
- Installed location (i.e., conditioned, unconditioned space)
- For heat pump water heater installations in conditioned space, the building heating type (electric resistance, air-source heat pump, or gas furnace)
- Proof of purchase -- with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

Relevant Standards and Reference Sources

This section is not applicable.

Document Revision History

Table 292: Resident	ial Heat Pump	Water Heaters	Revision History
	an noat i annp	mator moutore	

TRM Version	Date	Description of Change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	04/18/2014	TRM v2.0 update. Updated by Frontier Associates, March 2014, based on new federal standards.
v2.1	01/30/2015	TRM v2.1 update. No revision.
v3.0	04/10/2015	TRM v3.0 update. No revision.
v3.1	11/05/2015	TRM v3.1 update. No revision.
v4.0	10/10/2016	TRM v4.0 update. Consolidated table formats.
v5.0	10/2017	TRM v5.0 update. No revision.

TRM Version	Date	Description of Change
v6.0	11/2018	TRM v6.0 update. Implementation of new baseline and update to the efficiency of qualifying HPWHs.
v7.0	10/2019	TRM v7.0 update. No revision.

,

.

.

2.4.7 Solar Water Heaters Measure Overview

TRM Measure ID: R-WH-SW

Market Sector: Residential

Measure Category: Water Heating

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

Solar water heating deemed savings values are calculated based on the Solar Rating and Certification Corporation's (SRCC) test for solar water heaters (test OG-300).

Eligibility Criteria

These deemed savings are for solar water heaters installed as a replace-on-burnout measure or as an early retirement measure in existing homes. However, savings are calculated under the assumption of replace-on-burnout.

Baseline Condition

This section is not applicable.

High-efficiency Condition

Only solar water heaters meeting the SRCC OG-300 standard (based on tank size and final Solar Energy Factor-SEF) qualify for these deemed savings estimates.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Solar water heating values are on a per-unit basis. Deemed savings variables include tank volume and installed unit solar energy factor (SEF) as rated in the Solar Rating and Certification

Corporation (SRCC) "Summary of SRCC Certified Solar Collector and Water Heating System Ratings." The Solar Energy Factor (SEF) is determined under SRCC's Operating Guideline 300, "Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems" and was developed as a means to compare solar water heating systems with conventional water heating systems rated with an Energy Factor (EF) and listed in the Gas Appliance Manufacturers Association Directory of Certified Water Heating Products.

Both EF and SEF are based on the same environmental and hot water use conditions used in the DOE Test Procedures for Water Heaters. The only significant difference is that the DOE test does not specify solar radiation. So SRCC uses a 1500 Btu/sq.ft./day solar radiation profile—a value typical of Sunbelt states (note - the annual average solar radiation for Dallas is 1533 Btu/sq.ft./day. (Information on the SRCC can be found at http://www.solar-rating.org/.)

Examples

A passive Sun Earth CP-40 with a SEF of 1.4 would consume 2,133 kWh (2987/1.4), saving 1,323 kWh compared to a baseline 50-gallon water heater that consumes 3458 kWh (values based on Frontier data).

An active Heliotype HP 410 G 80 with a SEF of 2.0 would consume 1,494 kWh (2987/2), saving 1,965 kWh compared to the baseline 50-gallon water heater.

Use SRCC OG-300 Test to Obtain SEF

SRCC = Solar Rating and Certification Corporation

OG-300 = test standard for SWH systems

SEF = Solar Energy Factor

Calculate kWh Savings

$$kWh \ savings = standard \ load \times \left(1 - \frac{EF}{SEF}\right) = (3,458) \times \left(1 - \frac{0.864}{2}\right) = 1,965 kWh$$

Deemed Energy Savings Tables

The following table presents the energy savings for solar water heaters based on tank size and final Solar Energy Factor (SEF).

Water Heating Replacem	ents—Solar Wa	ter Heating Energy	/ Savings
Approximate Volume (gal)	80	50	30
Baseline (DOE Standard) EF	0.82	0.86	0.89
SRCC OG-300 Solar Energy Factor	E	nergy Savings (kW	/h)
1.0	637	471	368
1.1	909	743	640

Table 293: Solar Water Heating Energy Savings (kWh)

Water Heating Replacem	ents—Solar Wa	ter Heating Energy	Savings
Approximate Volume (gal)	80	50	30
Baseline (DOE Standard) EF	0.82	0.86	0.89
SRCC OG-300 Solar Energy Factor	E	nergy Savings (kW	h)
1.2	1,135	969	866
1.3	1,326	1,160	1,057
1.4	1,490	1,324	1,221
1.5	1,633	1,467	1,364
1.6	1,757	1,591	1,488
1.7	1,867	1,701	1,598
1.8	1,965	1,799	1,696
1.9	2,052	1,886	1,783
2.0	2,131	1,965	1,862
2.1	2,202	2,036	1,933
2.2	2,266	2,100	1,997
2.3	2,325	2,159	2,056
2.4	2,379	2,213	2,110
2.5	2,429	2,263	2,160
2.6	2,475	2,309	2,206
2.7	2,518	2,352	2,249
2.8	2,557	2,391	2,288
2.9	2,594	2,428	2,325
3.0	2,628	2,462	2,359
3.1	2,660	2,494	2,391
3.2	2,691	2,525	2,422
3.3	2,719	2,553	2,450
3.4	2,745	2,579	2,476
3.5	2,771	2,605	2,502
3.6	2,794	2,628	2,525
3.7	2,817	2,651	2,548
3.8	2,838	2,672	2,569
3.9	2,858	2,692	2,589
4.0	2,877	2,711	2,608
4.1	2,895	2,729	2,626

Water Heating Replacen	nents—Solar Wa	ter Heating Energy	Savings
Approximate Volume (gal)	80	50	30
Baseline (DOE Standard) EF	0.82	0.86	0.89
SRCC OG-300 Solar Energy Factor	E	nergy Savings (kW	h)
4.2	2,913	2,747	2,644
4.3	2,929	2,763	2,660
4.4	2,945	2,779	2,676
4.5	2,960	2,794	2,691
4.6	2,975	2,809	2,706
4.7	2,988	2,822	2,719
4.8	3,002	2,836	2,733
4.9	3,014	2,848	2,745
5.0	3,027	2,861	2,758

Source: Tim Kerrigan, National Renewable Energy Laboratory (2001).

Deemed Summer Demand Savings Tables

The following table presents the demand savings for solar water heaters.

Table 294: Solar Water Heating Demand Savings (kW)

Solar Wat	er Heating
Demand S	avings kW

0.42

- Diversified value fully displaced during solar peak.
- This value is consistent with the University of Texas study (0.4).

Deemed Winter Demand Savings Tables

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on winter peak demand savings and methodology.

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of a solar water heater is established at 15 years.

This value is consistent with the EUL reported in the 2014 California Database for Energy Efficiency Resources (DEER).²⁷⁷

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- The approximate volume of the replacement water heater in gallons
- SRCC OG-300 Solar Energy Factor of the replacement unit
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification.

References and Efficiency Standards

Petitions and Rulings

- Docket No. 22241, Item 62. Petition by Frontier Associates for Approval of Second Set of Deemed Savings Estimates. Public Utility Commission of Texas.
- Docket No. 27903. Order Adopting New §25.184 as Approved at the August 21, 2003, Open Meeting and Submitted to the Secretary of State. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

This section is not applicable.

²⁷⁷ 2014 California Database for Energy Efficiency Resources.

Document Revision History

11/2018

10/2019

v6.0

v7.0

Table 295. Residential Solar Water neaters Revision history				
TRM Version	Date	Description of Change		
v1.0	11/25/2013	TRM v1.0 origin.		
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language.		
v2.1	1/30/2015	TRM v2.1 update. No revision.		
v3.0	4/10/2015	TRM v3.0 update. No revision.		
v3.1	11/05/2015	TRM v3.1 update. No revision.		
v4.0	10/10/2016	TRM v4.0 update. No revision		
v5.0	10/2017	TRM v5.0 update. No revision.		

TRM v6.0 update. No revision.

TRM v7.0 update. No revision.

Table 295: Residential Solar Water Heaters Revision History

•

2.4.8 Showerhead Temperature Sensitive Restrictor Valves Measure Overview

TRM Measure ID: R-WH-SV

Market Sector: Residential

Measure Category: Water Heating

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity, Gas

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of installing a temperature sensitive restrictor valve (TSRV)²⁷⁸ between the existing shower arm and showerhead. The valve will restrict hot water flow through the showerhead once the water reaches a set temperature (generally 95°F) to prevent water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste.

Eligibility Criteria

The incentive is for the installment of a temperature sensitive restrictor valve between the existing shower arm and showerhead.

These deemed savings are for temperature sensitive restrictor valves installed in new construction or as a retrofit measure in existing homes. In order to use deemed savings, the fuel type of the water heater must be electricity or gas.

Baseline Condition

The baseline condition is the residential shower arm and standard (2.5 gpm) showerhead without a temperature sensitive restrictor valve installed.

²⁷⁸ A temperature sensitive restrictor valve is any device that uses water temperature to regulate water flow in showers.

High-efficiency Condition

To qualify for temperature sensitive restrictor valve deemed savings, the installed equipment must be a temperature sensitive restrictor valve installed on a residential shower arm and showerhead with either a standard (2.5 gpm) or low-flow (2.0, 1.75, or 1.5 gpm) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-flow Showerheads measure and claim additional savings as outlined in that measure.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Estimated Hot Water Usage Reduction

Baseline and efficiency-standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA; the East Bay Municipal Utility District (CA); and Tampa, FL.^{279,280,281}

To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used:

Annual Showerhead Behavioral Waste = SHFR × BW ×
$$n_S$$
 × 365 $\frac{days}{year}$ × $\frac{n_0}{n_{SH}}$

Equation 93

Where:

SHFR	=	Showerhead flow rate, gallons per minute (gpm) (see Table 296)
<i>BW</i> C _P	=	Behavioral waste, minutes per shower (see Table 296)
n _S C _P	=	Number of showers per person per day (see Table 296)
365C _P	=	Constant to convert days to years (see Table 296)
n _o C _P	=	Number of occupants per home (see Table 296)
<i>п_{SH}</i> С _P	=	Number of showerheads per home (see Table 296)

²⁷⁹ Seattle Home Water Conservation Study: "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." December 2000.

http://allianceforwaterefficiency.org/WorkArea/linkit.aspx?LinkIdentifier=idandItemID=856.

²⁸⁰ Residential Indoor Water Conservation Study: "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July 2003. http://www.ebmud.com/sites/default/files/pdfs/residential_indoor_wc_study_0.pdf.

²⁸¹ Tampa Water Department Residential Water Conservation Study: "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." January 8, 2004. www.cuwcc.org/WorkArea/downloadasset.aspx?id=12162.

Applying the formula to the values used for Texas from Table 296 returns the following values for baseline behavioral waste in gallons per showerhead per year:

Showerhead (2.5 GPM):
$$2.5 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68} = 854 \ gal$$

Showerhead (2.0 GPM): $2.0 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68} = 683 \ gal$
Showerhead (1.75 GPM): $1.75 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68} = 598 \ gal$
Showerhead (1.5 GPM): $1.5 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68} = 513 \ gal$

Gallons of hot water saved per year can be found by multiplying the baseline behavioral waste gallons per year by the percent of hot water from Table 296.

Gallons of hot water saved per year = Annual Behavioral Waste × HW%

Equation 94

Where:

HW% = Hot water percentage (see Table 296)

Gallons of hot water saved per year (2.5 GPM): $854 \times 0.825 = 705$ gal

Gallons of hot water saved per year (2.0 GPM): $683 \times 0.825 = 563$ gal

Gallons of hot water saved per year (1.75 GPM): $598 \times 0.825 = 493$ gal

Gallons of hot water saved per year (1.5 GPM): $513 \times 0.825 = 423 \text{ gal}$

Table 296: Estimated Showerhead with TSRV Hot Water Usage Reduction

Description	2.5 gpm	2.0 gpm	1.75 gpm	1.5 gpm
Average behavioral waste (minutes per shower)282	0.783	0.783	0.783	0.783
Showers/person/day ²⁸³	0.72	0.72	0.72	0.72
Occupants per home ²⁸⁴	2.79	2.79	2.79	2.79
Showerheads per home ²⁸⁵	1.68	1.68	1.68	1.68
Gallons behavioral waste per showerhead per year	1,018	814	713	611

²⁸² Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

²⁸³ Occupants per home for Texas from US Census Bureau, Texas, "Persons per household, 2007-2011." Accessed January 2013 <u>http://quickfacts.census.gov/qfd/states/48000.html</u>.

²⁸⁴ Derivation of value for showers per person per day defined in the Low Flow Showerhead measure.

²⁸⁵ Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

Description	2.5 gpm	2.0 gpm	1.75 gpm	1.5 gpm
Percent hot water ²⁸⁶	82.5%	82.5%	82.5%	82.5%
Gallons hot water saved per year	705	563	493	423

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

Energy Savings per TSRV =
$$\frac{\rho \times C_P \times V \times (T_{SetPoint} - T_{SupplyAverage})}{RE \times Conversion Factor}$$

Equation 95

Where:

ρ	=	Water density, 8.33 lbs/gallon
C _P	=	Specific heat of water, 1 Btu/lb°F
V	=	Gallons of hot water saved per year per showerhead (see Table 296)
T _{SetPoint}	=	Water heater setpoint: 120°F ²⁸⁷
T _{Supply}	-	Average supply water temperature (see Table 297)
RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP). If unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.8 for gas hot water heaters. ²⁸⁸
ConversionFa	ctor =	3,412 Btu/kWh for electric or 100,000 Btu/therm for gas

²⁸⁶ Average percent hot water from (Lutz 2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

²⁸⁷ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

²⁸⁸ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at http://cafs.ahrinet.org/gama_cafs/sdpsearch/search.jsp?table=CWH.

Demand Savings Algorithms

Demand savings will be calculated using the following formula:

Demand Savings per TSRV =
$$\frac{\rho \times C_P \times V \times (T_{SetPoint} - T_{SupplySeasonal})}{RE \times Conversion Factor} \times Ratio_{annual kWh}^{Peak_{seasonal}kW}$$

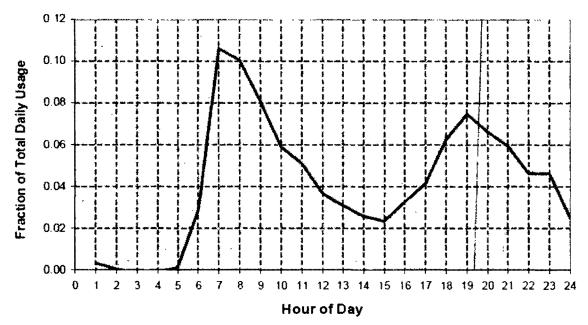
Equation 96

Where:

TSupplySeasonal= Seasonal supply water temperature (see Table 297)RatioRatio of peak seasonal kW to annual kWh savings (see Table 298)

Water Mains Temperature (°F) ²⁸⁹			
T .	TSupplySeasonal		
I SupplyAverage	Summer	Winter	
62.9	73.8	53.7	
71.8	84.0	60.6	
74.7	84.5	65.5	
77.2	86.1	68.5	
70.4	81.5	60.4	
	TsupplyAverage 62.9 71.8 74.7 77.2	TsupplyAverage TsupplyS 62.9 73.8 71.8 84.0 74.7 84.5 77.2 86.1	

Table	297.	Water	Mains	Temperature
ιανις	231.	vva ter	mains	remperature


Table 298: Water Fixture Peak Demand Ratios

Peak Demand Ratios ²⁹⁰			
Summer	Winter		
0.000110	0.000274		

The fixture peak demand ratios were derived by taking the fraction hot water use during the peak hour (summer: 4-5pm, winter: 7-8am) to the total daily usage from the Building America Performance Analysis Procedures for Existing Homes and dividing it by the number of days per year (365). The fraction of hot water use during the winter peak hour to total daily water usage is 0.1: 0.1/365 = 0.000274. The summer peak hour to total daily water usage is 0.04/365 = 0.000110.

