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Abstract 

The energy sector relies on analytical results to inform decision-making—from policy to investment. Over the last decade 
the United States has undergone a "revolution" in its energy landscape, due primarily to natural gas production from shale 
plays, as well as other factors. Despite the enormity of this change, it was hardly, or not at all, predicted or projected by fore-
casters, analysts, or industry experts even a year or two before its emergence. We consider what the projections looked like, 
how changeable they still remain, and implications for refining the interaction between analysis and decision-making in the 
energy sector. More broadly, we use the shale gas boom to illuminate the more universal challenges that energy forecasters 
face—and the solutions they employ—in managing and explaining two significant types of uncertainty: epistemic (unknown 
unknowns) and stochastic (known unknowns). Epistemic and stochastic uncertainties affect both the production of forecasts 
as abstractions of reality and our meta-considerations of how accurately such abstractions represent reality. Compounding 
these difficulties, these two domains of prediction—the world of the model and the world the model attempts to simulate—
are often unconsciously confused or conflated, especially by the consumers of energy forecasts who do not themselves deal 
directly with forecast intricacies: industry analysts, scientists, advocates, and policymakers, among others. We thus attempt 
to elucidate a simple typology of energy forecast uncertainties and delineate the domains of prediction for decision-makers 
in the private, public, and research sectors who may benefit from a better understanding of how modelers themselves concep-
tualize and manage uncertainty. We conclude with a call for new and innovative discourse modes for discussing uncertainty 
in energy forecasting, both within the modeling community itself and in its engagements with decision-makers. 
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Energy systems have been marked by disruptive events that 
changed the contours of the system and the markets that 
developed around them: light bulbs overtaking gas lighting 
in the 1890s, George Westinghouse's victory over Thomas 
Edison in the war of the currents, the New Deal's rapid 
development of federally funded hydropower to provide 
electricity in rural areas, the oil embargo of 1973, restruc-
turing and liberalization of gas and electricity markets in the 
late twentieth century, the unconventional gas boom of the 
early twenty-first century, and the recent remarkable declines 
in generation costs from solar and wind are just a few exam-
ples of such disruptive events. 
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As an old Danish proverb' warns, prediction is very dif-
ficult, especially about the future. Disruptive events, which 
change the course of how the future unfolds, are often unex-
pected and are seldom forecasted. Though formal and rigor-
ous modeling and forecasting of the energy sector did not 
emerge until the 1970s, we can already examine numerous 
examples of how challenging it is to forecast the develop-
ment of socio-technical systems that are complex, sensitive 
to exogenous factors, and subject to peculiar, historically 
contingent regulatory and market structures. In this paper 
we explore the difficulties of forecasting in the presence of 
disruptive events by studying the US shale gas "revolution" 
that rapidly transformed the US energy map and policy land-
scape in a few short years, and has raised new uncertainties 
and complexities in the international geopolitics of energy 
production as traditional oil-producing states respond to new 
sources of supply in both gas and oil. As is seen in energy 
forecasts before, during, and after the fact, the boom in shale 
gas production was largely unpredicted by forecasters, com-
mentators, companies, or other experts in the energy sector, 
regardless of whether they might have conceptualized shale 
gas as an opportunity, a threat, or something more compli-
cated. Indeed, while many were tangentially aware of the 
potential of shale gas development, it remained an abstract 
potentiality that resisted quantification—and thus also 
tended to resist serious consideration. Also unexpected were 
the subsequent sectoral realignments in resource extraction, 
chemicals, electric power production, and other industries 
around the newfound abundance of gas. 

The intent of this analysis is to highlight possible les-
sons learned from this particular event in time, not to cas-
tigate the efforts of the energy modeling community, many 
of whom are well-versed in the topics discussed here. For 
decades, both the US Energy Information Administration 
(EIA) and International Energy Agency (IEA) have pro-
vided credible analyses of energy trends, historically from 
the perspective of energy-consuming states. On the supply 
side, the Organization of the Petroleum Exporting Countries 
(OPEC) has also developed robust analytical and forecast-
ing outputs that are critical to the economies that rely on 
energy exports. Obviously, energy geopolitics directs mas-
sive flows of capital and activity, and energy-producing and 
energy-consuming states alike expend enormous resources 
to develop forecasts and data that aim to be accurate and 
germane to the needs of their respective economies. But the 
necessary abstractions to those ends and the inability of any-
one—regardless of their expertise—to accurately predict the 
future are not always recognized by the general public. Thus 

1  Ironically, the past is nearly as uncertain as the future, and the pre-
diction proverb is variably attributed to physicist Niels Bohr, movie 
mogul Sam Goldwyn, Nostradamus, Mark Twain, and Yogi Berra [1]. 
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our aim here is focused on informing decision-makers—
industry analysts, policymakers and policy thought leaders, 
advocates, and the broader scientific community—who do 
not generally deal with the internal mechanics of models, but 
nevertheless rely on them. Our hope is that by discerning the 
difference between what we thought would happen—given 
the realization of certain key assumptions—and what actu-
ally did happen, we can begin to improve the manner in 
which forecasters communicate uncertainties to decision-
makers and the manner in which decision-makers under-
stand and use long-term energy forecasts. 

