UNIT NAME	VALLEY SES U1	VALLEY SES U2	VALLEY SES U3	Total Retiring Capacity
	.099	661	662	663

	ZONE	NORTH	NORTH	NORTH
	FUEL	GAS	GAS	GAS
	COUNTY	FANNIN	FANNIN	FANNIN
	UNIT CODE	VLSES_UNIT1	VLSES UNIT2	VLSES_UNIT3
SENERATION NTERCONNECTION	ROJECT CODE			

2015 174.0 520.0 375.0 **1,659.0**

START YEAR 1962 1967 1971

Release Date: May 4, 2015

Seasonal Assessment of Resource Adequacy for the ERCOT Region

Background

The Seasonal Assessment of Resource Adequacy (SARA) report is a deterministic approach to considering the impact of potential variables that may affect the sufficiency of installed resources to meet the peak electrical demand on the ERCOT System during a particular season.

The standard approach to assessing resource adequacy for one or more years into the future is to account for projected load and resources on a normalized basis and to require sufficient reserves (resources in excess of peak demand, on this normalized basis) to cover the uncertainty in peak demand and resource availability to meet a one-in-ten-years loss-of-load event criteria on a probabilistic basis.

For seasonal assessments that look ahead less than a year, specific information may be available (such as seasonal climate forecasts or anticipated common-mode events such as drought) which can be used to consider the range of resource adequacy in a more deterministic manner.

In contrast to the Capacity, Demand and Reserves (CDR) report, which addresses the sufficiency of planning reserves on an annual basis as described above, the SARA report focuses on the availability of sufficient operating reserves to avoid emergency actions such as deployment of voluntary load reduction resources. Consequently, load reduction resources included in the CDR report, such as Emergency Response Service (ERS) and Load Resources that provide operating reserves (LRs), are excluded from the SARA.

The SARA report is intended to illustrate the range of resource adequacy outcomes that might occur, and thus help fulfill the reporting requirement per Public Utility Commission of Texas rule 25.362(i)(2)(H). Several sensitivity analyses are developed by varying the value of certain parameters that affect resource adequacy. The variation in these parameters is based on historic values of these parameters or adjustments by any known or expected changes.

Release Date: November 2, 2015

FINAL Seasonal Assessment of Resource Adequacy for the ERCOT Region Winter 2015/2016

SUMMARY

The ERCOT Region is expected to have sufficient installed generating capacity to serve forecasted peak demands in the upcoming winter season (December 2015 - February 2016). Based on the results of this study, an extreme higher-than-normal number of forced generation outages occurring during a period of unusually high demand would be unlikely to result in insufficient resources being available to serve those demands. Even if those conditions coincide with extremely low temperatures and associated capacity reductions resulting from natural gas curtailments, current information indicates that there would be sufficient generation available on a systemwide basis.

This capacity outlook includes the same peak forecast used for the preliminary winter SARA report released September 1, 2015, reflecting our peak forecast expectations based on customer demand experienced during recent winter season cold-weather events and current expectations for average weather in the upcoming winter season. Total resource capacity also increased by nearly 1,100 MW relative to capacity reported in the preliminary winter SARA. The increase was due to the return to service of coal units previously in seasonal mothball status, as well as several wind and gas resources recategorized from planned to operational status.

ERCOT will continue to monitor the potential effect of future drought conditions on generation capacity and ongoing changes to environmental regulations.