²⁸⁹ Based on typical meteorological year (TMY) dataset for TMY3: <u>http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/.</u>

²⁹⁰ US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile (<u>http://www.nrel.gov/docs/fy06osti/38238.pdf</u>).

Figure 10: Shower, Bath, and Sink Hot Water Use Profile

Source: Building America Performance Analysis Procedures for Existing Homes.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for this measure is established at 10 years.

This value is consistent with the EUL reported for a low-flow showerhead in the 2014 California Database for Energy Efficiency Resources (DEER).²⁹¹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Recovery efficiency (RE) or COP, if available
- Flow rate in gallons per minute (gpm) of showerhead installed
- Water heater type (e.g., heat pump, electric resistance)

Document Revision History

Table 299: Residential Showerhead Temperature Sensitive Restrictor Valves Revision History

TRM Version	Date	Description of Change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.

²⁹¹ 2014 California Database for Energy Efficiency Resources. <u>http://www.deeresources.com/index.php/deer2013-update-for-2014-codes.</u>

2.4.9 Tub Spout and Showerhead Temperature Sensitive Restrictor Valves Measure Overview

TRM Measure ID: R-WH-TV

Market Sector: Residential

Measure Category: Water Heating

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity, gas

Decision/Action Type(s): Retrofit, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure consists of replacing existing tub spouts and showerheads with an automatically diverting tub spout and showerhead system with a temperature sensitive restrictor valve (TSRV) ²⁹² between the existing shower arm and showerhead. The tub spout will contain temperature sensitive restrictor technology that will cause the tub spout to automatically engage the anti-leak diverter once the water reaches a set temperature (generally 95°F). The water will divert to a showerhead with a normally closed valve that will prevent the hot water from going down the drain prior to the user entering the shower, thereby eliminating behavioral waste and tub spout leakage waste.

Eligibility Criteria

The incentive is for the installment of an automatically diverting tub spout and showerhead system with temperature sensitive restrictor technology.

These deemed savings are for tub spout and showerhead systems with temperature sensitive restrictor technology installed in new construction or as a retrofit measure in existing homes. In order to use these deemed savings, the fuel type of the water heater must be electricity or gas.

Baseline Condition

The baseline condition is the residential tub spout with a standard diverter and a standard (2.5 gpm) showerhead.

342

²⁹² A temperature sensitive restrictor valve is any device that uses water temperature to regulate water flow in showers.

High-efficiency Condition

To qualify for tub spout and showerhead system with temperature sensitive restrictor technology deemed savings, the installed equipment must be an anti-leak, automatically diverting tub spout system with temperature sensitive restrictor technology installed on a residential shower arm and showerhead with a standard (2.5 gpm) or low-flow (2.0, 1.75, or 1.5 gpm) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-flow Showerheads measure and claim additional savings as outlined in that measure.

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Estimated Hot Water Usage Reduction

Baseline and efficiency-standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA; the East Bay Municipal Utility District (CA); and Tampa, FL.^{293,294,295}

This system provides savings in two parts: elimination of behavioral waste (hot water that goes down the drain prior to the user entering the shower) and elimination of tub spout diverter leakage.

Part 1: To determine baseline gallons of behavioral waste per year, the following formula was used:

Annual Showerhead Behavioral Waste =
$$\%WUE_{SH} \times SHFR \times BW \times n_S \times 365 \frac{days}{year} \times \frac{n_O}{n_{SH}}$$

Equation 97

Annual Tub Spout Behavioral Waste = $\% WUE_{TS} \times TSFR \times BW \times n_S \times 365 \frac{days}{year} \times \frac{n_0}{n_{SH}}$

Equation 98

Where:

%WUE _{sн}	=	Showerhead percentage of warm-up events (see Table 300)
%WUE _{TS}	=	Tub spout percentage of warm-up events (see Table 300)

²⁹³ Seattle Home Water Conservation Study: "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." December 2000.

http://allianceforwaterefficiency.org/WorkArea/linkit.aspx?LinkIdentifier=idandItemID=856.

343

²⁹⁴ Residential Indoor Water Conservation Study: "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July 2003. http://www.ebmud.com/sites/default/files/pdfs/residential_indoor_wc_study_0.pdf.

²⁹⁵ Tampa Water Department Residential Water Conservation Study: "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." January 8, 2004 www.cuwcc.org/WorkArea/downloadasset.aspx?id=12162.

SHFR	=	Showerhead flow rate, gallons per minute (gpm) (see Table 300)
TSFR	=	Tub spout flow rate, gallons per minute (gpm) (see Table 300)
<i>BW</i> C _P	=	Behavioral waste, minutes per shower (see Table 300)
n _s C _P	=	Number of showers per person per day (see Table 300)
365C _P	=	Constant to convert days to years (see Table 300)
n _o C _P	=	Number of occupants per home (see Table 300)
<i>п_{sн}</i> С _Р	=	Number of showerheads per home (see Table 300)

Applying the formula to the values used for Texas from Table 300 returns the following values:

Showerhead (1.5 GPM):
$$0.6 \times \left(1.5 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68}\right) = 308$$

Showerhead (1.75 GPM): $0.6 \times \left(1.75 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68}\right) = 359$
Showerhead (2.0 GPM): $0.6 \times \left(2.0 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68}\right) = 410$
Showerhead (2.5 GPM): $0.6 \times \left(2.5 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68}\right) = 513$
Tub Spout (5.0 GPM): $0.4 \times \left(5.0 \times 0.783 \times 0.72 \times 365 \times \frac{2.79}{1.68}\right) = 683$

Part 2: To determine baseline gallons of diverter leakage per year, the following formula was used:

Annual Diverter Waste =
$$DLR \times t_S \times n_S \times 365 \frac{days}{year} \times \frac{n_0}{n_{SH}}$$

Equation 99

Where:

DLR = Diverter leakage rate (gpm) (see Table 300) t_s = Shower time (min/shower) (see Table 300)

Applying the formula to the values used for Texas from Table 300 returns the following values:

Diverter (0.8 GPM):
$$0.8 \times 5.68 \times 0.72 \times 365 \times \frac{2.79}{1.68} = 1,983$$

344

Part 3: To determine gallons of water saved per year can be found by multiplying the total waste by the percent of hot water from Table 300.

Gallons of hot water saved = $(SHBW + TSBW) \times HW\%_{SH,TS} + DW \times HW\%_{D}$

Equation 100

Where:

SHBW	Ξ	Showerhead behavioral waste (gal)
TSBW	=	Tub spout behavioral waste (gal)
DW	=	Diverter waste (gal)
HW% _{SH,TS}	=	Showerheads and tub spout hot water percentage (see Table 300)
HW% _D	-	Diverter hot water percentage (see Table 300)

Applying the formula to the values used for Texas from Table 300 returns the following values:

Total Annual Waste (1.5 gpm): $(308 + 683) \times 0.825 + 1,983 \times 0.737 = 2,279$

Total Annual Waste (1.75 gpm): $(359 + 683) \times 0.825 + 1,983 \times 0.737 = 2,321$

Total Annual Waste (2.0 gpm): $(410 + 683) \times 0.825 + 1,983 \times 0.737 = 2,363$

Total Annual Waste (2.5 gpm): $(513 + 683) \times 0.825 + 1,983 \times 0.737 = 2,448$

Table 300: Estimated Tub Spout/Showerhead System with TSRV Hot Water Usage Reduction

	Part 1- Behav	vioral Waste	Part 2	Part 3—
Description	Showerhead Warm-up	Tub spout Warm-up	Diverter Leakage	Total
Baseline showerhead flow rate (gpm)	1.5, 1.75, 2.0, or 2.5		N/A	
Tub spout flow rate (gpm) ²⁹⁶	N/A	5.0	N//	٩
Percent of warm-up events ²⁹⁷	60	40	N//	٩
Average behavioral waste (minutes per shower) ²⁹⁸	0.783	0.783	N//	4
Average diverter leak rate (gpm) ²⁹⁹	N//	A	0.80	N/A

345

²⁹⁶ Assumption from (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

²⁹⁷ Percent of warm-up events from (Sherman 2014) Disaggregating Residential Shower Warm-Up Waste (Appendix B, Question 8).

²⁹⁸ Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

²⁹⁹ Average diverter leak rate from (Taitem 2011) Taitem Tech Tip – Leaking Shower Diverters.

	Part 1- Behav	vioral Waste	Part 2—	Dout 2
Description	Showerhead Warm-up	Tub spout Warm-up	Diverter Leakage	Part 3— Total
Average shower time (minutes) ³⁰⁰	N//	A	5.68	N/A
Showers/person/day ³⁰¹	0.72	0.72	0.72	0.72
Occupants per home ³⁰²	2.79	2.79	2.79	2.79
Showerheads per home ³⁰³	1.68	1.68	1.68	1.68
Gallons behavioral waste per tub spout/showerhead per year (1.5 gpm)	308	683	1,983	2,974
Gallons behavioral waste per tub spout/showerhead per year (1.75 gpm)	359	683	1,983	3,025
Gallons behavioral waste per tub spout/showerhead per year (2.0 gpm)	410	683	1,983	3,076
Gallons behavioral waste per tub spout/showerhead per year (2.5 gpm)	513	683	1,983	3,179
Percent hot water ³⁰⁴	82.5%	82.5%	73.7%	N/A
Gallons hot water saved per year (1.5 gpm)	N/A	N/A	N/A	2,279
Gallons hot water saved per year (1.75 gpm)	N/A	N/A	N/A	2,321
Gallons hot water saved per year (2.0 gpm)	N/A	N/A	N/A	2,363
Gallons hot water saved per year (2.5 gpm)	N/A	N/A	N/A	2,448

Energy Savings Algorithms

Energy savings for this measure are calculated as follows:

 $Energy \ Savings \ per \ TS \ System = \frac{\rho \times C_P \times V \times (T_{SetPoint} - T_{SupplyAverage})}{RE \times Conversion \ Factor}$

Equation 101

Where:

ρ

= Water density, 8.33 lbs/gallon

346

³⁰⁰ Average shower time from (REUWS 1999) Residential End Uses of Water Study and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

³⁰¹ Derivation of value for showers per person per day defined in the Low Flow Showerhead measure.

³⁰² Occupants per home for Texas from US Census Bureau, Texas, "Persons per household, 2007-2011." Accessed January 2013 <u>http://quickfacts.census.gov/qfd/states/48000.html</u>.

³⁰³ Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

³⁰⁴ Average percent hot water for warm up events from (Lutz 2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

C _P	=	Specific heat of water, 1 Btu/lb°F
V	=	Gallons of hot water saved per year per showerhead (see Table 300)
T _{SetPoint}	=	Water heater setpoint: 120°F 305
T _{Supply}	=	Average supply water temperature (see Table 301)
RE	=	Recovery Efficiency (or in the case of heat pump water heaters, COP). If unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.8 for gas hot water heaters. ³⁰⁶

ConversionFactor = 3,412 Btu/kWh for electric or 100,000 Btu/therm for gas

Demand Savings Algorithms

Demand savings will be calculated using the following formula:

$$Demand Savings per TS System = \frac{\rho \times C_P \times V \times (T_{SetPoint} - T_{SupplySeasonal})}{RE \times Conversion Factor} \times Ratio_{annual kWh}^{Peak_{Seasonal}kW}$$

Equation 102

Where:

³⁰⁵ 120°F represents the assumed water heater setpoint. New York Department of Public Service recommends using water heater setpoint as a default value, see "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs" October 2010, page 99. Data collection discussed in Appendix D of the EM&V team's Annual Statewide Portfolio Report for Program Year 2014-Volume 1, Project Number 40891 (August 2015), also supports a default value of 120°F.

³⁰⁶ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at http://cafs.ahrinet.org/gama_cafs/sdpsearch/search.jsp?table=CWH.

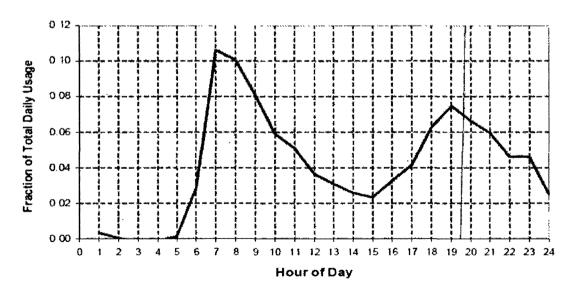

	Water Mains Temperature (°F) ³⁰⁷			
Climate Zone	Τ	TSupplySeasonal		
	SupplyAverage	Summer	Winter	
Climate Zone 1: Panhandle	62.9	73.8	53.7	
Climate Zone 2: North	71.8	84.0	60.6	
Climate Zone 3: South	74.7	84.5	65.5	
Climate Zone 4: Valley	77.2	86.1	68.5	
Climate Zone 5: West	70.4	81.5	60.4	

Table 301: Water Mains Temperature

Table 302: Water Fixture Peak Demand Ratios

Peak Demand Ratios ³⁰⁸				
Summer	Winter			
0.000110	0.000274			

The fixture peak demand ratios were derived by taking the fraction hot water use during the peak hour (summer: 4-5pm, winter: 7-8am) to the total daily usage from the Building America Performance Analysis Procedures for Existing Homes and dividing it by the number of days per year (365). The fraction of hot water use during the winter peak hour to total daily water usage is 0.1: 0.1/365 = 0.000274. The summer peak hour to total daily water usage is 0.04/365 = 0.000110.

Figure 11: Shower, Bath, and Sink Hot Water Use Profile

³⁰⁷ Based on typical meteorological year (TMY) dataset for TMY3: http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/.

348

³⁰⁸ US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile (<u>http://www.nrel.gov/docs/fy06osti/38238.pdf</u>).

Source: Building America Performance Analysis Procedures for Existing Homes.

Deemed Energy Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Summer Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Deemed Winter Demand Savings Tables

There are no lookup tables available for this measure. See engineering algorithms in the previous section for calculating energy and demand savings.

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) for this measure is established at 10 years.

This value is consistent with the EUL reported for a low-flow showerhead in the 2014 California Database for Energy Efficiency Resources (DEER).³⁰⁹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Recovery Efficiency (RE) or COP, if available
- Flow rate in gallons per minute (GPM) of showerhead installed

349

• Water heater type (e.g., heat pump, electric resistance)

³⁰⁹ 2014 California Database for Energy Efficiency Resources. <u>http://www.deeresources.com/index.php/deer2013-update-for-2014-codes.</u>

Document Revision History

Table 303: Residential Tub Spout and Showerhead Temperature Sensitive Restrictor ValvesRevision History

TRM Version	Date	Description of Change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. No revision.

350

2.5 **RESIDENTIAL: APPLIANCES**

2.5.1 ENERGY STAR[®] Ceiling Fans Measure Overview

TRM Measure ID: R-AP-CF

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR[®] ceiling fan and light kit. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

Savings values in this measure are based on indoor usage patterns and are not applicable to outdoor applications.

Baseline Condition

The baseline is a conventional non-ENERGY STAR® labeled ceiling fan and light kit.