We explore two challenges to forecasting complex sys-
tems which can lead to large forecast errors. Though not 
an exhaustive list, these two challenges lead to a significant 
fraction of large forecast errors and are of central impor-
tance to energy system modeling. The first challenge is that 
in complex systems, there are more variables than can be 
considered. Often described as epistemic uncertainty, these 
un-modeled variables—the unknown unknowns—can lead 
to reality diverging dramatically from forecasts. The second 
challenge in forecasting complex systems is from the inher-
ently nonlinear nature of many such systems. This results 
in a compounding of stochastic uncertainties—the known 
unknowns—which in turn can result in real-world outcomes 
that deviate significantly from forecasts.2 

Large forecast errors due to epistemic uncertainty are 
often referred to as "black swan" events.3  As one cannot 
reject the existence of a black swan from only seeing white 
swans; one cannot neglect the possibility of a large disrup-
tive event in the future just because of an absence of a dis-
ruptive event at present. Here we further analogize large 
forecast errors due to compounded stochastic uncertainties 
as "dying swan" events, the notion being that small devia-
tions in the health of a swan can compound to result in a 
large deviation of whether the swan lives (see "Black swans 
and dying swans"). 

Both epistemic and stochastic uncertainty—black swans 
and dying swans—are present in the case of the US shale 
gas revolution. Understanding what happened, and how fore-
casts deviated from eventual reality, through the lens of epis-
temic uncertainties and compounded stochastic uncertainties 
allows us to better see where the uncertainties inherent in 

2  Epistemic uncertainty is defined as "uncertainty derived from a 
lack of knowledge about a quantity that is assumed to have a fixed, 
but poorly known, value in the context of a particular analysis," and 
stochastic uncertainty (also referred to as "aleatory uncertainty") is 
defined as "inherent randomness in the behavior of the system under 
study" [3]. 

3  While all black swan events represent epistemic uncertainties, 
not all epistemic uncertainties take the form of black swans. Thus 
we focus here on black swan events as representations of epistemic 
uncertainty, but not exhaustive ones. 
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Fig. 1 Changes in AEO projections for US shale gas production 
2008-2018 (Adapted from AEO data) 

forecasting lie. This in turn can help inform investors and 
policymakers as to when and how forecasts may fail to pro-
vide accurate predictions. We first provide an overview of 
the US shale gas revolution and describe the large forecast 
errors during this period ("A (hydraulically) fractured crystal 
ball"). We next discuss how epistemic and stochastic uncer-
tainties resulted in these forecast errors ("Black swans and 
dying swans" and "Statistical and epistemic uncertainty in 
the shale gas revolution"). We then describe ways to account 
for each type of uncertainty ("Forecast errors and modeler 
apologetics in context" and "Incorporating uncertainty in 
energy forecasts"). We conclude by discussing the import of 
our analysis for forecasts and decision-making in the natural 
gas sector and beyond ("Conclusions"). 

A (hydraulically) fractured crystal ball 

In this section we examine the ways in which prominent 
energy forecasts for natural gas deviated from the future 
that was ultimately realized in the past decade. We focus on 
predictions from the EIA, the primary US agency respon-
sible for the collection and analysis of energy data, due to 
its prominence, well-respected reputation within the energy 
modeling community, and global coverage. EIA's results 
are also generally well aligned with the modeling efforts 
of private companies and academic analytics. Other nota-
ble examples of missed forecasts—and their reasons—are 
explored in Mai et al. [2]. 

In its Annual Energy Outlook (AEO) for 2008 [4], the 
EIA predicted that shale gas would supply approximately 2.2 
Tcf annually in 2030. Actual production rapidly outpaced 
the EIA's growth predictions. Figure 1 shows the dramatic 
revisions made by the EIA in subsequent years to come to 
grips with the reality of the shale gas revolution. By 2013 
[5], EIA's estimate for shale gas production in 2030 had 

Fig. 2 Dry shale gas production estimates by play through May 2019 
[10] 

increased by 535% to 14.2 Tcf, and by 2018 [6] the estimate 
increased an additional 90% to 26.9 Tcf. 

