

#### **Filing Receipt**

Filing Date - 2024-10-17 06:24:17 PM

Control Number - 38578

Item Number - 141

Public Utility Commission of Texas Energy Efficiency Implementation Project (EEIP) Fall Meeting



## Texas A&M – ERCOT Partnership on Demand Response and Energy Efficiency

Graduate Students: Dongjoo Kim, Arun Karngala, and Sienna Shi (now with ERCOT)

Le Xie, Fellow of IEEE,

Adjunct Professor, Electrical & Computer Engineering, Texas A&M University

Gordon McKay Professor of Electrical Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences

Email: le.xie@tamu.edu

10/15/2024



#### Introduction

© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu.



### Timeline of Interactions



### Energy Efficiency and Demand Response: An Illustration









## **Executive Summary**



ĀМ

#### DR from A/C in Residential Sector with Smart-Thermostat

- Peak Shifting from Proactive EV Charging
- Large-Flexible-Loads as a DR Resources



- High-Efficiency Heat Pump
- Electrification
- R.
  - Legislating Energy Efficiency Retrofits
  - Increasing Market Size (Incentives, Rebates)
  - Reforming Market (4 Net-CP, 6CP)
  - TDU Energy Efficiency Programs
  - Educating & Encouraging Customers

Key Takeaways



|          |                                             | Potential<br>Peak<br>Reduction<br>[GW] | Firm?                      | Easy to<br>Install?   | Reforming<br>Policy<br>Required? | Customer<br>Fatigue?         | Cost<br>Competitive<br>(CAPEX) |
|----------|---------------------------------------------|----------------------------------------|----------------------------|-----------------------|----------------------------------|------------------------------|--------------------------------|
| OLOGY    | (Energy Efficiency Retrofit)<br>Heat Pump   | ≊i1.1\$                                |                            |                       |                                  |                              |                                |
| TECHN    | (Demand Response)<br><b>Residential A/C</b> | ≅ 3.5                                  |                            |                       |                                  |                              |                                |
| CRITERIA |                                             | □ : High<br>: Low                      | : Permanent<br>: Temporary | □ : Easy<br>: Complex | □ : Trivial<br>: Substantial     | □ : Trivial<br>: Substantial | □ : Highly<br>: Slightly       |

6



## Programs Analyzed (Energy Efficiency)



Savings (GW)

## Residential Energy Efficiency

|                               | Summer Peak Demand Savings (GW) |      |      |       |      |           | Winter Peak Demand Savings (GW) |       |       |       |         |       |        |       |       |           |        |       |       |       |      |
|-------------------------------|---------------------------------|------|------|-------|------|-----------|---------------------------------|-------|-------|-------|---------|-------|--------|-------|-------|-----------|--------|-------|-------|-------|------|
| single-family_detached        | 5.99                            | 6.42 | 1.15 | 9.02  | 1.36 | 0.52      | 0.71                            | 10.23 | 13.57 | 13.64 | - 10.16 | 11.04 | -10.14 | 7.25  | 9.50  | -0.17     | -21.81 | 7.95  | 14.65 | 15.13 | - 20 |
| single-family_attached        | - 0.15                          | 0.16 | 0.04 | 0.22  | 0.04 | 0.02      | 0.01                            | 0.24  | 0.33  | 0.33  | - 0.42  | 0.45  | 0.19   | 0.60  | 0.41  | 0.01      | -0.25  | 0.62  | 0.80  | 0.81  | - 10 |
| multi-family_with_24_units    | - 0.13                          | 0.16 | 0.05 | 0.29  | 0.05 | 0.04      | 0.00                            | 0.35  | 0.44  | 0.47  | - 0.45  | 0.52  | 0.39   | 0.91  | 0.55  | 0.01      | -0.20  | 0.94  | 1.18  | 1.22  |      |
| mobile_home                   | - 0.42                          | 0.42 | 0.04 | 0.62  | 0.04 | 0.08      | 0.01                            | 0.73  | 0.94  | 0.94  | - 1.05  | 1.05  | 1.20   | 2.37  | 1.58  | 0.04      | -0.44  | 2.42  | 2.78  | 2.78  | - 0  |
| multi-family_with_5plus_units | - 0.36                          | 0.48 | 0.21 | 1.01  | 0.19 | 0.18      | 0.02                            | 1.24  | 1.47  | 1.56  | - 1.27  | 1.49  | 1.47   | 2.83  | 1.63  | 0.04      | -0.29  | 2.96  | 3.62  | 3.72  | 10   |
| Total                         | - 7.04                          | 7.64 | 1.48 | 11.15 | 1.68 | 0.84      | 0.75                            | 12.79 | 16.75 | 16.95 | -13.35  | 14.55 | -6.90  | 13.96 | 13.66 | -0.08     | -22.99 | 14.89 | 23.04 | 23.66 | 20   |
|                               | 1                               | ż    | 3    | 4     | 5    | 6<br>rade | 7                               | 8     | ģ     | 10    | i       | 2     | ŝ      | 4     | 5     | 6<br>rade | 7      | 8     | 9     | 10    |      |