High-efficiency Condition

Table 304 displays the ENERGY STAR[®] requirements for eligible ceiling fans as of June 16, 2018. These values are subject to updates in ENERGY STAR[®] specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] specification.³¹⁰

³¹⁰ ENERGY STAR[®] Ceiling Fan Specification: <u>https://www.energystar.gov/products/lighting_fans/ceiling_fans/ceiling_fans_key_product_criteria</u>.

Table 304: ENERGY STAR[®] Ceiling Fan Definitions

Fan Type	Description
Ceiling fan	A non-portable device designed for home use that is suspended from the ceiling for circulating air via the rotation of fan blades; for which the lowest point on fan blades is greater than 10 inches from the ceiling.
Hugger ceiling fan	A ceiling fan for which the lowest point on the fan blades is less than or equal to 10 inches from the ceiling. Hugger ceiling fans can be safely installed on low ceilings, and some are sold with ceiling fan light kits.

Туре	Diameter (inches)	Minimum Efficiency (cfm/W)	Minimum High Speed Airflow (cfm)	
	D <u>≤</u> 36	≥ 0.72 x D + 41.93	<u>≥</u> 1,767	
Ceiling fan	36 < D < 78	> 2.63 x D – 26.83	≥ 250 x π x (D/24)²	
	D <u>≥</u> 78	<u>~</u> 2.03 X D = 20.03	<u>></u> 8,296	
	D ≤ 36	<u>≥</u> 0.31 x D + 36.84	<u>≥</u> 1,414	
Hugger ceiling fan	36 < D < 78	> 1.75 x D – 15	≥ 200 x π x (D/24)²	
	D ≥ 78	<u>></u> 1.75 × D = 15	<u>≥</u> 6,637	

Table 305: ENERGY STAR® Ceiling Fan Efficiency Requirements

Table 306: ENERGY STAR[®] Ceiling Fan Light Kit Efficacy Requirements

Туре	Minimum Efficacy (lumens/W)	Minimum Light Output (lumens)	
Shipped with ENERGY STAR certified light bulbs	65.0	N/A	
Separable light source	65.0	800	
Integrated light source	70.0	800	

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings were calculated using the ENERGY STAR[®] Ceiling Fan Savings Calculator found on the ENERGY STAR[®] website.³¹¹ Default values were taken directly from the ENERGY STAR[®] Ceiling Fan Savings Calculator, unless otherwise specified.

³¹¹ ENERGY STAR[®] Ceiling Fan Savings Calculator (updated September 2013). <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products</u>.

 $kWh_{savings} = (kWh_{baseline} - kWh_{ES})_{fan} + (kWh_{baseline} - kWh_{ES})_{lgt} \times IEF_{E}$

Equation 103

$$kWh_{baseline,Fan} = \frac{W_{Fan,baseline} \times AOH_{Fan}}{1,000}$$

Equation 104

$$kWh_{ES,Fan} = \frac{W_{Fan,ES} \times AOH_{Fan}}{1,000}$$

Equation 105

$$W_{Fan} = (W_{LS} \times OP_{LS}) + (W_{MS} \times OP_{MS}) + (W_{HS} \times OP_{HS})$$

Equation 106

$$kWh_{baseline,Lgt} = \frac{W_{Lgt,baseline} \times AOH_{Lgt}}{1,000}$$

Equation 107

$$kWh_{ES,Lgt} = \frac{W_{Lgt,ES} \times AOH_{Lgt}}{1,000}$$

Equation 108

Where:

kWh _{baseline}	=	Non-ENERGY STAR [®] baseline energy usage
kWh _{ES}	=	ENERGY STAR [®] average energy usage
IEF _E	=	Energy Interactive Effects Factor from Table 307 assuming heating/cooling unknown ³¹²
$W_{Lgt,baseline}$	=	Conventional lighting total wattage = 115 W (160 W default value from ENERGY STAR [®] calculator reduced to comply with EISA 2007 baseline wattages) ³¹³
$W_{Lgt,ES}$	=	Actual wattage of installed ENERGY STAR [®] lighting; assume one high-efficiency 32 W lamp
W _{Fan,baseline}	=	Conventional fan motor wattage
W _{Fan,ES}	=	ENERGY STAR [®] fan motor wattage
W _{LS,MS,HS}	=	Fan motor wattage at low, medium, and high speed; see Table 308

 ³¹² The assumed energy interactive effects factors are taken from the residential lighting measure.
 ³¹³ Assumes a mix of 40 and 60 W incandescent lamps. EISA 2007 baseline wattages are approximately 72 percent of standard incandescent wattages.

OP _{LS,MS,HS}	=	Fan operating percentage at low, medium, and high speed; see Table 309
AOH _{Lgt}	=	Annual lighting operating hours = 803 hours/year (assuming 2.2 hours/day and 365 days/year operation) ³¹⁴
AOH _{Fan}	=	Annual fan operating hours = 1,095 hours/year (assuming 3.0 hours/day and 365 days/year operation) ³¹⁵
1,000	=	Constant to convert from W to kW

Table 307: ENERGY STAR[®] Ceiling Fans—Interactive Effects Factor for Cooling Energy Savings and Heating Energy Penalties³¹⁶

	IEFE				
Heating/Cooling Type*	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5
Heating/Cooling Unknown ³¹⁷	0.88	0.98	1.04	1.07	0.95

³¹⁴ The assumed annual operating hours are taken from the residential lighting measure.

³¹⁵ The assumed annual operating hours are taken from the ENERGY STAR[®] Light Fixture and Ceiling Fan Calculator. <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products</u>.

³¹⁶ Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60watt equivalent lamp (900 lm), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 lm/W), CFLs (70 lm/W), and LEDs (90 lm/W). IEF values were calculated using the following formula: 1 + HVAC_{savings}/Lighting_{savings}.

³¹⁷ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Fan Type	Fan Speed	Fan Motor Wattage (W)
-	Low	15
Conventional	Medium	34
	High	67
ENERGY STAR®	Low	6
	Medium	23
	High	56

Table 308: Ceiling Fan Motor Wattages

Table 309: Ceiling Fan Operating Percentages

Fan Speed	Operating Percentage (OP)
Low	40%
Medium	40%
High	20%

Demand Savings Algorithms

Peak demand savings were calculated using separate coincidence factors for the lighting and the fan motor portion of the ceiling fan savings. For lighting the coincidence factor varies based on climate zone. For the fan motor a coincidence factor of 0.446 was applied (derived from the EnergyGauge software ceiling fan profiles).

$$kW_{savings} = kW_{Fan} + kW_{Lgt}$$

Equation 109

$$kW_{Fan} = \frac{W_{Fan,baseline} - W_{Fan,ES}}{1,000} \times CF_{Fan}$$

Equation 110

$$kW_{Lgt} = \frac{W_{Lgt,baseline} - W_{Lgt,ES}}{1,000} \times CF_{Lgt} \times IEF_{D}$$

Equation 111

Where:

kW _{Fan}	=	Fan demand savings
CF _{Fan}	=	Fan motor coincidence factor = 0.446
kW _{Lgt}	=	Lighting demand savings
CF_{Lgt}	=	Lighting coincidence factor (Table 310)

Residential: Appliances ENERGY STAR[®] Ceiling Fans Texas Technical Reference Manual, Vol. 2 November 2019

,

IEF_D = Demand Interactive Effects Factor from Table 311 assuming heating/cooling unknown³¹⁸

Season		Climate Zone 2: Dallas		Climate Zone 4: Corpus Christi			
Summer	0.060	0.053	0.063	0.059	0.032		
Winter	0.277	0.232	0.199	0.267	0.357		

Table 310 ENERGY STAR[®] Ceiling Fans—Lighting Coincidence Factors³¹⁹

 Table 311: ENERGY STAR[®] Ceiling Fans—Interactive Effects Factor for Cooling Demand Savings and Heating Demand Penalties³²⁰

IEF _{D,summer}							
Heating/Cooling Type* Climate Climate </th							
Heating/cooling unknown ³²¹	1.39	1.28	1.58	1.20	1.38		
IEF _{D,winter}							
Heating/Cooling Type* Climate Climate </td							
Heating/cooling unknown ³²²	0.76	0.72	0.73	0.75	0.80		

Deemed Energy Savings Tables

Table 312: Ceiling Fans Deemed Energy Savings

Deemed Energy Savings (kWh/Year)					
Climate Zone 1:Climate Zone 2:Climate Zone 3:Climate Zone 4:Climate Zone 5:AmarilloDallasHoustonCorpus ChristiEl Paso					
69.8	76.5	80.5	82.5	74.5	

³¹⁸ The assumed demand interactive effects factors are taken from the residential lighting measure.

³¹⁹ See Volume 1, Appendix B.

- ³²⁰ Extracted from BEopt energy models used to estimate savings for envelope measures. Referencing the EISA baseline table, the typical lumen output was determined by taking the midpoint for the 60 watt equivalent lamp (900 lm), which was assumed to be the most typical installation. The resulting lumens were divided by the default wattage for incandescents (43 W), CFLs (13 W), and LEDs (10 W) resulting in an assumed efficacy for incandescents (21 lm/W), CFLs (70 lm/W), and LEDs (90 lm/W). IEF values were calculated using the following formula: 1 + HVAC_{savings}/Lighting_{savings}.
- ³²¹ Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.
- ³²² Calculated using IEFs from Cadmus report, weighted using TMY CDD and HDD for Texas, and adjusted to exclude 16 percent outdoor lighting except for upstream defaults. Cadmus report: Cadmus. Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year. Prepared for Entergy Arkansas, Inc. March 14, 2014. Docket No. 07-082-TF.

Deemed Summer Demand Savings Tables

	Tuble of the Centring Falls Declined Definant Gavings - Guininer					
Deemed Summer Demand Savings (kW)						
Climate Zone 1: Climate Zone 2: Climate Zone 3: Climate Zone 4: Climate Zone 5:						
Amarillo	Dallas	Houston	Corpus Christi	El Paso		
0.011	0.010	0.013	0.010	0.008		

Table 313: Ceiling Fans Deemed Demand Savings - Summer

Deemed Winter Demand Savings Tables

Table 314:	Ceiling Fans	Deemed Demand	Savings - Winter
------------	--------------	---------------	------------------

Deemed Winter Demand Savings (kW)					
Climate Zone 1:Climate Zone 2:Climate Zone 3:Climate Zone 4:Climate Zone 5:AmarilloDallasHoustonCorpus ChristiEl Paso					
0.022	0.018	0.017	0.021	0.028	

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 10 years according to the ENERGY STAR[®] Ceiling Fan Savings Calculator.

This EUL is consistent with Docket No. 38025 approved in 2010.323

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- The number of installed ENERGY STAR[®] ceiling fan and light kits
- Proof of purchase with date of purchase and quantity

³²³ Docket No. 38025. Petition of Electric Utility Marketing Managers of Texas to Amend Deemed Savings for ENERGY STAR[®] Appliance Measures. Public Utility Commission of Texas.

• Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

 Docket No. 38025. Petition of Electric Utility Marketing Managers of Texas to Amend Deemed Savings for ENERGY STAR[®] Appliance Measures. Public Utility Commission of Texas.

Relevant Standards and Reference Sources

The applicable version of the ENERGY STAR[®] specifications and requirements for ceiling fans.

Document Revision History

Table 315: Residential ENERGY STAR[®] Ceiling Fans Revision History Data Data

TRM Version	Date	Description of Change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Minor edits to language and updates to the ENERGY STAR $^{\mbox{\scriptsize \$}}$ specification table.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2014	TRM v3.0 update. Explanation of methodology and alignment with ENERGY STAR [®] calculator. Introduction of interactive effects factors and in-service rates. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. Revision of interactive effects factors to reflect indoor-specific values for additional heating and cooling equipment types.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.
v4.0	10/10/2016	TRM v4.0 update. Updated interactive effect values using building energy simulation.
v5.0	10/2017	TRM v5.0 update. Updated footnote reference to ENERGY STAR [®] calculator.
v6.0	11/2018	TRM v6.0 update. Updated interactive effect values.
v7.0	11/2019	TRM v7.0 update. Established deemed savings approach.

2.5.2 ENERGY STAR[®] Clothes Washers Measure Overview

TRM Measure ID: R-AP-CW

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR[®] clothes washer. Savings are awarded at a flat per unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

These deemed savings are calculated using the federal standards effective January 1, 2018.

Eligibility Criteria

This section is not applicable.

Baseline Condition

Effective January 1, 2018, the baseline is the Department of Energy (DOE) minimum efficiency standard³²⁴ for top-loading clothes washers. While the DOE provides criteria for both top- and front-loading washers, only the standards for top-loading washers are listed below, as a top-loading unit is assumed to be the baseline equipment. This approach is consistent with the ENERGY STAR[®] appliance calculator.

³²⁴ DOE minimum efficiency standard for residential clothes washers. <u>https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/39.</u>

Product Type	Current Criteria as of January 1, 2018	
Top-loading, Standard (1.6 ft ³ or greater capacity)	IMEF ≥ 1.57 IWF≤ 6.5	
Top-loading, Compact (less than 1.6 ft ³ capacity)	IMEF ≥ 1.15 IWF≤ 12.0	

Table 316: Federal Standard for Clothes Washers

High-efficiency Condition

The table below displays the ENERGY STAR[®] Final Version 8.0 requirements for eligible clothes washers effective February 5, 2018, with early certification available starting May 5, 2017.³²⁵ These values are subject to updates in ENERGY STAR[®] specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] requirements.

Table 317: ENERGY STAR® Specifications for Residential Clothes Washers

Product Type	Current Criteria as of February 5, 2018
ENERGY STAR [®] Residential Front-loading (> 2.5 ft ³)	IMEF ≥ 2.76 IWF≤ 3.2
ENERGY STAR [®] Residential Top-loading (> 2.5 ft ³)	IMEF ≥ 2.06 IWF ≤ 4.3
ENERGY STAR [®] Residential Small or Compact (< 2.5 ft ³)	IMEF ≥ 2.07 IWF ≤ 4.2

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR[®] Appliance Savings Calculator found on the ENERGY STAR[®] website.³²⁶ This document will be updated regularly to apply the values provided in the latest available ENERGY STAR[®] appliance calculator. The most recent TRM version should be referenced to determine the savings for this measure.

³²⁵ Available for download at:

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version%208.0%20Cl othes%20Washer%20Partner%20Commitments%20and%20Eligibility%20Criteria.pdf.

³²⁶ ENERGY STAR® Appliance Savings Calculator (updated October 2016). <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products.</u>

 $kWh_{savings} = kWh_{baseline} - kWh_{ES}$

Equation 112

Baseline Unit

 $kWh_{baseline} = kWh_{conv,machine} + kWh_{conv,WH} + kWh_{conv,dryer} + kWh_{conv,LPM}$

Equation 113

$$kWh_{conv,machine} = MCF \times RUEC_{conv} \times \frac{LPY}{RLPY}$$

Equation 114

$$kWh_{conv,WH} = WHCF \times RUEC_{conv} \times \frac{LPY}{RLPY}$$

Equation 115

$$kWh_{conv,LPM} = kW_{conv,LPM} \times (8,760 - LPY)$$

Equation 116

$$kWh_{conv,dryer} = \left[\left(\frac{CAP_{conv}}{IMEF_{FS}} \times LPY \right) - \left(RUEC_{conv} \times \frac{LPY}{RLPY} \right) - kWh_{conv,LPM} \right] \times \frac{DU_{DW}}{DUF}$$
Equation 117

Where:

kWh _{baseline}		Federal standard baseline energy usage
kWh _{conv,machine}	, =	Conventional machine energy
kWh _{conv,WH}	=	Conventional water heater energy
kWh _{conv,dryer}	=	Conventional dryer energy
kWh _{conv,LPM}	=	Conventional combined low-power mode energy
RUEC _{conv}	=	Conventional rated unit electricity consumption = 381 kWh/year (top-loading, standard) ³²⁷ , 163 kWh/year top-loading, compact)
LPY	=	Loads per year = 295
RLPY	=	Reference loads per year = 392
kW _{conv,LPM}	=	Combined low-power mode wattage of conventional unit = 0.00115 kW (top-loading, standard), 0.00144 kW (top-loading, compact)

³²⁷ This value is taken from the ENERGY STAR[®] appliance calculator and corresponds with the federal standard after March 7, 2015.