As early as 2004 [7], there was some acknowledgement 
by EIA of the large potential role of unconventionals—
though this was largely related to production from coal bed 
methane and tight gas. Shale, even then, was seen as a fairly 
minor contributor. The 2004 forecasts for 2015 of 1024 Bcf 
were roughly an order of magnitude off from the more than 
15,000 Bcf of shale gas actually produced in 2015. Other 
forecast organizations were similarly caught off guard. Four 
years later, even as US shale gas production was starting to 
accelerate, IEA's World Energy Outlook 2008 (which did 
not separate shale gas from conventional gas development) 
forecasted a negative 0.1% average annual growth rate in US 
natural gas production overall from 2006 to 2030 in its refer-
ence scenario [8]. In fact, the realized average annual growth 
rate from 2006 to 2019 was 5.7%, and US gas production 
overall has grown 69% since 2006 [9]. 

A closer look at the individual shale plays gives a more 
detailed view of the nonlinear growth since 2008 (Fig. 2). 
Shale gas has not only emerged as the largest source of gas in 
the US, but has arrested a decline in overall gas production 
that had seemed all but certain. The implications of the shale 
gas revolution are apparent in North America: local land 
use conflicts, debate regarding the environmental impact 
and "true" life-cycle greenhouse gas emissions associated 
with shale gas [11-13], and a dramatic increase in electricity 
generated with natural gas, which climbed from 13% of total 
generation in 2001 to more than 35% in 2018 [14]. 

Finally, the potential exposure of the US economy to 
declining levels of natural gas production and growing reli-
ance on imports in 2005 forecasts cannot be overemphasized 
(Fig. 3). In that year, forecasts expected net imports to climb 
to 9 Tcf annually in 2025, while 10 years later, the US was 
expected to be a net exporter of 4 Tcf by 2025, a difference 
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Fig. 3 Estimates of natural gas imports and exports in 2005 and 2015 forecasts [15] 

of 13 Tcf. In addition to the geopolitical differences of this 
shifting trade outcome, the economic impacts would have 
been significant: at a price of $5 per 1000 cubic feet, this 
13 Tcf would have had a value of $650 billion annually. 

How could major energy forecasts have missed such a 
momentous development? The answer is a timely reminder 
of an epistemological truth about forecasting and its role in 
policy development and investment decisions. This truth, 
oft-repeated by forecasters themselves and oft-forgotten by 
their audience, is a modern Cassandra myth, but in reverse.4 
Energy forecasters cannot in fact tell the future, but every-
one believes that they can. Forecasting—the extrapolation 
of potential future conditions from assumptions about pre-
sent conditions and their causes—can become confused with 
foresight, a presumed actual knowledge of the future that 
may only be confirmed after the fact. But when the realized 
world diverges from the prediction so dramatically, the dis-
tinction becomes apparent and, in hindsight, obvious. 

What is perhaps most interesting about the ETA's inability 
to accurately forecast the pace and volume of the shale gas 
revolution is that in previous years, it clearly understood 
the tremendous potential energy locked in unconventional 
gas formations, and the major uncertainties inherent in both 
the cost of extracting the resource and its precise size. In 
1993 the EIA noted: "It is widely recognized, for example, 
that gas from coal beds and from very-low-permeability 
reservoirs may exist in very large quantities, but neither the 

4  Cassandra is a figure from Homer's Iliad who foresees the destruc-
tion of Troy, but is cursed by the gods with incredulity among all of 
her listeners. She can see the future, but no one believes her. 
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potential volumes nor the associated extraction costs are 
understood with any precision" [16]. 

Forecasts typically struggle with disruptive technologies. 
In the case of the shale gas boom, the widespread use of 
a disruptive technology—hydraulic fracturing combined 
with horizontal drilling and an assortment of other enabling 
advances—has provided access to an entirely new class of 
energy resource and fundamentally changed the supply eco-
nomics and risk profile of gas development [17, 18].5  In 
the case of the United States, those technological advances 
were met aboveground with a property rights regime and 
restructured energy sector that encouraged development. 
Policymakers and the energy sector itself were unprepared 
for the disruption, and the country's energy and environmen-
tal policies are just now beginning to keep pace with envi-
ronmental concerns related to, among others, groundwater 
impacts, associated methane emissions, and possibilities of 
induced seismicity. 