| 1. Basic Enclosure                             | 2. Enhanced Enclosure                             | 3. HP min Efficiency, Electric backup |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------|---------------------------------------|--|--|--|--|--|
| 4. HP high efficiency, Electric backup         | 5. HP min efficiency, Existing heat backup        | 6. HP water heaters                   |  |  |  |  |  |
| 7. Whole home electrification – min efficiency | 8: Whole-Home Electrification, High<br>Efficiency | 9: upgrade 1+8                        |  |  |  |  |  |
| 10: upgrade 2 + 8                              |                                                   |                                       |  |  |  |  |  |

[10] EUSS ResRound1 Technical Documentation.pdf (oedi-data-lake.s3.amazonaws.com)

© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu

## Summer Peak Day 2018

1.

2.

3.

7.



**Basic enclosure** Summer Peak Demand in ERCOT VS Summer Peak Demand after Upgrades 75000 Enhanced enclosure **Baseline Load** HP minimum Upgrade 1 efficiency, electric 70000 Upgrade 2 backup Upgrade 3 4. HP high efficiency, 65000 Upgrade 4 electric backup Upgrade 5 5. HP minimum Upgrade 6 60000 Load (MW) efficiency, existing Upgrade 7 heat as backup Upgrade 8 55000 6. HP water heaters Upgrade 9 Whole home Upgrade 10 electrification, 50000 minimum efficiency Whole home 8. 45000 electrification, high efficiency 40000 Upgrade 1+8 9. 10. Upgrade 2+8 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 19-Jul

## Winter Peak Day 2018

1.

2.

3.

5.

7.

8.

9.



**Basic enclosure** Winter Peak Demand in ERCOT VS Winter Peak Demand after Upgrades Enhanced enclosure **Baseline Load** HP minimum Upgrade 1 efficiency, electric Upgrade 2 backup 80000 Upgrade 3 4. HP high efficiency, Upgrade 4 electric backup Upgrade 5 HP minimum Upgrade 6 70000 -oad (MW) efficiency, existing Upgrade 7 heat as backup Upgrade 8 6. HP water heaters Upgrade 9 Whole home 60000 Upgrade 10 electrification, minimum efficiency Whole home 50000 electrification, high efficiency Upgrade 1+8 40000 10. Upgrade 2+8 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 17-Jan

## Summer Peak Day 2023 - estimated



- 1. Basic enclosure
- 2. Enhanced enclosure
- HP minimum efficiency, electric backup
- 4. HP high efficiency, electric backup
- 5. HP minimum efficiency, existing heat as backup
- 6. HP water heaters
- Whole home electrification, minimum efficiency
- 8. Whole home electrification, high efficiency
- 9. Upgrade 1+8
- 10. Upgrade 2+8