CAP _{conv}	=	Average machine capacity = 4.5 ft³ (top-loading, standard), 2.1 ft³ (top-loading, compact)
IMEF _{FS}	=	Federal standard integrated modified energy factor (Table 316)
MCF	=	Machine consumption factor = 20%
WHCF	=	Water heater consumption factor = 80%
DU_{DW}	=	Dryer usage in households with both a washer and a dryer = 95%
DUF	=	Dryer use factor (percentage of washer loads dried in machine) = 91%

ENERGY STAR[®] Unit

 $kWh_{ES} = kWh_{ES,machine} + kWh_{ES,WH} + kWh_{ES,dryer} + kWh_{ES,LPM}$

Equation 118

$$kWh_{ES,machine} = MCF \times RUEC_{ES} \times \frac{LPY}{RLPY}$$

Equation 119

$$kWh_{ES,WH} = WHCF \times RUEC_{ES} \times \frac{LPY}{RLPY}$$

Equation 120

$$kWh_{ES,LPM} = kW_{ES,LPM} \times (8,760 - LPY)$$

Equation 121

$$kWh_{ES,dryer} = \left[\left(\frac{CAP_{ES}}{IMEF_{ES}} \times LPY \right) - \left(RUEC_{ES} \times \frac{LPY}{RLPY} \right) - kWh_{ES,LPM} \right] \times \frac{DU_{DW,ES}}{DUF}$$

Equation 122

Where:

kWh _{ES}	=	ENERGY STAR [®] average energy usage
kWh _{ES,machine}	=	ENERGY STAR [®] machine energy
kWh _{ES,WH}	=	ENERGY STAR [®] water heater energy
kWh _{ES,dryer}	=	ENERGY STAR [®] dryer energy
kWh _{ES,LPM}	=	ENERGY STAR [®] combined low-power mode energy
RUEC _{ES}	=	ENERGY STAR [®] rated unit electricity consumption (see Table 318)

kW _{ES,LPM}	=	Combined low-power mode wattage of ENERGY STAR [®] unit (see Table 318)
IMEF _{ES}	=	ENERGY STAR [®] integrated modified energy factor (Table 317)
CAP_{ES}	=	Average machine capacity (see Table 318)

Table 318: ENERGY STAR® Clothes Washer Characteristics³²⁸

Product Type	ENERGY STAR [®] Rated Unit Electricity Consumption (kWh)	Average Capacity (ft³)	Combined Low- Power Mode Wattage (kW)
Residential front-loading (> 2.5 ft ³)	127	4.0	0.00160
Residential top-loading (> 2.5 ft ³)	230	4.5	0.00115
Residential small or compact (< 2.5 ft ³)	109	2.1	0.00144

Summer Demand Savings Algorithms

L11/	$\frac{kWh_{savings}}{\Lambda OH}$	V CF
$kW_{savings} =$	AOH	× 67

Equation 123

 $AOH = LPY \times d$

Equation 124

Where:

АОН	=	Annual operating hours
CF	=	Coincidence factor (Table 319)
LPY	=	Loads per year = 295
d	=	Average wash cycle duration = 1 hour ^{329,330}

³²⁹ Weighted average of Consumer Reports Cycle Times for Top and Front-Loading Clothes Washers. Top: <u>http://www.consumerreports.org/cro/appliances/laundry-and-cleaning/washing-machines/top-loading-washing-machine-ratings/ratings-overview.htm</u>. Front: <u>http://www.consumerreports.org/cro/appliances/laundry-and-cleaning/washing-machines/front-loading-washing-machine-ratings/ratings-overview.htm</u>.

³²⁸ This value is taken from the ENERGY STAR[®] appliance calculator and corresponds with the ENERGY STAR[®] specification after March 7, 2015.

 ³³⁰ Consumer Reports. "Top-loading washers remain more popular with Americans". April 13, 2010.
 Weighted average of 75 percent Top-Loading Clothes Washers and 25 percent Front-Loading Clothes Washers. http://news.consumerreports.org/home/2010/04/best-front-loaders-top-loaders-which-is-more-popular-mold-vibration-washing-machine-reviews.html. This publication is available for purchase only.

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas		Climate Zone 4: Corpus Christi	
Summer	0.040	0.040	0.040	0.041	0.041
Winter	0.043	0.043	0.043	0.044	0.039

Table 319: ENERGY STAR[®] Clothes Washer Coincidence Factors³³¹

Deemed Energy Savings Tables

Table 320: ENERGY STAR[®] Clothes Washer Energy Savings (kWh)

ENERGY STAR [®] Clothes Washer—Annual Energy Savings					
Туре	Water Heater Fuel Type	Dryer Fuel Type	kWh Savings		
	Electric	Electric	394		
Front-loading	Electric	Gas	187		
> 2.5 ft ³	Gas	Electric	241		
		Gas	34		
	Flootria	Electric	193		
Top-loading	Electric	Gas	114		
> 2.5 ft ³	Cas	Electric	102		
	Gas	Gas	23		
	Electric	Electric	222		
	Electric	Gas	41		
All <u><</u> 2.5 ft³	Cas	Electric	189		
	Gas	Gas	8		

³³¹ See Volume 1, Appendix B.

ENERGY STAR [®] Clothes Washer—Summer Demand Savings							
M/achor	Fuel Type		Summer Demand Savings (kW)				
Washer Type	Water Heater	Dryer	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5
	Electric	Electric	0.053	0.053	0.053	0.055	0.055
Front-loading	Electric It-loading Gas 0.025 0.025	0.025	0.025	0.026	0.026		
> 2.5 ft ³	Cas	Electric	0.033	0.033	0.033	0.033	0.033
	Gas	Gas	0.005	0.005	0.005	0.005	0.005
	Electric	Electric	0.026	0.026	0.026	0.027	0.027
Top-loading	Electric	Gas	0.015	0.015	0.015	0.016	0.016
> 2.5 ft ³	Cas	Electric	0.014	0.014	0.014	0.014	0.014
	Gas	Gas	0.003	0.003	0.003	0.003	0.003
	Flootria	Electric	0.030	0.030	0.030	0.031	0.031
	Electric	Gas	0.006	0.006	0.006	0.006	0.006
All <u><</u> 2.5 ft³	Cas	Electric	0.026	0.026	0.026	0.026	0.026
	Gas	Gas	0.001	0.001	0.001	0.001	0.001

Table 321: ENERGY STAR[®] Clothes Washer Summer Peak Demand Savings (kW)

Deemed Summer Demand Savings Tables

Residential: Appliances ENERGY STAR[®] Clothes Washers

ENERGY STAR [®] Clothes Washer—Winter Demand Savings								
Machor	Fuel Type		Winter Demand Savings (kW)					
Washer Type	Water Heater	Dryer	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5	
	Electric	Electric	0.057	0.057	0.057	0.059	0.052	
Front-loading	Electric	Gas	0.027	0.027	0.027 0.027 0.035 0.035	0.028	0.025	
> 2.5 ft ³	Gas	Electric	0.035	0.035	0.035	0.036	0.032	
		Gas	0.005	0.005	0.005	0.005	0.005	
	F le etrie	Electric	0.028	0.028	0.028	0.029	0.026	
Top-loading	Electric	Gas	0.017	0.017	0.017	0.017	0.015	
> 2.5 ft ³	0	Electric	0.015	0.015	0.015	0.015	0.014	
	Gas	Gas	0.003	0.003	0.003	0.003	0.003	
	Electric	Electric	0.032	0.032	0.032	0.033	0.029	
All < 2.5 ft ³	Electric	Gas	0.006	0.006	0.006	0.006	0.005	
All <u>></u> 2.5 ft*	Gas	Electric	0.028	0.028	0.028	0.028	0.025	
	Gas	Gas	0.001	0.001	0.001	0.001	0.001	

Deemed Winter Demand Savings Tables

Table 322: All Climate Zones—ENERGY STAR® Clothes Washer Winter Demand Savings (kW)

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an ENERGY STAR[®] clothes washer is established at 11 years based on the Technical Support Document for the current DOE Final Rule standards for residential clothes washers.³³²

³³² The median lifetime was calculated using the survival function outlined in the DOE Technical Support Document. Final Rule: Standards, Federal Register, 77 FR 32308 (May 31, 2012) and associated Technical Support Document. Accessed 08/15/2019. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=68&action=vi ewliveDownload TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0019-</u>0047.</u>

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Number of units installed
- Type of unit (top-loading, front-loading, or compact)
- Fuel type of water heater (gas or electric)
- Fuel type of dryer (gas or electric)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

Relevant Standards and Reference Sources

• The applicable version of the ENERGY STAR[®] specifications and requirements for clothes washers.

Document Revision History

Table 323: Residential ENERGY STAR® Clothes Washers Revision History

TRM Version	Date	Description of Change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Associates, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. New ENERGY STAR [®] standards incorporated.
v3.0	4/10/2015	TRM v3.0 update. Updated EUL to align with median lifetime. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. New ENERGY STAR [®] algorithms and default assumptions incorporated.
v3.1	3/28/2016	TRM v3.1 March revision. Updated winter coincidence factors and winter and summer demand savings tables.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. Updated baseline IMEF to reflect changes in Federal Standard. Updated Front Load Washer IMEF to reflect changes in

TRM Version	Date	Description of Change
		ENERGY STAR Specification. Added baseline for compact units to reflect Federal Standard for compact washers.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	11/2019	TRM v7.0 update. Updated links and dates.

.

.

2.5.3 ENERGY STAR[®] Clothes Dryers Measure Overview

TRM Measure ID: R-AP-CD

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR[®] electric clothes dryer. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

Gas dryers are ineligible to claim savings under this measure. Savings may be claimed for the replacement of gas dryers if the decision to switch fuels predates the decision to install efficient equipment.

Baseline Condition

Effective January 1, 2015, the baseline is the Department of Energy (DOE) minimum federal efficiency standard³³³, adjusted to reflect recent Combined Energy Factor (CEF) definition updates for vented and ventless clothes dryers. These adjusted baselines consider calculated differences between CEF values under original clothes dryer testing procedures of 10 CFR 430, Subpart B, Appendix D1, and those amended procedures outlined in Appendix D2; a change indicated in detail in the September 5, 2013, ENERGY STAR[®] stakeholder webinar³³⁴. These values are consistent with the current ENERGY STAR[®] Appliance Savings Calculator.

³³³ DOE minimum efficiency standard for residential clothes dryers. <u>https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0050</u>

³³⁴Available for download at: <u>https://www.energystar.gov/sites/default/files/specs/Clothes%20Dryers%20Draft%202%20V1%200%2</u> 0Stakeholder%20Webinar%20Final.pdf

Product Type	Average Capacity (ft³)	Amended Minimum CEF: Calculations	Minimum CEF levels (lbs/kWh)
Vented Electric, Standard	≥ 4.4	3.73 – (3.73 x 0.166)	3.11
Vented Electric, Compact (120 V)	< 4.4	3.61 – (3.61 x 0.166)	3.01
Vented Electric, Compact (240 V)	< 4.4	3.27 – (3.27 x 0.166)	2.73
Ventless Electric, Compact (240 V)	< 4.4	2.55 – (2.55 x 0.166)	2.13

Table 324: Federal Standard for Residential Clothes Dryers

High-efficiency Condition

The table below displays the ENERGY STAR[®] Final Version 1.1 requirements for eligible clothes dryers effective January 1, 2015.³³⁵ These values are subject to updates in ENERGY STAR[®] specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] requirements.

Product Type	Average Capacity (ft³)	Minimum CEF levels (Ibs/kWh)
ENERGY STAR [®] Ventless or Vented Electric, Standard	≥ 4.4	3.93
ENERGY STAR [®] Ventless or Vented Electric, Compact (120V)	< 4.4	3.80
ENERGY STAR [®] Vented Electric, Compact (240 V)	< 4.4	3.45
ENERGY STAR [®] Ventless Electric, Compact (240 V)	< 4.4	2.68

Table 325: ENERGY STAR [®] Specifications	s for Residential Clothes Dryers
--	----------------------------------

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR[®] Appliance Savings Calculator found on the ENERGY STAR[®] website.³³⁶ This document will be updated regularly to apply the values provided in the latest available ENERGY STAR[®] appliance calculator. The most recent TRM version should be referenced to determine the savings for this measure.

³³⁵ Available for download at: <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version%201.1%20CI</u> <u>othes%20Dryers%20Specification%20-</u> %20Program%20Commitment%20Criteria%20and%20Eligibility%20Criteria.pdf.

³³⁶ ENERGY STAR® Appliance Savings Calculator (updated October 2016). <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products.</u>

Table 326: Default Average Load	for Clothes Dryers in Pounds
---------------------------------	------------------------------

Product Type	Average Load (lbs)
Vented Electric, Standard	8.45
Vented Electric, Compact (120 V)	3.00
Vented Electric, Compact (240 V)	3.00
Ventless Electric, Compact (240 V)	3.00

 $kWh_{savings} = kWh_{baseline} - kWh_{ES}$

Equation 125

Baseline Unit

$$kWh_{baseline} = \frac{AvgLoad \times LPY}{CEF_{baseline}}$$

Equation 126

Where:

$kWh_{baseline}$	=	Federal standard baseline energy usage
AvgLoad	=	Average load in lbs (Table 326)
LPY	=	Loads per year = 283
$CEF_{baseline}$	=	Amended Baseline Combined Energy Factor (See Table 324)

ENERGY STAR® Unit

$$kWh_{ES} = \frac{AvgLoad \times LPY}{CEF_{ES}}$$

Equation 127

Where:

kWh _{ES}	=	ENERGY STAR [®] average energy usage
AvgLoad	=	Average load in lbs (See Table 326)
LPY	=	Loads per Year = 283
CEF _{ES}	=	ENERGY STAR [®] Minimum Combined Energy Factor (See Table 325)

Demand Savings Algorithms

$$kW_{savings} = \frac{kWh_{savings}}{AOH} \times CF$$

Equation 128

Where:

AOH = Annual operating hours =
$$(8760 - 8463) = 297$$
 hours³³⁷
CF = Coincidence factor (Table 327)

Table 327: ENERGY STAR® Clothes Dryer Coincidence Factors³³⁸

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas		Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.041	0.041	0.041	0.041	0.042
Winter	0.045	0.045	0.041	0.048	0.047

³³⁷ Concerning annual operating hours: Minute-by-minute field data shows "96.6% ± 0.5% idle time, or about 8463 hours." Hannas, Benjamin and Gilman, Lucinda. *Dryer Field Study*, 39. Available for download at (last accessed August 29, 2019): <u>https://neea.org/img/uploads/neea-clothes-dryer-fieldstudy.pdf</u>

³³⁸ See Volume 1, Appendix B.