Black swans and dying swans 

A "black swan" event is any event with the attributes of 
"rarity, extreme impact, and retrospective (though not pro-
spective) predictability" [20]. In other words, a black swan is 
both unexpected and influential. The phrase is a reference to 
the philosophical problem of induction. As the author of The 
Black Swan, Nassim Nicholas Taleb, writes, "No amount of 

5  It is worth mentioning that while the widespread use of hydraulic 
fracturing and horizontal drilling was indeed sudden, the technologies 
had existed for several decades [19]. 
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observations of white swans can allow the inference that all 
swans are white, but the observation of a single black swan 
is sufficient to refute that conclusion" [21].6 

Edison inventing the lightbulb was a black swan event for 
the gas lighting industry. Similarly, the Arab oil embargo 
was both shocking and had profound market consequences. 
Mathematically, black swans can be understood with the fol-
lowing simple equation: 

y = X+ E +Z. (1) 

A forecaster predicts y using knowledge of X and facing 
uncertainty from the known unknowns E and the unknown 
unknowns z. Modeling errors due to E are stochastic errors 
and can be incorporated into the model. Errors from z are 
epistemic errors and are due to all of the variables which 
were not incorporated into the model but which affect y. 

Black swan events can be thought of as z rearing its ugly 
head. If the effects of z are large but occur infrequently, then 
the model forecasts could closely conform to reality until a 
large z draw leads to a rapid and drastic divergence. 

While black swans can result in poor forecasts, another 
cause of poor forecasts is the highly nonlinear nature of 
many complex systems. In nonlinear systems, even small 
stochastic errors can compound and lead to large errors in 
prediction. We call this effect a "dying swan" event, refer-
ring to the following metaphor. You are trying to forecast 
whether a swan will be alive or dead tomorrow. The death 
of the swan is certainly a disruptive event, especially for the 
swan. Furthermore, all historical time periods have shown 
a live prediction to be correct, so death is a sharp deviation 
from the norm. However, the death of a bird is by no means 
unexpected, especially if the bird is sick or old. Instead, the 
compounding of the ordinary uncertainties of life results in a 
forecast, either alive or dead, which has the chance of being 
significantly in error. 

While a dying swan event has many of the same attributes 
as a black swan event, the underlying causes and resulting 
implications are different. Take George Westinghouse's 
victory over Thomas Edison in the war of the currents. It 
clearly had a disruptive effect on the future of electricity, and 
contradicted the forecasts of everyone who backed Edison, 

6  Taleb is most likely paraphrasing philosopher John Stuart Mill, 
though many have attributed the quote as either directly from Mill, 
or from David Hume's Treatise on Human Nature. Hume never men-
tions black swans, and a search of Mill's collected writings does not 
return this quote. Mill did write that "the proposition, all swans are 
white, appeared an equally decided instance of uniformity in the 
course of nature. Further experience has proved to both that both 
were wrong; but very many centuries elapsed before this additional 
experience came" [22]. The attribution of the quote demonstrating the 
problem of induction is itself illustrative of the problem: no amount 
of research can allow us to conclude that Hume and Mill never wrote 
the quote, but a single positive result would prove one of them did. 

but was it unexpected? The economies of scale required for 
mass adoption of electric power meant that the grid would 
be powered predominantly by either AC or DC, so the fact 
that one technology won out was by no means a black swan 
event. The fact that one technology triumphed is no surprise, 
but the uncertainties surrounding which would win out made 
reliably accurate forecasts near impossible. 

Mathematically, a dying swan event can be understood 
through Eq. (2). Here, the forecaster is trying to predict 
whether y will be large or small using knowledge of X and 
h.7 

X+ E ) 100 (2) 

When X is much smaller than h, then y will likely be 
small, and when X is much larger than h, then y will likely 
be large. However, when X is close in size to h, the statistical 
uncertainty compounds in such a way that either forecast is 
likely to be inaccurate. In other words, the forecast errors 
for nonlinear systems are not constant for all input values. 
Instead, forecasts can be precise for some values and highly 
inaccurate for other values. 

Statistical and epistemic uncertainty 
in the shale gas revolution 

Hydraulic fracturing, horizontal drilling, and related tech-
nologies and regulations did not just make it cheaper to drill 
for gas. They allowed access to vast formations that had been 
technically or economically infeasible before, and in areas 
where no one had previously drilled for gas in substantial 
amounts. EIA knew about the possibility of shale gas for 
many decades, and we saw mentions of it in the Annual 
Energy Outlook reports of the early 1990s. But it remained, 
in the language of Daniel Kahneman [23], a "known 
unknown," with accompanying "unknown unknowns." We 
had no definite notion of when it might become available, 
if ever, and how much might be recoverable. On the latter, 
we still do not know. 