<u> 11.</u>

## Winter Peak Day 2023 - estimated



- 1. Basic enclosure
- 2. Enhanced enclosure
- HP minimum efficiency, electric backup
- HP high efficiency, electric backup
- 5. HP minimum efficiency, existing heat as backup
- 6. HP water heaters
- Whole home electrification, minimum efficiency
- Whole home electrification, high efficiency
- 9. Upgrade 1+8
- 10. Upgrade 2+8



## Heat Pumps



#### Not all Heat Pumps are the same

| Heat Pump | Туре                                                      | Summer (GW)        | Winter (GW)        |
|-----------|-----------------------------------------------------------|--------------------|--------------------|
|           | Min Efficiency, Electric backup                           | 1.48               | -6.90              |
|           | Min Efficiency, Existing Heat as backup                   | 1.68               | 13.66              |
|           | High Efficiency, Electric backup<br>(SEER* 24, HSPF** 13) | <mark>11.15</mark> | <mark>13.96</mark> |

Max peak demand savings potential of heat pumps

SEER\*: Seasonal Energy Efficiency Rating HSPF\*\*: Heating Seasonal Performance Factor

## **High Efficiency Heat Pumps**

[11] Efficiency requirements for residential central AC and heat pumps to rise in 2023 - U.S. Energy Information Administration (EIA)

© 2024 Le Xie, All Rights Reserved. le.xie@tamu.edu



## Impact on winter peak load



© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu.



© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu



## A practical approach

Fuel type

Savings for units with electric fuel



Units with electricity as fuel for cooling and heating needs

© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu



## Programs Analyzed (Demand Response with Residential A/C)

## ERCOT Demand Response Program Overview



© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu.



## Smart Thermostat Incentive Programs



| Repres    | entative   | Austin Energy                                                                                                       | CPS Energy                                                                   |  |  |  |  |
|-----------|------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Prov      | ⁄iders     | (Austin)                                                                                                            | (San Antonio)                                                                |  |  |  |  |
| Name of   | Program    | Power Partner <sup>[2]</sup>                                                                                        | WiFi Thermostat Rewards [3]                                                  |  |  |  |  |
| Adjus     | stment     | <ul> <li>~ 4°F adjustment</li> <li>~ 3 hours (3 ~ 6 pm), Jun - Sep</li> <li>~ 3 times/week, ~ 25 times/yr</li></ul> | Summer : ~ 4 hours (3 ~ 7pm)                                                 |  |  |  |  |
| Per       | riod       | (in extreme weather, ~ 5 times/week)                                                                                | Winter : ~ 4 hours (6 ~ 10am)                                                |  |  |  |  |
| Incentive | Program    | <ul> <li>\$50 bill credit/enrolled</li></ul>                                                                        | <ul> <li>Annual incentives of \$30</li> <li>Winter WiFi Thermostat</li></ul> |  |  |  |  |
|           | Enrollment | (already have Smart-thermostat) <li>Annual incentives of \$25</li>                                                  | Rewards: +\$20 bill credit                                                   |  |  |  |  |
|           | Device     | <ul> <li>\$30 rebate for buying &amp; installing smart-thermostat</li> </ul>                                        | • \$85 bill credit for each thermostat                                       |  |  |  |  |

[2] Power Partner<sup>SM</sup> Thermostats, Rebates & Incentives, Austin Energy
 [3] WiFi Thermostat Rewards, CPS Energy

© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu

## An example of Residential A/C for Peak Reduction

| Time<br>of Day | June     | June July August |          |          | Summer<br>Average |  |  |
|----------------|----------|------------------|----------|----------|-------------------|--|--|
|                | 21212    |                  |          |          |                   |  |  |
| 15             | 0.44 kWh | 0.52 kWh         | 0.45 kWh | 0.34 kWh | 0.44 kWh          |  |  |
| 16             | 0.50 kWh | 0.58 kWh         | 0.51 kWh | 0.39 kWh | 0.49 kWh          |  |  |
| 17             | 0.55 kWh | 0.62 kWh         | 0.56 kWh | 0.41 kWh | 0.54 kWh          |  |  |
| 18             | 0.58 kWh | 0.65 kWh         | 0.57 kWh | 0.37 kWh | 0.54 kWh          |  |  |
| 19             | 0.59 kWh | 0.65 kWh         | 0.58 kWh | 0.38 kWh | 0.55 kWh          |  |  |
|                |          |                  | 5-5-5    |          |                   |  |  |