Deemed Energy Savings Tables

Table 328: ENERGY STAR® Clothes Dryer Energy Savings (kWh/Year)

ENERGY STAR [®] Clothes Dryer—Annual Energy Savings						
Product Type	Energy Savings (kWh)					
Ventless or Vented Electric, Standard	≥ 4.4	160				
Ventless or Vented Electric, Compact (120V)	< 4.4	59				
Vented Electric, Compact (240 V)	< 4.4	65				
Ventless Electric, Compact (240 V)	< 4.4	82				

Deemed Summer Demand Savings Tables

Table 329: ENERGY STAR[®] Clothes Dryer Summer Peak Demand Savings (kW)

ENERGY STAR [®] Clothes Dryer—Summer Demand Savings									
Product TypeAverage Capacity (ft3)ClimateClimateClimateClimateClimateCapacity (ft3)Zone 1Zone 2Zone 3Zone 4Zone 5									
Ventless or Vented Electric, Standard	≥ 4.4	0.022	0.022	0.022	0.022	0.023			
Ventless or Vented Electric, Compact (120V)	< 4.4	0.008	0.008	0.008	0.008	0.008			
Vented Electric, Compact (240 V)	< 4.4	0.009	0.009	0.009	0.009	0.009			
Ventless Electric, Compact (240 V)	< 4.4	0.011	0.011	0.011	0.011	0.012			

Deemed Winter Demand Savings Tables

Table 330: ENERGY STAR[®] Clothes Dryer Winter Demand Savings (kW)

ENERGY STAR [®] Clothes Dryer—Winter Demand Savings									
Product TypeAverage Capacity (ft3)Climate Zone 1Climate Zone 2Climate Zone 3Climate Zone 4Climate Zone 5									
Ventless or Vented Electric, Standard	≥ 4.4	0.024	0.024	0.022	0.026	0.025			
Ventless or Vented Electric, Compact (120V)	< 4.4	0.009	0.009	0.008	0.009	0.009			
Vented Electric, Compact (240 V)	< 4.4	0.010	0.010	0.009	0.011	0.010			
Ventless Electric, Compact (240 V)	< 4.4	0.012	0.013	0.011	0.013	0.013			

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) of an ENERGY STAR[®] clothes dryer is established at 16 years based on the current DOE Final Rule standards for clothes dryers³³⁹.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Number of units installed
- Type of unit (vented or ventless)
- Capacity (\geq 4.4 ft³/standard or < 4.4 ft³/compact)
- Proof of purchase including date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

Relevant Standards and Reference Sources

• The applicable version of the ENERGY STAR[®] specifications and requirements for clothes washers.

Document Revision History

Table 331: Residential ENERGY STAR® Clothes Dryers Revision History

TRM Version	Date		Description of Change
v7.0	10/2019	TRM v7.0 origin.	

³³⁹ Technical Support Document (April 2011) accessed 09/03/2019. See "Appendix 8C.Lifetime Distributions": <u>https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0053</u>

2.5.4 ENERGY STAR[®] Dishwashers Measure Overview

TRM Measure ID: R-AP-DW

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR[®] dishwasher. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

This measure applies to both standard and compact dishwasher types.

Baseline Condition

Effective May 30, 2013, the baseline is the Department of Energy (DOE) minimum efficiency standard³⁴⁰ for dishwashers.

³⁴⁰ DOE minimum efficiency standard for residential dishwashers. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=38&action=vi ewlive..</u>

Product Type	Estimated Annual Energy Use (kWh/year)	Water Consumption (gallons/cycle)
Standard (≥ 8 place settings)	≤ 307	≤ 5.0
Compact (< 8 place settings)	≤ 222	≤ 3.5

Table 332 Federal Standard for Dishwashers

High-efficiency Condition

The following table displays the ENERGY STAR[®] Final Version 6.0 requirements for eligible dishwashers effective January 29, 2016.³⁴¹ These values are subject to updates in ENERGY STAR[®] specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] requirements.

Table 333 El	NERGY STAR®	Specifications	for	Dishwashers
--------------	-------------	----------------	-----	-------------

Product Type	Estimated Annual Energy Use (kWh/year)	Water Consumption (gallons/cycle)
Standard (≥ 8 place settings + 6 serving pieces)	≤ 270	≤ 3.5
Compact (< 8 place settings + 6 serving pieces)	≤ 203	≤ 3.1

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR[®] Appliance Savings Calculator found on the ENERGY STAR[®] website and the revised ENERGY STAR[®] specification in Table 333.³⁴² Default values were taken directly from the ENERGY STAR[®] calculator. This document will be updated regularly to apply the values provided in the latest available ENERGY STAR[®] specification and appliance calculator. The most recent TRM version should be referenced to determine measure savings for this measure.

 ³⁴¹ Available for download at: <u>http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Dishwasher%20</u>
 <u>Version%206.0%20Final%20Program%20Requirements 0.pdf</u>.
 ³⁴² EDEX CTAP® And in 2 prime 2 plantates (up data) Option 2 2010)

³⁴² ENERGY STAR[®] Appliance Savings Calculator (updated October 2016). <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products</u>.

Equation 129
Equation 130
Equation 131
Equation 132
Equation 133
Equation 134
Equation 104
Equation 135

Where:

$kWh_{baseline}$	=	Federal standard baseline energy usage
kWh _{ES}	=	ENERGY STAR [®] average energy usage
kWh _{conv,machin}	_{ne} =	Conventional machine energy
kWh _{conv,WH}	=	Conventional water heater energy
$kWh_{ES,machine}$	=	ENERGY STAR [®] machine energy
kWh _{ES,WH}	=	ENERGY STAR [®] water heater energy
RUEC _{conv}	=	Conventional rated use electricity consumption = 307 kWh/year for standard and 222 kWh/year for compact (Table 332)
RUEC _{ES}	=	ENERGY STAR [®] rated use electricity consumption = 270 kWh/year for standard and 203 kWh/year for compact (Table 333)
MCF	=	Machine consumption factor = 44%
WHCF	=	Water heater consumption factor = 56%

Demand Savings Algorithms

$$kW_{savings} = \frac{kWh_{savings}}{AOH} \times CF$$

Equation 136

$$AOH = CPY \times d$$

Equation 137

Where:

АОН	=	Annual operating hours
CF	=	Coincidence factor = (Table 334)
CPY	=	Cycles per year = 215
d	=	Average wash cycle duration = 2.1 hours ³⁴³

Table 334: ENERGY	′ STAR [®] Dishwashei	r Coincidence Factors ³⁴⁴	
-------------------	--------------------------------	--------------------------------------	--

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas		Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	0.042	0.041	0.042	0.041	0.042
Winter	0.106	0.104	0.090	0.112	0.129

Deemed Energy Savings Tables

Table 335: ENERGY STAR® Dishwasher Energy Savings

ENERGY STAR [®] Dishwasher—Energy Savings (kWh)					
Product Type	Electric Water Heating	Gas Water Heating			
Standard	37	16			
Compact	19	8			

³⁴³ Average of Consumer Reports Cycle Times for Dishwashers. http://www.consumerreports.org/cro/appliances/kitchen-appliances/dishwashers/dishwasherratings/ratings-overview.htm. ³⁴⁴ See Volume 1, Appendix B.

Deemed Summer Demand Savings Tables

	ENERGY STAI	2® Dichuach	or Summor	Domand Savin	age (k)M)	-
Dishwasher Type	Water Heating Fuel	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5
Otandarul	Electric	0.003	0.003	0.003	0.003	0.003
Standard	Gas	0.002	0.001	0.002	0.001	0.002
Compact	Electric	0.002	0.002	0.002	0.002	0.002
	Gas	0.001	0.001	0.001	0.001	0.001

Table 336: ENERGY STAR[®] Dishwasher Summer Peak Demand Savings (kW)

Deemed Winter Demand Savings Tables

Table 337: ENERGY STAR[®] Dishwasher Winter Peak Demand Savings (kW)

ENERGY STAR [®] Dishwasher—Winter Demand Savings (kW)						
Dishwasher Type	Water Heating Fuel	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5
Standard	Electric	0.009	0.009	0.007	0.009	0.011
	Gas	0.004	0.004	0.003	0.004	0.005
Compact	Electric	0.004	0.004	0.004	0.005	0.005
	Gas	0.002	0.002	0.002	0.002	0.002

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 15 years based on the Technical Support Document for the current DOE Final Rule standards for residential dishwashers.³⁴⁵

³⁴⁵ The median lifetime was calculated using the survival function outlined in the DOE Technical Support Document. Final Rule: Standards, Federal Register, 77 FR 31918 (May 30, 2012) and associated Technical Support Document. Accessed 08/15/2019. <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=38&action=vi</u> ewlive.

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Number of units installed
- Type of dishwasher (standard or compact)
- Fuel type of water heater (gas or electric)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

Relevant Standards and Reference Sources

• The applicable version of the ENERGY STAR[®] specifications and requirements for dishwashers.

Document Revision History

Table 338: Residential ENERGY STAR® Dishwashers Revision History

TRM Version	Date	Description of Change
v1.0	11/25/2013	TRM v1.0 origin.
v2.0	4/18/2014	TRM v2.0 update. Updated by Frontier Associates, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. No revision.
v3.0	4/10/2015	TRM v3.0 update. New ENERGY STAR [®] specifications incorporated into the measure. New peak savings calculated according to revised peak definition.
v3.1	11/05/2015	TRM v3.1 update. Final ENERGY STAR [®] specification incorporated into the measure. Consolidated table formats.
v3.1	3/28/2016	TRM 3.1 March revision. Updated summer and winter coincidence factors and demand savings tables.
v4.0	10/10/2016	TRM v4.0 update. No revision.
v5.0	10/2017	TRM v5.0 update. Updated footnote reference to ENERGY STAR [®] calculator.

TRM Version	Date	1	Description of Change
v6.0	11/2018	Т	RM v6.0 update. No revision.
v7.0	10/2019	т	RM v7.0 update. Updated links and dates.

-

2.5.5 ENERGY STAR[®] Refrigerators Measure Overview

TRM Measure ID: R-AP-RF

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction, early retirement

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to all ENERGY STAR[®] refrigerators that meet the criteria for the ENERGY STAR[®] label specified below.

Eligibility Criteria

To qualify for early retirement, the ENERGY STAR[®] unit must replace an existing, full-size unit with a maximum age of 20 years. To determine the remaining useful life of an existing unit, see Table 342. All retired refrigerators must be dismantled in an environmentally safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of refrigerators. In order to receive early retirement savings, the unit to be replaced must be functioning at the time of removal.

Newly installed refrigerators must meet current ENERGY STAR® efficiency levels.

Baseline Condition

For new construction or replace-on-burnout, the baseline is the Department of Energy (DOE) minimum efficiency standard³⁴⁶ for refrigerators, effective September 15, 2014.

For early retirement, the baseline for refrigerators is the annual unit energy consumption of an assumed refrigerator's adjusted energy usage rating based on an average of values reported by

³⁴⁶ DOE minimum efficiency standard for residential refrigerators and freezers. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43</u>.

the Midwest Energy Performance Analytics (MwEPA) Refrigerator and Freezer Energy Rating Database.³⁴⁷

High-efficiency Condition

Table 339 displays the ENERGY STAR[®] requirements for eligible refrigerators, which went into effect on September 15, 2014. These values are subject to updates in ENERGY STAR[®] specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] requirements.

ENERGY STAR [®] Refrigerator					
Product Type	Volume	Criteria as of September 15, 2014			
Full-size Refrigerators and Refrigerator-Freezers	7.75 cubic feet or greater	Approximately 10 percent more energy efficient than the minimum federal standard (see Table 340)			

Table 339: ENERG	'STAR [®] Specifications	for Refrigerators
------------------	-----------------------------------	-------------------

³⁴⁷ Refrigerator and Freezer Energy Rating Database. Midwest Energy Performance Analytics, Inc. in combination with the State of Wisconsin and US Department of Energy's Weatherization Assistance Program. <u>http://www.kouba-cavallo.com/refmods.htm</u>.

		•	,,			
Product Number	Product Class	Baseline Energy Usage Federal Standard as of Sept 15, 2014 (kWh/year) ³⁴⁹	Average ENERGY STAR® Energy Usage (kWh/year) ³⁵⁰	Adjusted Volume ³⁵¹ (cubic feet)	Baseline Energy Usage (kWh/year)	ENERGY STAR [⊛] Energy Usage (kWh/year)
3	Refrigerator freezers automatic defrost with top- mounted freezer without an automatic icemaker	8.07 × AV + 233.7	7.26 × AV + 210.3	16.9	370.1	333.0
5	Refrigerator- freezers— automatic defrost with bottom- mounted freezer without an automatic icemaker	8.85 × AV + 317.0	7.97 × AV + 285.3	18.6	481.5	433.5
5A	Refrigerator- freezers— automatic defrost with bottom- mounted	9.25 × AV + 475.4	8.33 × AV + 436.3	32.1	772.1	703.5

Table 340: Formulas to Calculate the ENERGY STAR[®] Criteria for each Refrigerator Product Category by Adjusted Volume³⁴⁸

³⁴⁸ Available for download at <u>http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2010-vol3/pdf/CFR-2012-title10-vol3/pdf/CFR-2012-title10</u>

³⁴⁹ http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx.

³⁵¹ AV is calculated as a simple average across all refrigerators in the corresponding Product Class utilizing data provided by <u>https://www.energystar.gov/productfinder/product/certified-residentialrefrigerators/results</u>

³⁵⁰ Approximately 10 percent more efficient than baseline, as specified in the ENERGY STAR[®] Appliance Savings Calculator (updated September 2015).

freezer with an automatic icemaker with TTD ice service					
Refrigerator- freezers— automatic defrost with side- mounted freezer with an automatic icemaker with TTD ice service	8.54 × AV + 432.8	7.69 × AV + 397.9	30.4	692.1	631.4

7

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

New Construction or Replace-on-burnout

Energy Savings Algorithms

$$kWh_{savings} = kWh_{baseline} - kWh_{ES}$$

Equation 138

Where:

kWh _{baseline}	=	Federal standard baseline energy usage (see Table 340)
kWh _{ES}	=	ENERGY STAR average energy usage (see (see Table 340)

Demand Savings Algorithms

$$kW_{savings} = \frac{kWh_{savings}}{8,760 \ hrs} \times LSAF$$

Equation 139

Where:

Table 341: ENERGY STAR[®] Refrigerator Load Shape Adjustment Factors³⁵²

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Summer	1.112	1.099	1.108	1.100	1.081
Winter	0.929	0.966	0.924	0.941	0.966

Early Retirement

Annual energy (kWh) and peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (16—RUL)

³⁵² See Volume 1, Appendix B.

Annual energy and peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

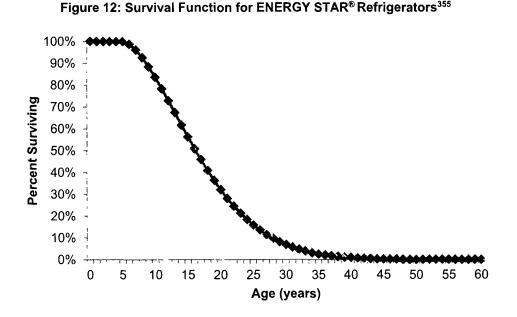
RUL = Remaining useful life (see Table 342); if unknown, assume the age of the replaced unit is equal to the EUL resulting in a default RUL of 5.0 years

EUL

=

Estimated useful life = 16 years

	3	(····/····	
Age of Replaced Refrigerator (years)	RUL (years)	Age of Replaced Refrigerator (years)	RUL (years)
1	15.2	12	7.0
2	14.2	13	6.6
3	13.2	14	6.3
4	12.2	15	6.0
5	11.2	16	5.0
6	10.3	17	4.0
7	9.6	18	3.0
8	8.9	19	2.0
9	8.3	20	1.0
10	7.8	21 ^{353,354}	0.0
11	7,4		


Table 342: Remaining Useful Life (RUL) of Replaced Refrigerator

Derivation of RULs

ENERGY STAR[®] refrigerators have an estimated useful life of 16 years. This estimate is consistent with the age at which approximately 50 percent of the refrigerators installed in a given year will no longer be in service, as described by the survival function in Figure 12.