The scale of production was unlikely and was not pro-
spectively predicted, and the economic, environmental and 
political impacts of hydraulic fracturing were far-reaching. 
Thus, the shale gas revolution can be viewed through the 
lens of a black swan event. Especially in the years before 
the boom started, few if any forecasters or market partici-
pants could envision the scale of market disruption. While 
the potential for shale gas was understood, hydraulic frac-
turing was seen as uneconomic, and forecasters in the early 

7 The power of 1 00 in Eq. (2) is solely intended to signify an exam-
ple highly nonlinear system. 
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Production month 

Fig. 4 Barnett shale average production per well over time (Data 
from [18]) 

2000s certainly could not imagine credibly that US shale 
gas production would account for 63% of total US dry gas 
production by 2018 [6]. 

The other lens through which to view the shale gas revo-
lution is as a dying swan event. Figure 4 displays average gas 
production for wells drilled in the Barnett shale formation 
for the years 1998, 2006, and 2014. What is apparent is the 
remarkable increase in well productivity over time. This is 
due to a learning-by-doing effect, where drillers learn from 
each well drilled how to make future wells cheaper and more 
productive [18]. 

Effects such as learning-by-doing result in a positive feed-
back loop, where each well drilled makes future wells more 
economic. This in turn leads to exponential growth in the 
number of economically viable wells. As Fig. 4 shows, the 
linear increases forecasted by the EIA drastically underesti-
mated the resulting exponential growth in production. Such 
positive feedback loops result in diverging potential futures, 
with uncertainty surrounding whether and when a critical 
mass will be reached, but little doubt that significant growth 
will eventually occur. 

Forecast errors and modeler apologetics 
in context 

We must acknowledge that forecast errors are inevitable due 
to extraneous factors that the model did not or could not 
consider. This process is recognizable to philosophers of 
science: it is a small-scale application of Kuhnian theories 
related to the resilience of scientific paradigms [24]. Here, 
the paradigm is the self-contained world of the model as 
a theory about inter-sectoral connections in the economy. 
There is, at present, no way around this reality. Forecasting 
inevitably means being "wrong" in an absolute sense: the 
world is irreducibly complex, and any attempt to model it 

4-:1 Springer 

requires simplification and abstraction that leads to diver-
gence between forecasts and reality [25-28]. 

Most of the time, forecasting errors are matters of 
degree—for example, energy demand increased by a greater 
amount than forecasters predicted, but the forecast still pre-
dicted an increase within some bounds for error. Policy-
makers regularly use forecasts in the formulation of energy 
policy: the EIA, for example, exists for the express purpose 
of constructing such forecasts in order to inform US energy 
policy and both public- and private-sector investment. Fore-
casts prepared for policymakers and the energy sector often 
deal simultaneously with two domains of prediction. The 
first domain consists of the model itself, a simplified and 
abstracted approximation of reality with its own internal 
logic, coherence, and probabilities that follow the modeler's 
beliefs about the importance of various drivers. The second 
domain consists of the modeler's meta-consideration of epis-
temic uncertainties, which include extraneous factors that 
resist abstraction and quantification and thus cannot exist 
within the model itself.8 

While the degree of error in forecasts of future shale gas 
production was large, the shale gas revolution was not the 
first time that models have failed to predict a major event. 
Historically, major energy-economic models have tended to 
underestimate the impacts of technological change, market 
structure, and behavioral responses among producers and 
consumers, at times resulting in narrower forecast ranges 
that under-represent uncertainty and situational flexibility 
[29, 30]. In other words, it is an inherent quality of com-
monly used models to downplay both the potential for dra-
matic, game-changing developments in technology and mar-
ket dynamics, and the potential efficacy of policy actions 
taken to shape future energy production and consumption. 

Forecast errors have not been equal across all regions 
of the energy sector. Indeed, in a 25-year review of Schurr 
[31] and Landsberg [32], the two seminal energy forecasts 
that established the energy policy forecasting field, Joskow 
[33] found that 

The RFF [Resources for the Future] and Ford studies 
have stood the test of time quite well; and "quite well" 
is hardly a poor grade when projecting trends and 
articulating policy recommendations and their effects 
predicated on the complex interplay of demographic, 

8  Though we simplify it here, this second domain is actually an infi-
nite regression of domains, with each meta-consideration considering 
the plausibility of the preceding consideration. For example, forecast 
A predicts an outcome within its model. Meta-consideration 1 assigns 
a real-world plausibility to forecast A's prediction. Unavoidably, we 
are now already considering the plausibility of meta-consideration 1 
itself, a consideration we can call meta-consideration 2, which is now 
under consideration by meta-consideration 3, and on into infinity. 
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economic, technological, and environmental factors 
over long time periods. 