#### Energy savings per thermostat

- Data extracted from over 5,500 smart thermostats participating in DR events during summer, 2022 <sup>[4]</sup>
- o (Key Message) Energy savings vary by month and time of day
  - · The energy savings are greater during peak hours than other times of the day

[4] CenterPoint Energy 2022 Demand Response Impact Evaluation, Final Report (March 8, 2023)

© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu



## A M

## Peak Reduction with Residential A/C

□ Number of Smart Thermostat Installation in Texan Housing Units : 1.88 mil. <sup>[5-7, Appendix]</sup>

- Approximately, 20% of entire Texas's households with central A/C [Appendix]

□ Proportion of customers willing to engage in Demand Response : 76% [8]



© 2024 Le Xie, All Rights Reserved. <u>le.xie@tamu.edu</u>





[7] Household Energy Use in Texas

[8] Cooling High Summer Electric Bills Survey



## 2023 All-Time Peak : 85,464 MW



90,000 795 MW 1,988 MW 3,976 MW 85,000 ₩ 80,000 System Load [MW] 75,000 70,000 65,000 -System Load 60,000 ---- DR with Smart Thermostats Current Level (20%) 55,000 --- DR with Smart Thermostats Mid Level (50%) 50,000 ..... DR with Smart Thermostats Extreme Level (100%) 45,000 40,000 14 15 16 17 18 19 20 21 22 23 24 2 8 12 13 3 7 9 10 11 1 5 6 Hour

August 10, 2023

© 2024 Le Xie, All Rights Reserved. le.xie@tamu.edu

## Social Program as Incentive



#### □ Octopus Energy offers HAPPY HOUR [9]

• Octopus Energy hosts happy hours during peak hours to customers who set their thermostats to 80 degrees



[9] https://octopus.energy/blog/results-big-dirty-turn-down-trial-paid-off-peak-energy/

© 2024 Le Xie, All Rights Reserved. le xie@tamu.edu



# Potential Policy Recommendations

## Potential Policy Recommendations

- □ Legislating Energy Efficiency Retrofits
- □ Increasing the Demand Response Market Size
  - o Improving Communications for end-user's participations in ADER Projects
  - REPs need to strengthen demand response program in residential sectors
  - Strengthen incentives for continued enrollment (including counterfactual penalties)
- □ Reforming the Energy Market
  - o 4CP to 4 Net-CP, 4CP to 6CP
  - $\circ$   $\,$  Valuing capacity on the demand side
- □ Educating & Encouraging Customers
  - Educating consumers about the importance of energy conservation



## References



- [1] 2023 Annual Report of Demand Response in the ERCOT Region
- [2] Power Partner<sup>SM</sup> Thermostats, Rebates & Incentives, Austin Energy
- [3] WiFi Thermostat Rewards, CPS Energy
- [4] CenterPoint Energy 2022 Demand Response Impact Evaluation, Final Report (March 8, 2023)
- [5] https://www.census.gov/quickfacts/fact/table/TX/EDU685222
- [6] 2020 Residential Energy Consumption Survey
- [7] Household Energy Use in Texas
- [8] Cooling High Summer Electric Bills Survey
- [9] https://octopus.enerresults-big-dirty-turn-down-trial-paid-off-peak-energy/gy/blog/
- [10] EUSS\_ResRound1\_Technical\_Documentation.pdf (oedi-data-lake.s3.amazonaws.com)
- [11] Efficiency requirements for residential central AC and heat pumps to rise in 2023 U.S. Energy Information Administration (EIA)