³⁵³ RULs are capped at the 75th percentile of equipment age, 21 years, as determined based on DOE survival curves (see Figure 12). Systems older than 21 years should use the ROB baseline. See the January 2015 memo, "Considerations for early replacement of residential equipment," for further detail.

³⁵⁴ Ward, B., Bodington, N., Farah, H., Reeves, S., and Lee, L. "Considerations for early replacement of residential equipment." Prepared by the Evaluation, Measurement, and Verification (EM&V) team for the Electric Utility Marketing Managers of Texas (EUMMOT). January 2015. This document has been made available to all Texas investor-owned utilities through the EM&V team's SharePoint.

The method to estimate the remaining useful life (RUL) of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 12. The age of the refrigerator being replaced is found on the horizontal axis, and the corresponding percentage of surviving refrigerators is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. Then, the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For example, assume a refrigerator being replaced is 15 years old. The corresponding percent surviving value is 56 percent. Half of 56 percent is 28 percent. The age corresponding to 28 percent on the chart is 21 years. Therefore, the RUL of the refrigerator being replaced is (21–15) = 6 years.

Energy Savings Algorithms

For the RUL time period:

$$kWh_{savings,ER} = kWh_{manf} - kWh_{ES}$$

Equation 140

For the remaining time in the EUL period., calculate annual savings as you would for a replaceon-burnout project:

³⁵⁵ Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf.

 $kWh_{savings,ROB} = kWh_{baseline} - kWh_{ES}$

Equation 141

Where:

kWh _{manf}	=	968 kWh/Year ³⁵⁶
$kWh_{baseline}$	=	Federal standard baseline energy usage (see Table 340)
kWh _{ES}	=	ENERGY STAR [®] average energy usage (see Table 340)

Demand Savings Algorithms

To calculate demand savings for the early retirement of a refrigerator, a similar methodology is used as for replace-on-burnout installations, with separate savings calculated for the remaining useful life of the unit, and the remainder of the EUL as outlined in the section above.

For the RUL time period:

$$kW_{savings,ER} = \frac{kWh_{savings,ER}}{8,760 hrs} \times LSAF$$

Equation 142

For the remaining time in the EUL period, calculate annual savings as you would for a replaceon-burnout project:

$$kW_{savings,ROB} = \frac{kWh_{savings,ROB}}{8,760 \ hrs} \times LSAF$$

Equation 143

Where:

LSAF = Load shape adjustment factor (Table 341)

Annual deemed summer peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

³⁵⁶ This is the weighted average of Adjusted annual unit energy consumption, derived from the MwEPA Refrigerator and Freezer Energy Rating Database (or from metering). Weights are calculated from the millions-of-households measurements obtained from the Residential Energy Consumption Survey, or RECS, (<u>https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php</u>) corresponding to the year range classifications of refrigerators greater than 15 years old (specifically, 15-to-19-years-old and 20-or-more-years-old). Data in which refrigerators' model years were older than 1975 were excluded.

Where:

RUL	=	Remaining useful life (see Table 342)
EUL	=	Estimated useful life = 16 years ³⁵⁷

³⁵⁷ Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43</u>. Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

Deemed Energy Savings Tables

Table 343: ENERGY STAR® Refrigerators Energy Savings (kWh) by Refrigerator Type

Through- the-Door Ice?	Door Type	Product Class	ROB Savings (kWh/year)	ER Savings (kWh/year)	
No	Top Freezer	 Refrigerator freezers—automatic defrost with a top-mounted freezer without an automatic icemaker 	37	224	
	Bottom Freezer	 Refrigerator-freezers—automatic defrost with a bottom-mounted freezer without an automatic icemaker 	48	200	
Yes	Bottom Freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	69	147	
	Side-by-Side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	61	130	
	Unknown o	44	205		

³⁵⁸ An "Unknown or Average" refrigerator's savings are calculated as the difference between the weighted average of baseline energy usage ratings and the weighted average of ENERGY STAR[®] energy usage ratings for the four selected refrigerator categories, with weights ascertained from averages of refrigerators in 10-14 year-old, 5-9 year-old, and 2-4 year-old age groups. The data used to calculate weights is hosted by Natural Resources Canada (NRCAN) at the following link which contains a table of the distribution of refrigerator types in households

Residential[.] Appliances ENERGY STAR[®] Refrigerators 391 Texas Technical Reference Manual, Vol. 2 November 2019

Deemed Summer Demand Savings Tables

Table 344: ENERGY STAR® Refrigerators Replace-on-burnout Summer Demand Savings (kW) by Refrigerator Type

<i>'</i>			Replace-on-burnout Savings (kW – Summer)				
Through- the-Door Ice?	Door Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
No	Top Freezer	 Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker 	0.0047	0.0047	0.0047	0.0047	0.0046
	Bottom Freezer	 Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker 	0.0061	0.0060	0.0061	0.0060	0.0059
Yes	Bottom Freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.0087	0.0086	0.0087	0.0086	0.0085
	Side-by- Side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.0077	0.0076	0.0077	0.0076	0.0075
	Unknowr	n or Average Refrigerator	0.0056	0.0056	0.0056	0.0056	0.0055

by year: http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/showTable.cfm?type=CM§or=aaa&juris=ca&rn=3&page=1 Weights were similarly calculated utilizing data from RECS (data which is summarized, i.e. not yearly, and located here: https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php). While the reported distribution of refrigerator types between the two sets of data varies, we prefer the year-level granularity of the data from NRCAN considering that the differences between both sets of weighted the sets of the sets of the sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences between both sets of the data from NRCAN considering that the differences betwee average baseline energy usage and weighted average ENERGY STAR® energy usage were nearly identical. Hence, we elect to utilize the more detailed weightings derived from the data hosted by NRCAN.

Residential[.] Appliances ENERGY STAR[®] Refrigerators

392 Texas Technical Reference Manual, Vol. 2 November 2019

			Early-Retirement Savings (kW – Summer)				
Through- the-Door Ice?	Door Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
No	Top Freezer	 Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker 	0 028	Zone 2: Zone 3: Zone 4: Dallas Houston Corpus	0.028		
INO	Bottom Freezer	 Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker 	0.025	0.025	0.028 0.028 0.028 0.025 0.025 0.025	0.025	
Vac	Bottom Freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.016	0.016	0.016	0.016	0.016
Yes	Side-by- Side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.019	0.018	0.019	0.018	0.018
	Unknowr	n or Average Refrigerator	0.026	0.026	0.026	0.026	0.025

Table 345: ENERGY STAR® Refrigerators Early Retirement Summer Demand Savings (kW) by Refrigerator Type

Residential. Appliances ENERGY STAR[®] Refingerators 393 Texas Technical Reference Manual, Vol. 2 November 2019

Deemed Winter Demand Savings Tables

Table 346: ENERGY STAR® Refrigerators Replace-on-burnout Winter Demand Savings (kW) by Refrigerator Type

			Replace-on-burnout Savings (kW – Winter)					
Through- the-Door Ice?	Door Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
No	Top Freezer	 Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker 	0.0039	0.0041	0.0039	0.0040	0.0041	
No Bottom Freezer	 Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker 	0.0051	0.0053	0.0051	0.0052	0.0053		
Yaa	Bottom Freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.0073	0.0076	0.0072	0.0074	0.0076	
Yes	Side-by- Side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.0064	0.0067	0.0064	0.0065	0.0067	
	Unknowr	n or Average Refrigerator	0.0047	0.0049	0.0047	0.0048	0.0049	

Residential Appliances ENERGY STAR[®] Refrigerators 394 Texas Technical Reference Manual, Vol. 2 November 2019

			Early-Retirement Savings (kW – Winter)					
Through- the-Door Ice?	Door Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
No	Top Freezer	3: Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker	0.024	0 025	0.024	0.024	0.025	
Bottom Freezer	 Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker 	0.021	0.022	0.021	0.021	0.022		
Yes	Bottom Freezer	5A: Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	0.014	0.014	0.014	0.014	0.014	
Yes	Side-by- Side	7: Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	0.016	0.016	0.015	0.016	0.016	
	Unknown	or Average Refrigerator	0.022	0.023	0.022	0.022	0.023	

Table 347: ENERGY STAR® Refrigerators Early Retirement Winter Demand Savings (kW) by Refrigerator Type

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on winter peak demand savings and methodology.

Residential[.] Appliances ENERGY STAR[®] Refngerators 395 Texas Technical Reference Manual, Vol. 2 November 2019

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 16 years based on the current DOE Final Rule standards for residential refrigerators.³⁵⁹

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Number of units installed
- The project type of the installation (new construction, replace-on-burnout, or early retirement)
- Installed refrigerator model number
- Photograph demonstrating functionality of existing equipment and/or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only)
- Document proper disposal of the existing refrigerator (early retirement only)
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or another pre-approved method of installation verification

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

³⁵⁹ Final Rule: Standards, Federal Register, 76 FR 57516 (Sept. 15, 2011) and associated Technical Support Document. Accessed 10/10/2014.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43. Download TSD at: http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128.

Relevant Standards and Reference Sources

• The applicable version of the ENERGY STAR[®] specifications and requirements for refrigerators.

Document Revision History

Table 348: Residential ENERGY STAR® Refrigerators Revision History

TRM Version	Date	Description of Change
v1.0	11/25/2013	TRM v1.0 origin
v2.0	4/18/2014	TRM v2.0 update. Low-income and hard-to-reach Market Transformation section merged with the main measure as "early retirement" option. Updated by Frontier Associates, March 2014, based on new federal standards.
v2.1	1/30/2015	TRM v2.1 update. New ENERGY STAR [®] standards incorporated.
v3.0	4/10/2015	TRM v3.0 update. early retirement savings may be claimed through any appropriately designed program in accordance with the EM&V team's memo, "Considerations for early replacement of residential equipment." Remaining useful lifetimes updated. LSAF updated to align with new peak demand methodology.
v3.1	11/05/2015	TRM v3.1 update. Correction to legacy LSAF. Revision to align with ENERGY STAR [®] calculator and specification.
v3.1	3/28/2016	TRM v3.1 March revision. Updated summer and winter coincidence factors.
v4.0	10/10/2016	TRM v4.0 update. Updated RUL value for units with the age of seven years and added RUL values for units with an age of one to five years. Added a default RUL value for when the age of the unit is unknown. Eliminated the eligibility requirement of the existing unit to have an age of minimum of five years.
v5.0	10/2017	TRM v5.0 update. No revision.
v6.0	11/2018	TRM v6.0 update. Updated database reference.
v7.0	10/2019	TRM v7.0 update. Established deemed savings approach.

2.5.6 ENERGY STAR[®] Freezers Measure Overview

TRM Measure ID: R-AP-FZ

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction, early retirement

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Deemed savings calculation

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure applies to all ENERGY STAR[®] freezers that meet the criteria for the ENERGY STAR[®] label specified below.

Eligibility Criteria

To qualify for early retirement, the ENERGY STAR[®] unit must replace an existing, full-size unit with a maximum age of 27 years. To determine the remaining useful life of an existing unit, see Table 352. All retired freezers must be dismantled in an environmentally safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of freezers. In order to receive early retirement savings, the unit to be replaced must be functioning at the time of removal.

Newly-installed freezers must meet current ENERGY STAR® efficiency levels.

Baseline Condition

For new construction or replace-on-burnout, the baseline is the Department of Energy (DOE) minimum efficiency standard³⁶⁰ for freezers, effective September 15, 2014.

³⁶⁰ DOE minimum efficiency standard for residential refrigerators and freezers. <u>https://www.ecfr.gov/cgi-bin/text-idx?SID=48f64e166fe3561666f871e521996e13&mc=true&node=se10.3.430_132&rgn=div8</u>.

For early retirement, the baseline for freezers is the annual unit energy consumption of a freezer's adjusted energy usage rating based on an average of values reported by the Midwest Energy Performance Analytics (MwEPA) Refrigerator and Freezer Energy Rating Database.³⁶¹

Alternatively, the baseline annual energy usage of the freezer being replaced may be estimated by metering for a period of at least two hours using the measurement protocol specified in the DOE report, "Incorporating Refrigerator Replacement into the Weatherization Assistance Program."362

To determine annual kWh of the freezer being replaced, use the following formula:

Annual kWh Usage =
$$\frac{WH \times 8,760}{h \times 1,000}$$

Equation 144

Where:

WH	=	Watt-hours metered during a time period
h	=	Measurement time period (hours)
8,760	=	Hours in a year
1,000 Watt-hours	=	1 kWh

High-efficiency Condition

Table 349 displays the ENERGY STAR[®] requirements for eligible freezers, which went into effect on September 15, 2014. These values are subject to updates in ENERGY STAR® specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] requirements.

ENERGY STAR [®] Freezer					
Product Type	Volume	Criteria as of September 15, 2014			
Freezers	7.75 cubic feet or greater	Approximately 10 percent more energy efficient than the minimum federal standard (see Table 340)			
Compact Freezers	Less than 7.75 cubic feet	Approximately 10 percent more energy efficient than the minimum federal standard (see Table 340)			

³⁶¹ Refrigerator and Freezer Energy Rating Database. Midwest Energy Performance Analytics, Inc. in combination with the State of Wisconsin and US Department of Energy's Weatherization Assistance Program. http://www.kouba-cavallo.com/refmods.htm.

³⁶² Alex Moore, DandR International, Ltd. "Incorporating Refrigerator Replacement into the Weatherization Assistance Program" Information Tool Kit." Department of Energy. November 19, 2001. https://aceee.org/files/proceedings/2002/data/papers/SS02 Panel2 Paper16.pdf.

³⁶³ https://www.energystar.gov/products/appliances/refrigerators/key product criteria

Product Number	Full Product Name ³⁶⁵	Product Class	Baseline Energy Usage Federal Standard (kWh/year)	Average ENERGY STAR ^{3,} Energy Usage (kWh/year) ³⁶⁷	Adjusted Volume ³⁶⁸ (cubic feet)	Baseline Energy Usage (kWh/year)	ENERGY STAR ^{**} Energy Usage (kWh/year)
8	Upright freezers with manual defrost	Upright (Manual Defrost)	5.57 × AV + 193.7	5 01 × AV + 174.3	16 12	283.5	255.1
9	Upright freezers with automatic defrost without an automatic icemaker	Upright (Auto Defrost)	8 62 × AV + 228 3	7 76 × AV + 205.5	29.96	486.6	438.0
10	Chest freezers and all other freezers except compact freezers	Chest	7 29 × AV + 107.8	6 56 × AV + 97	25.25	291 8	262 6
16	Compact upright freezers with manual defrost	Compact Upright (Manual Defrost)	8 65 × AV + 225 7	7 79 × AV + 203 1	5.34	271 9	244.7
17	Compact upright freezers with automatic defrost	Compact Upright (Auto Defrost)	10.17 × AV + 351.9	9.15 × AV + 316.7	7.95	432.7	389 4
18	Compact chest freezers	Compact Chest	9.25 × AV + 136 8	8.33 × AV + 123.1	9.06	220 6	198.6

Table 350: Formulas to Calculate the ENERGY STAR® Criteria for Select Freezer Product Categories by Adjusted Volume³⁶⁴

³⁶⁴ Available for download at http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf. Select product classes excluded.