Natural gas, however, has an especially ignominious his-
tory of fooling forecasts. Joskow, again discussing the RFF 
and Ford studies from 1979, notes that both of those vener-
able studies 

...completely missed the increasingly important role of 
natural gas and the central role of efficient combined-
cycle gas turbine (CCGT) generating technology using 
natural gas in electricity generation and its role in 
evolving competitive wholesale power markets. These 
developments in turn were stimulated by the decontrol 
of natural gas prices and the subsequent restructuring 
of the natural gas industry [33]. [italics ours] 

Joskow notes that all of these developments were "in a 
sense, a direct but unforseen consequence of [Schurr's and 
Landsberg's] recommendations to decontrol oil and natu-
ral gas prices, to bring electricity prices to market levels, 
to stimulate cogeneration, and to rely more on competi-
tive forces." In other words, both Schurr and Landsberg, 
despite their expertise and best efforts, struggled to imagine 
the ultimate effects of complex structural changes and mar-
ket dynamics that in fact emerged from their own policy 
recommendations. 

Likewise, EIA forecasts at the turn of the millennium also 
missed the mark on natural gas. The EIA's Annual Energy 
Outlook Evaluation from 2003 states: 

Natural gas generally has been the fuel with the least 
accurate forecasts in consumption, production, and 
prices. As regulatory reforms that increased the role 
of competitive markets were implemented beginning in 
the mid-1980s, the behavior of natural gas in competi-
tive markets was especially difficult to predict. In ear-
lier forecasts, EIA's technology improvement expecta-
tions proved conservative, as technological advances 
made natural gas less costly to produce, while in the 
more recent forecasts, EIA overestimated technology 
improvements [34]. 

We might call these assessments examples of "modeling 
apologetics," wherein forecasters explain the reasons behind 
forecast errors in a post hoc analysis. By explaining the fail-
ures of the model as stemming from extraneous uncertain-
ties, the model itself remains useful for the vast majority 
of future forecasts. The same logic has often been applied 
to the shale gas boom, where, now that we look back and 
see the shale gas boom as a one-off unpredictable event, we 
can incorporate newfound gas reserves and technologies and 
get on to crunching the numbers for the upcoming years. 
This happened with EIA forecasts for gas over the years, 
which incorporated the new market dynamics created by  

the deregulation of wholesale prices and improved forecast 
accuracy year by year. 

In many cases, modeling apologetics are insightful and 
accurate, and meaningfully contribute to improved future 
forecasts. But there are reasons to question the universality 
of this narrative. Explaining away modeling errors as due 
to one-off unlikely events misses the prevalence of errors 
caused by such events, and may lure us (especially those 
of us who are non-modelers but rely upon model outputs) 
toward a heuristic of naturalistic equilibrium: a belief that 
"now things are normal," or that they will soon be. The 
history of the energy system teaches us that the future is 
often directed by unlikely events, and that there is value in 
questioning whether naturalistic analogies of equilibrium 
are appropriate in many cases. Energy systems may expe-
rience multiple years, or even decades, of disequilibrium 
due to complex and shifting market rules, uncertainties of 
technological or economic feasibility at nonlinear scales of 
deployment, and extraordinary diversity in market structure, 
composition, and actors. The enormity of such extraneous 
uncertainties places any forecaster in very deep water. 

Incorporating uncertainty in energy 
forecasts 

Generally speaking, most analytical approaches in the 
energy sector do not consider disruptions well. In the case 
of the shale gas revolution, modelers were aware of the 
uncertainties associated with shale gas development and 
even noted it in their forecasts (e.g., [6]), but had no coher-
ent method for inserting such knowledge into the definitive 
outputs of the work itself. Of course, no one is more aware 
of this than modelers themselves, who have gone to great 
lengths to address the problem. There is a wide body of 
literature on dealing with uncertainty in general [35], and 
"jumps" in commodity markets (mainly electricity) specifi-
cally (e.g., [36-41]). The more common approach is to use 
some family of autoregressive conditional heteroscedasticity 
models (see, e.g., [42-47]). 

These models rely either on econometric techniques that 
use the past to approximate the future, making them inher-
ently incapable of capturing future structural disruptions, 
or on equilibrium or optimization techniques in some com-
bination, using mostly linear or mixed integer approaches. 
While there are analytical techniques that can be employed 
to look at radical departures from incremental change, often 
the ranges of possible outcomes they provide are simply 
too vast to be useful for a policy or investment perspective. 
Still, it is clear that more needs to be done with sensitivity or 
scenario analysis that can help inform decisions by helping 
to better understand boundary conditions or other factors 
from which unlikely futures might spring. 
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Just as important as a quantitative approach to incorporat-
ing uncertainty is a qualitative understanding of how large 
forecast errors can occur. This responsibility lies primarily 
not with modelers but with forecast users: policymakers, 
investors, and analysts who use forecasts to make decisions. 
Policy decisions are full of value judgments. They require 
decision-makers to weigh options across multiple commu-
nities and species of knowledge, and to anticipate things 
which cannot be quantified. These problems are complex 
and require expert interpretation of scientific and technical 
information as it relates to future developments. Forecasts 
are useful and necessary tools for illuminating the nature 
of trade-offs and hazards in such decisions. And yet there 
is a tension. Just as forecasting expands our knowledge of 
the possible consequences of our actions, it also potentially 
constricts the universe of considered options when it is mis-
understood or—worse—misused in the service of conclu-
sions that have been prematurely formulated and for which 
forecasts may be sought for post hoc rationalization. In 
gaining more insight about some paths, we may make other 
paths seem less likely, and so we are prone to prepare less 
diligently for those possibilities. 

We are confronted with a dilemma—good decision-
making requires both tractable models which can provide 
understandable forecasts, and the use of outputs that do not 
unintentionally discount the uncertainties inherent in fore-
casts. The way out seems to lie in a better understanding—
particularly on the part of forecast users who are not them-
selves modeling experts—of where models can go awry and 
why. Especially for long-term forecasts, an understanding 
of epistemic uncertainty becomes increasingly important. 
Both forecasting and planning for the energy landscape for 
long time horizons require more than just an extrapolation of 
current trends. They require an understanding of the policies, 
trends, and technologies which have not yet been realized 
but which have a chance of changing the energy landscape 
in the coming decades. Additionally, in many nonlinear 
systems, and especially in energy systems, forecast errors 
begin to compound once a threshold has been passed. By 
acknowledging this fact, we can begin to identify which pre-
dictions are likely accurate and which have a high chance of 
significantly missing the mark. 

To that end, we could list a series of familiar 
recommendations9: 

Forecasts should emphasize that they do not predict the 
future, but rather provide scenarios through which sensi-
tivities might be compared. But of course, many forecasts 
already do this, and policymakers, who must make decisions 
in the face of uncertainty, require predictions even if they 

9  Such recommendations, or variations upon them, are decades old 
and well known in the modeling community [48]. 

Springer 

lead to uses of forecasts that forecasters themselves lament. 
Indeed, in a hypothetical case of forecast misuse, policy-
makers may demand that modelers produce outputs that 
are deliberately oversimplified in order to support a posi-
tion they have already adopted.1°  While forecasts may not 
predict the future, neither are they insulated from affecting 
it, and the potential for an influential forecast to become a 
self-fulfilling prophecy can present a moral hazard to poli-
cymakers beholden to powerful constituencies. No amount 
of scenario analysis or modeling technique can even begin 
to address such a problem, which is fundamentally political 
rather than mathematical. 

Even leaving moral hazard aside and presuming that our 
politicians are acting with Rawlsian perfection, Morgan and 
Keith [49] have argued that the use of scenarios to explore 
feasible alternatives without respect to subjective probabili-
ties is itself problematic and possibly untenable, as "feasibil-
ity" and "plausibility" may be substituted as synonyms for 
"likelihood": 

Absent a supernatural ability to foresee the future, 
what could be meant by a statement that one scenario 
is feasible and another infeasible but that the first is 
(subjectively) more probable than the second? [49] 

In other words, Morgan and Keith caution that semanti-
cally shrouding predictions in scenarios risks embedding 
even more unconscious assumptions in the minds of poli-
cymakers and other model users. They cite evidence from 
psychology studies that experts and laypersons alike are 
vulnerable to the availability heuristic, wherein subjective 
probability assessments are biased toward how easily the 
subject can remember past examples or imagine futures. 
This heuristic, they assert, "can lead people to overestimate 
the probability of a scenario or story line when the detail 
with which it is specified is increased" [49]. 

Another common aphorism: forecasts should aim to iden-
tify emerging trends that could alter energy landscapes in the 
medium and long term. Many forecasts do this as well, with 
no apparent impact on collective uptake or improved accu-
racy, as Sanchez [32] explores with respect to EIA forecasts 
of the late 1990s. Or perhaps: forecasts should provide the 
widest possible range of options and outcomes. But such an 
approach risks overwhelming policymakers and inducing 
calls for further research—itself never opposed by research-
ers, but of questionable value when decisions need to be 
made now." 