³⁶⁵ Note that when calculating deemed savings for upright freezers, we calculated a weighted average of adjusted energy usage of manual versus automatic defrost upright freezers, with weights based on the number of millions-of-households which contain these types of freezers, obtained from the Residential Energy Consumption Survey, or RECS, (https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6 php), thus eliminating this input from consideration

³⁶⁶ <u>https://www.ecfr.gov/cgi-bin/text-idx?SID=48f64e166fe3561666f871e521996e13&mc=true&node=se10_3_430_132&rgn=div8</u> ³⁶⁷ Approximately 10 percent more efficient than baseline, as specified in the ENERGY STAR® Appliance Savings Calculator (updated September 2015). <u>http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator xlsx</u>

³⁶⁸ AV is calculated as a simple average per selected freezer product type in the corresponding Product Class utilizing data provided by https://www.energystar.gov/productfinder/product/certified-residential-freezers/results

Residential⁻ Appliance Recycling ENERGY STAR® Freezers

400 Texas Technical Reference Manual, Vol 2 November 2019

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

New Construction or Replace-on-burnout

Energy Savings Algorithms

$$kWh_{savings} = kWh_{baseline} - kWh_{ES}$$

Equation 145

Where:

$kWh_{baseline}$	=	Federal standard baseline energy usage (see Table 350)
kWh _{ES}	=	ENERGY STAR [®] average energy usage (see Table 350)

Demand Savings Algorithms

$$kW_{savings} = \frac{kWh_{savings}}{8,760 \ hrs} \times LSAF$$

Equation 146

Where:

Table 351: ENERGY STAR[®] Freezer Load Shape Adjustment Factors³⁶⁹

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas		Climate Zone 4: Corpus Christi	
Summer	1.112	1.099	1.108	1.100	1.081
Winter	0.929	0.966	0.924	0.941	0.966

Early Retirement

Annual energy (kWh) and peak demand (kW) savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (22—RUL)

³⁶⁹ See Volume 1, Appendix B.

Annual energy and peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

Where:

RUL = Remaining useful life (see Table 350); if unknown, assume the age of the replaced unit is equal to the EUL resulting in a default RUL of 5.0 years.

EUL = Estimated useful life = 22 years

Age of Replaced Freezer (years)	RUL (years)	Age of Replaced Freezer (years)	RUL (years)	Age of Replaced Freezer (years)	RUL (years)
1	20.7	10	12.1	19	6.6
2	19.7	11	11.3	20	6.2
3	18.7	12	10.6	21	5.9
4	17.7	13	9.9	22	5.0
5	16.7	14	9.2	23	4.0
6	15.7	15	8.6	24	3.0
7	14.8	16	8.1	25	2.0
8	13.8	17	7.5	26	1.0
9	13.0	18	7.1	27 ^{370,371}	0.0

Table 352: Remaining Useful Life (RUL) of Replaced Freezer

Derivation of RULs

ENERGY STAR[®] freezers have an estimated useful life of 22 years. This estimate is consistent with the age at which approximately 50 percent of the freezers installed in a given year will no longer be in service, as described by the survival function in Figure 12.

³⁷⁰ RULs are capped at the 75th percentile of equipment age, 27 years, as determined based on DOE survival curves (see Figure 12). Systems older than 27 years should use the ROB baseline. See the January 2015 memo, "Considerations for early replacement of residential equipment," for further detail.

³⁷¹ Ward, B., Bodington, N., Farah, H., Reeves, S., and Lee, L. "Considerations for early replacement of residential equipment." Prepared by the Evaluation, Measurement, and Verification (EM&V) team for the Electric Utility Marketing Managers of Texas (EUMMOT). January 2015. This document has been made available to all Texas investor-owned utilities through the EM&V team's SharePoint.

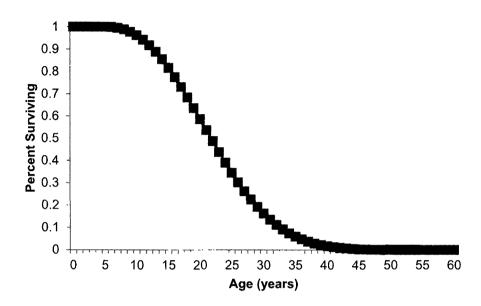


Figure 13: Survival Function for ENERGY STAR[®] Freezers³⁷²

The method for estimating the remaining useful life (RUL) of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 12. The age of the freezer being replaced is found on the horizontal axis, and the corresponding percentage of surviving freezers is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. Then, the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For example, assume a freezer being replaced is 22 years old (the estimated useful life). The corresponding percent surviving value is approximately 50 percent. Half of 50 percent is 25 percent. The age corresponding to 25 percent on the chart is approximately 27 years. Therefore, the RUL of the freezer being replaced is 27-22 = 5 years.

Energy Savings Algorithms

For the RUL time period:

 $kWh_{savings,ER} = kWh_{manf} - kWh_{ES}$

Equation 147

For the remaining time in the EUL period., calculate annual savings as you would for a replaceon-burnout project:

³⁷² Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf</u>.

 $kWh_{savings,ROB} = kWh_{baseline} - kWh_{ES}$

Equation 148

Where:

kWh _{manf}	=	841 kWh/Year ³⁷³
kWh _{baseline}	=	Federal standard baseline energy usage (see Table 350)
kWh _{ES}	=	ENERGY STAR [®] average energy usage (see Table 350)

Demand Savings Algorithms

To calculate demand savings for the early retirement of a freezer, a similar methodology is used as for replace-on-burnout installations, with separate savings calculated for the remaining useful life of the unit, and the remainder of the EUL as outlined in the section above.

For the RUL time period:

$$kW_{savings,ER} = \frac{kWh_{savings,ER}}{8,760 \ hrs} \times LSAF$$

Equation 149

For The remaining time in the EUL period., calculate annual savings as you would for a replaceon-burnout project:

$$kW_{savings,ROB} = \frac{kWh_{savings,ROB}}{8,760 \ hrs} \times LSAF$$

Equation 150

Where:

LSAF = Load shape adjustment factor (Table 351

Annual deemed summer peak demand savings are calculated by weighting the early retirement and replace-on-burnout savings by the RUL of the unit and the remainder of the EUL period, as outlined in the Volume 3 appendices.

³⁷³ This is the weighted average of adjusted annual unit energy consumption, a metric obtained from the MwEPA Refrigerator and Freezer Energy Rating Database (if from metering, substitute recorded value in lieu of this weighted average). Weights are calculated from the millions-of-households measurements obtained from RECS,

^{(&}lt;u>https://www.eia.gov/consumption/residential/data/2015/hc/php/hc3.6.php</u>) corresponding to the year range classifications of freezers greater than 15 years old (specifically, 15-to-19-years-old and 20-or-more-years-old). The oldest freezers for which we had data were from 1979.

Where:

.....

RUL	=	Remaining Useful Life (see Table 342)
EUL	=	Estimated Useful Life = 22 years ³⁷⁴

Deemed Energy Savings Tables

Table 353: ENERGY STAR[®] Freezers Energy Savings (kWh) by Freezer Type

Freezer Type	Size	ROB Savings (kWh/year)	ER Savings (kWh/year)
Object	Standard (≥ 7.75 ft ³)	29	154
Chest	Compact (< 7.75 ft ³)	22	163
llaright	Standard ($\geq 7.75 \text{ ft}^3$)	48	130
Upright	Compact (< 7.75 ft ³)	32	151

³⁷⁴ Department of Energy, Federal Register, 76 Final Rule 57516, Technical Support Document: 8.2.3.1 Estimated Survival Function. September 15, 2011. Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

Deemed Summer Demand Savings Tables

Table 354: ENERGY STAR[®] Freezers Replace-on-burnout Summer Demand Savings (kW) by Freezer Type

		Replace-on-burnout Savings (kW – Summer)				
Freezer Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Chaot	Standard (≥ 7 75 ft ³)	0.004	0.004	0.004	0 004	0.004
Chest	Compact (< 7.75 ft ³)	0 003	0.003	0.003	0 003	0.003
Upright	Standard (≥ 7.75 ft ³)	0.006	0.006	0 006	0.006	0 006
	Compact (< 7.75 ft3)	0.004	0.004	0.004	0.004	0.004

Table 355: ENERGY STAR[®] Freezers Early Retirement Summer Demand Savings (kW) by Freezer Type

		Early-Retirement Savings (kW – Sum					
Freezer Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
	Standard (≥ 7 75 ft ³)	0.020	0.019	0 019	0.019	0.019	
Chest	Compact (< 7 75 ft ³)	0.021	0 020	0 021	0.020	0.020	
11. 2.14	Standard (≥ 7.75 ft ³)	0.017	0.016	0.016	0 016	0.016	
Upright	Compact (< 7 75 ft3)	0 019	0 019	0 019	0 019	0.019	

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on summer peak demand savings and methodology.

Residential: Appliance Recycling ENERGY STAR® Freezers 406 Texas Technical Reference Manual, Vol 2 November 2019

Deemed Winter Demand Savings Tables

Table 356: ENERG	Table 356: ENERGY STAR [®] Freezers Replace-on-burnout Winter Demand Savings (kW) by Freezer Type						
		Replace-on-burnout Savings (kW – Winter)					
Freezer Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso	
Chest	Standard (≥ 7.75 ft ³)	0.003	0.003	0.003	0 003	0 003	
Chest	Compact (< 7.75 ft ³)	0 002	0.002	0.002	0 002	0.002	
Loright	Standard (≥ 7 75 ft ³)	0 005	0.005	0.005	0.005	0 005	
Upright	Compact (< 7.75 ft ³)	0.003	0.003	0.003	0.003	0 003	

Table 357: ENERGY STAR[®] Freezers Early Retirement Winter Demand Savings (kW) by Freezer Type

Early-Retirement Saving					(kW – Winter)	
Freezer Type	Product Class	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
Chaot	Standard (≥ 7.75 ft ³)	0.016	0 017	0 016	0.017	0 017
Chest	Compact (< 7.75 ft ³)	0.017	0.018	0.017	0.018	0.018
l to a shi	Standard (≥ 7 75 ft ³)	0.014	0 014	0 014	0.014	0 014
Upright	Compact (< 7.75 ft3)	0.016	0.017	0 016	0.016	0 017

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on winter peak demand savings and methodology.

Residential. Appliance Recycling ENERGY STAR[®] Freezers 407 Texas Technical Reference Manual, Vol. 2 November 2019

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 22 years based on the current DOE Final Rule standards for residential freezers.³⁷⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

- Climate zone
- Number of units installed
- The project type of the installation (new construction, replace-on-burnout, or early retirement)
- Installed freezer type (upright or chest)
- Installed freezer size (standard, i.e. \geq 7.75 ft³, or compact, i.e. < 7.75 ft³)
- Photograph demonstrating functionality of existing equipment and/or customer responses to survey questionnaire documenting the condition of the replaced unit and their motivation for measure replacement for early retirement eligibility determination (early retirement only)
- The installer will provide documentation of proper disposal of freezers in accordance with applicable federal, state, and local regulations. (early retirement only)

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

³⁷⁵ Final Rule: Standards, Federal Register, 76 FR 57516 (Sept. 15, 2011) and associated Technical Support Document. Accessed 09/03/2019. <u>https://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=48f64e166fe3561666f871e521996e13&mc=true&node=se10.3.430_132&rgn=div8</u>. Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

Relevant Standards and Reference Sources

The applicable version of the ENERGY STAR® specifications and requirements for freezers.

Document Revision History

Table 358: Residential ENERGY STAR® Clothes Dryers Revision History

TRM Version	Date		Description of Change
v7.0	10/2019	TRM v7.0 origin.	

2.5.7 ENERGY STAR[®] Pool Pumps Measure Overview

TRM Measure ID: R-AP-PP

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction, early retirement

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This measure involves the replacement of a single-speed pool pump with an ENERGY STAR[®] certified variable-speed or multi-speed pool pump.

Eligibility Criteria

This measure applies to all residential applications of in-ground pools or above-ground pools. Pools that serve multiple tenants in a common area are not eligible for this measure. Ineligible pump products include waterfall, integral cartridge filter, integral sand filter, storable electric spa, and rigid electric spa³⁷⁶.

Multi-speed pool pumps are an alternative to variable speed pumps. The multi-speed pump uses an induction motor that functions as two motors in one, with full-speed and half-speed options. Multi-speed pumps may enable significant energy savings. However, if the half-speed motor is unable to complete the required water circulation task, the larger motor will operate exclusively. Having only two speed-choices limits the ability of the pump motor to fine-tune the flow rates required for maximum energy savings.³⁷⁷ Therefore, multi-speed pumps must have a high-speed override capability to revert back to low speed after a period not to exceed 24 hours.

³⁷⁶ These product types are excluded by the ENERGY STAR[®] specifications.

³⁷⁷ Hunt, A. and Easley, S., 2012, "Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings." Building America Retrofit Alliance (BARA), U.S. U.S. DOE. May/. <u>http://www.nrel.gov/docs/fy12osti/54242.pdf</u>.

Baseline Condition

The baseline condition is a 1 to 3 horsepower (hp) standard efficiency single-speed pool pump.

High-efficiency Condition

The high-efficiency condition is a 1 to 3 hp ENERGY STAR[®] certified variable speed pump (VSP) or ENERGY STAR[®] certified multi-speed pool pump.

Energy and Demand Savings Methodology

Savings for this measure are based on methods and input assumptions from the ENERGY STAR[®] Pool Pump Savings Calculator. ENERGY STAR[®] has not published updates to the calculator for version 2.0, and therefore, the deemed input assumptions that follow are based on certification version 1.0. This measure will be updated when the ENERGY STAR[®] Pool Pump Savings Calculator is updated to version 2.0.

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR[®] Pool Pump Savings Calculator with Texas selected as the applicable location, so Texas-specific assumptions were used.³⁷⁸

$$kWh_{Savings} = kWh_{conv} - kWh_{ES}$$

Equation 151

Where:

kWh_{conv} = Conventional single-speed pool pump energy (kWh)

kWh_{ES}= ENERGY STAR[®] variable speed pool pump energy (kWh)

Algorithms to calculate the above parameters are defined as:

$$kWh_{conv} = \frac{PFR_{conv} \times 60 \times hours_{conv} \times days}{EF_{conv} \times 1000}$$

Equation 152

$$kWh_{ES} = kWh_{HS} + kWh_{LS}$$

Equation 153

$$kWh_{HS} = \frac{PFR_{HS} \times 60 \times hours_{HS} \times days}{EF_{HS} \times 1000}$$

³⁷⁸ The ENERGY STAR[®] Pool Pump Savings Calculator, updated February 2013, can be found on the ENERGY STAR[®] website at: <u>https://www.energystar.gov/products/certified-products/detail/poolpumps</u>.

Equation 154

$$kWh_{LS} = \frac{PFR_{LS} \times 60 \times hours_{LS} \times days}{EF_{LS} \times 1000}$$

Equation 155

Where:

kWh _{HS}	=	ENERGY STAR [®] variable speed pool pump energy at high speed [kWh]
kWhLs	=	ENERGY STAR [®] variable speed pool pump energy at low speed [kWh]
hoursconv	=	Conventional single-speed pump daily operating hours (Table 359)
hours _{HS}	=	ENERGY STAR [®] variable speed pump high speed daily operating hours (Table 360)
hours _{LS}	=	ENERGY STAR [®] variable speed pump low speed daily operating hours (Table 360)
days	=	Operating days per year = 365 days (default)
PFRconv	=	Conventional single-speed pump flow rate [gal/min] (Table 359)
PFR _{HS}	=	ENERGY STAR [®] variable speed pump high speed flow rate [gal/min] (Table 360)
PFRLS	=	ENERGY STAR [®] variable speed pump low speed flow rate [gal/min] (Table 360)
EFconv	=	Conventional single-speed pump energy factor [gal/W·hr] (Table 359)
EFнs	=	ENERGY STAR [®] variable speed pump high speed energy factor [gal/W·hr] (Table 360)
EF LS	=	ENERGY STAR [®] variable speed pump low speed energy factor [gal/W·hr] (Table 360)
60	=	Constant to convert between minutes and hours
1,000	=	Constant to convert from kilowatts to watts

,

Rated Pump HP (New)	Hours ³⁸⁰ conv	PFR _{conv} (gal/min)	EF _{conv} (gal/W∙h)
≤ 1.25		60.0631	2.3964
1.25 < hp ≤ 1.75		64.3846	2.0885
1.75 < hp ≤ 2.25	9.1062	65.4375	1.9451
2.25 < hp ≤ 2.75		68.4000	1.8805
2.75 < hp ≤ 3		73.1111	1.6453

Table 359: Conventional Pool Pumps Assumptions³⁷⁹

Table 360: ENERGY STAR[®] Pool Pumps Assumptions^{381,382}

Rated Pump HP (New)	Hours	Hourses	PFR _{нs} (gal/min)	EFнs (gal/W·h)	PFR∟s (gal/min)	EF⊾s (gal/W·h)
≤ 1.25			56.0	2.398	31.0	5.407
1.25 < hp ≤ 1.75			61.0	2.267	31.9	5.433
1.75 < hp ≤ 2.25	9.7	4.3	66.4	1.954	33.0	5.221
2.25 < hp ≤ 2.75			66.0	2.024	34.0	4.796
2.75 < hp ≤ 3			74.0	1.617	37.0	4.764

Demand Savings Algorithms

$$kW_{Savings} = \left[\frac{kWh_{conv}}{hours_{conv}} - \left(\frac{kWh_{HS} + kWh_{LS}}{hours_{HS} + hours_{LS}}\right)\right] \times \frac{DF}{days}$$

Equation 156

Where:

kWh_{conv}	=	Conventional single-speed pool pump energy (kWh)
hoursconv	=	Conventional single-speed pump daily operating hours (Table 360)
kWhнs	=	ENERGY STAR [®] variable speed pool pump energy at high speed [kWh]
kWh _L s	=	ENERGY STAR [®] variable speed pool pump energy at low speed [kWh]

³⁷⁹ Conventional pump PFR and EF values are taken from pump curves found in the ENERGY STAR® Pool Pump Savings Calculator.

³⁸⁰ The daily average operating hours for conventional single-speed pumps, based on 2014 residential pool pump program survey results from CenterPoint Energy. ³⁸¹ ENERGY STAR[®] PFR and EF values are taken from pump curves found in the ENERGY STAR[®] Pool

Pump Savings Calculator.

³⁸² The daily average operating hours for low and high VSP settings, based on 2016 residential pool pump program data from CenterPoint Energy.

hours _{HS}	=	ENERGY STAR [®] variable speed pump high speed daily operating hours (Table 360)
hours _{LS}	=	ENERGY STAR [®] variable speed pump low speed daily operating hours (Table 360)
DF	=	Demand Factor (Table 361)
days	=	Operating days per year = 365 days (default)

Climate Zone	Summer DF	Winter DF
1	0.258	-0.002
2	0.329	0.025
3	0.276	0.108
4	0.266	0.036
5	0.497	-0.143

Table 361: Demand Factors

Deemed Energy Savings Tables

Table 362: ENERGY STAR[®] Variable Speed Pool Pump Energy Savings³⁸³

Rated Pump hp (New)	kWh Savings
≤ 1.25	1,581
1.25 < hp ≤ 1.75	2,367
1.75 < hp ≤ 2.25	2,166
2.25 < hp ≤ 2.75	2,677
2.75 < hp ≤ 3	2,902

Deemed Summer Demand Savings Tables³⁸⁴

Table 363: ENERGY STAR® Variable Speed Pool Pump Summer Demand Savings

Rated Pump HP (New)	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
≤ 1.25	0.216	0.275	0.231	0.222	0.415
1.25 < hp ≤ 1.75	0.287	0.365	0.307	0.295	0.552
1.75 < hp ≤ 2.25	0.292	0.371	0.312	0.300	0.562
2.25 < hp ≤ 2.75	0.333	0.423	0.356	0.342	0.640

³⁸³ The results in this table may vary slightly from results produced by the ENERGY STAR[®] calculator because of rounding of default savings coefficients throughout the measure and pool volume.
 ³⁸⁴ Ibid.

Rated Pump HP (New)	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
2.75 < hp ≤ 3	0.388	0.493	0.414	0.399	0.746

Deemed Winter Demand Savings Tables

Table 364: ENERGY STAR® Variable Speed Pool Pump Winter Demand Savings

Rated Pump HP (New)	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
≤ 1.25	-0.001	0.021	0.091	0.030	(0.119)
1.25 < hp ≤ 1.75	-0.002	0.028	0.120	0.040	(0.159)
1.75 < hp ≤ 2.25	-0.002	0.028	0.122	0.040	(0.161)
2.25 < hp ≤ 2.75	-0.002	0.032	0.140	0.046	(0.184)
2.75 < hp ≤ 3	-0.002	0.037	0.163	0.054	(0.214)

Claimed Peak Demand Savings

 Table 365: ENERGY STAR[®] Variable Speed Pool Pump Claimed Demand Savings

Rated Pump HP (New)	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
≤ 1.25	0.216	0.275	0.231	0.222	0.415
1.25 < hp ≤ 1.75	0.287	0.365	0.307	0.295	0.552
1.75 < hp ≤ 2.25	0.292	0.371	0.312	0.300	0.562
2.25 < hp ≤ 2.75	0.333	0.423	0.356	0.342	0.640
2.75 < hp ≤ 3	0.388	0.493	0.414	0.399	0.746

Additional Calculators and Tools

ENERGY STAR[®] Pool Pump Savings Calculator, updated February 2013, can be found on the ENERGY STAR[®] website at <u>https://www.energystar.gov/products/certified-products/detail/pool-pumps</u>.

Measure Life and Lifetime Savings

According to DEER 2014, the estimated useful life for this measure is 10 years.³⁸⁵

Program Tracking Data and Evaluation Requirements

Primary inputs and contextual data that should be specified and tracked by the program database to inform the evaluation and apply the savings properly are:

³⁸⁵ Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

For all projects

- Rated horsepower of new pool pump
- Climate zone
- Proof of purchase with date of purchase and quantity
 - Alternative: photo of unit installed or other pre-approved method of installation verification
- Make and model information

For a significant sample of projects where attainable (e.g., those projects that are selected for inspection, not midstream or retail programs):

- Items listed for all projects above
- Decision/action type: early retirement, replace-on-burnout, or new construction
- Rated horsepower of existing pool pump
- Existing and new pool pump operating hours

References and Efficiency Standards

Petitions and Rulings

This section is not applicable.

Relevant Standards and Reference Sources

- The applicable version of the ENERGY STAR® specifications and requirements for pool pumps.
- Document Revision History

Table 366: Residential ENERGY STAR[®] Pool Pumps Revision History

TRM Version	Date	Description of Change
v5.0	10/2017	TRM v5.0 origin.
v6.0	11/2018	TRM v6.0 update. No revision.
v7.0	10/2019	TRM v7.0 update. Updated eligibility to include above ground pool pumps now eligible for ENERGY STAR [®] certification. Acknowledged the forthcoming ENERGY STAR [®] version 2.0.

2.5.8 ENERGY STAR[®] Air Purifiers Measure Overview

TRM Measure ID: R-AP-AP

Market Sector: Residential

Measure Category: Appliances

Applicable Building Types: Single-family, duplex, and triplex; multifamily; manufactured

Fuels Affected: Electricity

Decision/Action Type(s): Replace-on-burnout, new construction

Program Delivery Type(s): Prescriptive

Deemed Savings Type: Look-up tables

Savings Methodology: Engineering algorithms and estimates

Measure Description

This document presents the accepted deemed savings awarded for the installation of an ENERGY STAR[®] air purifier. Savings are awarded at a flat per-unit rate, both for energy and demand savings. This measure will apply to existing homes and new construction.

Eligibility Criteria

This measure applies to floor, tabletop, and wall-mounted air purifiers/room air cleaners.

Baseline Condition

The baseline condition is defined as 1.0 cfm/W for a conventional air purifier unit's efficiency, a value from EPA research conducted in 2011, as cited in the ENERGY STAR[®] Appliance Savings Calculator³⁸⁶.

High-efficiency Condition

The following table displays the ENERGY STAR[®] Final Version 1.2 requirements for eligible air purifiers effective July 1, 2004.³⁸⁷ These values are subject to updates in ENERGY STAR[®]

³⁸⁶ ENERGY STAR[®] Appliance Savings Calculator (updated October 2016). <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products.</u>

³⁸⁷ Available for download at: <u>https://www.energystar.gov/ia/partners/prod_development/revisions/downloads/room_aircleaners/Room_airclea</u>

specifications; energy efficiency service providers are expected to comply with the latest ENERGY STAR[®] requirements.

Product Type	Clean Air Delivery Rate (CADR)	Minimum Performance Requirement	Standby Power Requirement	Ozone Production
Air Purifiers or Room Air Cleaners	≥ 50 cu ft/min	2.0 cfm/watt	2.0 W	≤ 50 ppb

Table 367 ENERGY STAR® Specifications for Air Purifiers

Energy and Demand Savings Methodology

Savings Algorithms and Input Variables

Energy Savings Algorithms

Energy savings for this measure were derived using the ENERGY STAR® Appliance Savings Calculator and the revised ENERGY STAR® specification in Table 333.³⁸⁸ Default values were taken directly from the ENERGY STAR® calculator. This document will be updated regularly to apply the values provided in the latest available ENERGY STAR® specification and appliance calculator. The most recent TRM version should be referenced to determine measure savings for this measure.

$$kWh_{savings} = (kWh_{baseline,OP} + kWh_{baseline,SB}) - (kWh_{ES,OP} + kWh_{ES,SB})$$

Equation 157

$$kWh_{baseline,OP} = \left(\frac{CADR_{baseline}}{Eff_{baseline}}\right) / 1000 \times Hours_{OP} \times Days_{OP}$$

Equation 158

$$kWh_{baseline,SB} = (8760 - Hours_{OP} \times Days_{OP}) \times W_{baseline,SB}/1000$$

Equation 159

$$kWh_{ES,OP} = \left(\frac{CADR_{ES}}{Eff_{ES}}\right) / 1000 \times Hours_{OP} \times Days_{OP}$$

Equation 160

Equation 161

kWhES,*SB***= 8760**-*HoursOP*×*DaysOP*×*WES*,*SB*/1000

Where:

Quantitative definitions of product criteria: <u>https://www.energystar.gov/products/appliances/air_purifiers_cleaners/key_product_criteria</u> ³⁸⁸ ENERGY STAR[®] Appliance Savings Calculator (updated October 2016).

https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/saveenergy/purchase-energy-saving-products.

kWh _{baseline,OF}	, =	Baseline/conventional operating energy usage
kWh _{baseline,SB}	, =	Baseline/conventional standby energy usage
kWh _{ES,OP}	=	ENERGY STAR [®] average operating energy usage
kWh _{ES,SB}	=	ENERGY STAR [®] average standby energy usage
$CADR_{baseline}$	=	Baseline unit clean air delivery rate (cu ft/min)
CADR _{ES}	=	ENERGY STAR [®] unit clean air delivery rate (cu ft/min)
$Eff_{baseline}$	=	Baseline clean air delivery efficiency = 1.0 cfm/watt
Eff _{ES}	=	ENERGY STAR [®] air delivery efficiency = 3.0 cfm/watt
Hours _{OP}	=	Average hours of operation per day = 16
Days _{OP}	=	Average days of operation per year = 365
$W_{baseline,SB}$	=	Conventional model standby power = 1.0 watt
W _{ES,SB}	-	ENERGY STAR [®] model standby power = 0.6 watts
8760	=	Total hours per year

Demand Savings Algorithms

$$kW_{savings} = \frac{kWh_{savings}}{Hours_{OP} \times Days_{OP}} \times CF$$

Equation 162

Where:

Hours _{OP}	=	Average hours of operation per day = 16
Days _{OP}	=	Average days of operation per year = 365
CF	=	<i>Coincidence factor</i> = (Table 368)

Season	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso		
Summer	0.636	0.617	0.631	0.620	0.564		
Winter	0.882	0.907	0.829	0.876	0.926		

Table 368: ENERGY STAR® Air Purifiers Coincidence Factors³⁸⁹

Deemed Energy Savings Tables

Table 369: ENERGY STAR[®] Air Purifiers Energy Savings (kWh)

ENERGY STAR [®] Air Purifiers—Energy Savings (kWh)						
Dust CADR Range (cu ft/min)	Dust CADR Midpoint	Energy Savings				
51-100	75	293				
101-150	125	488				
151-200	175	683				
201-250	225	877				
> 250	275	1,072				

³⁸⁹ See Volume 1, Appendix B.

Deemed Summer Demand Savings Tables

·							
	ENERGY STAR [®] Air Purifiers — Summer Demand Savings (kW)						
CADR Range (cu ft/min)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso		
51-100	0.03	0.03	0.03	0.03	0.03		
101-150	0.05	0.05	0.05	0.05	0.05		
151-200	0.07	0.07	0.07	0.07	0.07		
201-250	0.10	0.09	0.09	0.09	0.08		
> 250	0.12	0.11	0.12	0.11	0.10		

Table 370: ENERGY STAR[®] Air Purifiers Summer Peak Demand Savings (kW)

Deemed Winter Demand Savings Tables

Table 371: ENERGY STAR[®] Air Purifiers Winter Peak Demand Savings (kW)

ENERGY STAR [®] Air Purifiers — Winter Demand Savings (kW)					
CADR Range (cu ft/min)	Climate Zone 1: Amarillo	Climate Zone 2: Dallas	Climate Zone 3: Houston	Climate Zone 4: Corpus Christi	Climate Zone 5: El Paso
51-100	0.04	0.05	0.04	0.04	0.05
101-150	0.07	0.08	0.07	0.07	0.08
151-200	0.10	0.11	0.10	0.10	0.11
201-250	0.13	0.14	0.12	0.13	0.14
> 250	0.16	0.17	0.15	0.16	0.17

Claimed Peak Demand Savings

Refer to Volume 1, Appendix B: Peak Demand Reduction Documentation for further details on peak demand savings and methodology.

Additional Calculators and Tools

This section is not applicable.

Measure Life and Lifetime Savings

The estimated useful life (EUL) is established at 9 years; a figure cited as obtained from the Appliance Magazine's Portrait of the U.S. Appliance Industry, 1998 on the ENERGY STAR[®] Appliance Savings Calculator³⁹⁰.

³⁹⁰ ENERGY STAR[®] Appliance Savings Calculator (updated October 2016). <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products</u>.