1  US President Harry Truman, for example, reportedly quipped that 
he wanted a "one-handed economist" so that he could stop hearing 
his advisors tell him "on the other hand." 

11  An additional recommendation might be to further develop the 
application of robust optimization theory to policy development. In 
other words, in the face of uncertainty codified by forecasts, policies 
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It is ironic that we can search the heavens and the depths 
for sufficient integrating capacities and miss the very capac-
ity that is itself doing the searching. Surely the knowledge 
contained in even the most complex forecasting model is 
dwarfed by the learned intuition of modelers themselves. Of 
course, this intuitive knowledge is disfavored because it is 
nonempirical and subjective, slippery and resistant to quan-
tification, just like the epistemic uncertainties with which 
we grapple. Surely, say our careful empirical sensibilities, 
we should not casually invite the nonobjective opinions of 
forecasters into the policymaking sphere. And yet, it is pre-
cisely the strong statement of opinions that leads an educated 
audience to be most critical and inquisitive, not least because 
our first impulse upon hearing a strong proclamation should 
be to see how it might be wrong. 

It may be, then, that the best means of incorporating 
uncertainty into forecasts is the fostering of a robust and 
lively meta-discursive space composed of both modeling 
experts and decision-makers and focused on the second 
domain of modeling's inherent epistemic uncertainties rather 
than further tinkering within the first domain of model struc-
tures themselves. Of course, the opinions of forecasters are 
as subject to availability heuristics as those of policymakers, 
but by displaying and revealing such biases in the light of 
day, we give ourselves and policymakers a greater chance 
at recognizing them. 

Conclusions 

While cheap shale gas production is now part of the energy 
reality, important policy decisions regarding shale gas 
development and use remain. What are the best technical 
pathways and sectoral uses of natural gas, and how can the 
associated build-out of related infrastructure be done most 
efficiently and with minimal risk? How should electric-
ity grid operators handle the rapid increase in generation 
from natural gas plants to ensure grid stability? How will 
the evolving knowledge of fugitive emissions and life-cycle 
greenhouse gas emissions associated with shale gas pro-
duction and use impact decision-making? How these policy 
decisions play out will affect the future production and price 
of natural gas. Thus, the future of natural gas still has a great 
deal of uncertainty, and any prediction should come with 
significant error bars and be met with a healthy degree of 
skepticism. 

The questions raised here, and the types of forecast errors 
described, should be expanded to other sectors. The rapid 

Footnote 11 (continued) 

should (one might argue) endeavor to institute responses that provide 
optimal solutions across a wide swath of potential outcomes. 

pace of advancement and interconnectedness of the world 
means that epistemic uncertainty is larger than ever [50]. 
For many newer technologies, the degree of uncertainty 
regarding future generation has increased in recent years. 
Cost declines in technologies such as wind, solar, and energy 
storage place them on competitive terms with conventional 
generation technologies. These technologies have shown 
even more stark learning-by-doing effects than shale gas 
production. Markets for electric cars and demand response, 
to name a few, similarly pose the possibility for dramatic 
shifts. Even moderate changes in cost and policies can lead 
to large changes in the future adoption of these technologies. 

The US shale experience has had international implica-
tions: foreign investment has flowed to US plays in an effort 
to unlock the techniques of hydraulic fracturing. It has also 
rearranged the geopolitical energy chessboard: the produc-
tion of oil from shale resources has created new uncertain-
ties in the international geopolitics of petroleum production, 
particularly for OPEC and non-OPEC producer states that 
seek to respond to new US-based production with produc-
tion cuts of their own. The primacy of oil as both energy and 
economic driver means that these decisions produce further 
feedbacks that ripple throughout the global economy. 

Decision-makers and investors would benefit from learn-
ing more about why they were caught unawares by the shale 
revolution, and how they can be better prepared the next 
time such a surprise occurs. The answer to that second ques-
tion is not immediately apparent. Tautologically, if we were 
prepared for them, surprises would cease to be surprises. 
But perhaps a start is for decision-makers to adapt to an 
increasingly uncertain and dynamic world by creating a 
more imaginative discourse, one that welcomes nuance and 
doubt as spaces for opportunity and transformative change, 
and sees forecasts as the beginning of a policy or investment 
discussion rather than the end, and forecasters not as Delphic 
oracles of outcome, but as the people who know best why 
attempts at prediction must fall short. 

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creativeco 
mmons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. 
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