Resource Adequacy for the ERCOT Region ter 2015/2016 - Final Date: November 2, 2015	 ted Capacity and Demand 53,063 Based on current ratings reported through the unit registration process 3,702 Rated capacity of resources that can interconnect with other regions and are available to ERCOT (470) Based on survey responses of Switchable Resource owners 0 Based on seasonal Mothball units plus Probability of Return responses of Mothball Resource owners 4,433 Average capability of the top 20 hours in the winter peak seasons for the past three years 	 2,287 Based on 13% of rated capacity for non-coastal wind resources per Nodal Protocols Section 3.2.6.2.2 622 Based on 37% of rated capacity for coastal wind resources per Nodal Protocols Section 3.2.6.2.2 0 No RMR resources currently under contract 371 Average capability of the top 20 hours in the winter peak seasons for the past three years 7 Based on projected dates provided by developers of generation resources 189 Based on projected dates and 18% of rated capacity for non-coastal wind resources 	 136 Based on projected dates and 37% of rated capacity for coastal wind resources 79,341 57,400 Peak forecast is based on expected demand and weather conditions for whiter 2015 21,941 	of Potential Scenarios seison Extreme Peak Load ad / Typital / Extreme ad / Typital / Extreme ad a / Typital / Science ad a / Typital / Joint ad a / Typital / Typital / Joint ad a / Typital / Typital / Joint ad a / Typital / T	4 9.178 4.594 for December January and February Weekdays, Inours ending 7 am to 10 am (starting in 2010) load hours.
Seasonal Assessment Relevant Assessment Relevant Rele	Operational Resources (excluding wind), MW Świtchable Capacity Total, MW less Switchable Capacity Unavailable to ERCOT, MW Mothball Resources, MW	Private Use Network Carpacity Contribution, MW Non-Coastal Wind Resources Capacity Contribution, MW RINR Resources to be under Contract, MW Non-Synchronous Ties Cápacity Contribution, MW Planned Resources (not wind), MW	Planned Non-Coastal Wind, MW Planned Coastal Wind, MW [a] Total Resources, MW [b] Peak Demand, MW [c] Reserve Capacity (a - b), MW	R: Forest Peak Load Adjustment (1) Typical Maintenance Outages (2) Typical Forced Outages (2) Extreme Forced Outages (4) (d) Total Uses of Reserve Capacity	 (e) Capacity Available for Operating Reserves (c-d), MW Less than 2,300 MW indicates risk of EEA1 (1) Winter Peak Load Extreme Forecast is 50,834 MW based on the 90th percentile i (2) Maintenance Outages and Forced Outages based on average of historical outages (3) includes typical outages/denates due to natural gas curtailments during extreme

		GENERATION						
		INTERCONNECTION		COUNTY	FUEL	ZONE	START YEAR	CAPACITY (MW)
	UNIT NAME	PROJECT CODE	UNIT CODE					
4	COMANCHE PEAK U1		CPSES_UNIT1	SOMERVELL	NUCLEAR	NORTH	1990	1,235 0
5	COMANCHE PEAK U2		CPSES_UNIT2	SOMERVELL	NUCLEAR	NORTH	1993	1,225 0
6	SOUTH TEXAS U1		STP_STP_G1	MATAGORDA	NUCLEAR	COASTAL	1988	1,354.0
7	SOUTH TEXAS U2		STP_STP_G2	EDEESTONE	COAL	NORTH	1985	606 0
8	BIG BROWN U1		BBSES_UNIT?	FREESTONE	COAL	NORTH	1972	602 0
9	BIG BROWN UZ		COLETO COLETOG1	GOLIAD	COAL	SOUTH	1980	660 0
10	COLETO CREEK		FPPYD1 FPP G1	FAYETTE	COAL	SOUTH	1979	603 0
12	FAYETTE POWER U2		FPPYD1_FPP_G2	FAYETTE	COAL	SOUTH	1980	605 0
13	FAYETTE POWER U3		FPPYD2_FPP_G3	FAYETTE	COAL	SOUTH	1988	449 0
14	GIBBONS CREEK U1		GIBCRK_GIB_CRG1	GRIMES	COAL	NORTH	1983	4700
15	J K SPRUCE U1		CALAVERS_JKS1	BEXAR	COAL	SOUTH	2010	775 0
16	J K SPRUCE U2	09INR0002	CALAVERS_JKS2	BEXAR	COAL	SOUTH	1977	420 0
17	J T DEELY U1		CALAVERS_JTD1	BEXAR	COAL	SOUTH	1978	420 0
10			LEG LEG G1	LIMESTONE	COAL	NORTH	1985	831 0
20	UMESTONE U2		LEG_LEG_G2	LIMESTONE	COAL	NORTH	1986	858 0
21	MARTIN LAKE U3		MLSES_UNIT3	RUSK	COAL	NORTH	1979	820 0
22	MONTICELLO U1		MNSES_UNIT1	TITUS	COAL	NORTH	1974	580.0
23	MONTICELLO U2		MNSES_UNIT2	TITUS	COAL	NORTH	1973	795.0
24	MONTICELLO U3	001100000-	MNSES_UNIT3	POBERTSON	COAL	NORTH	2010	840 0
25	5 OAK GROVE SES U1	DOINROUDDA	OGSES_UNITA	ROBERTSON	COAL	NORTH	2011	825 0
26		03111100000	OKLA OKLA GI	WILBARGER	COAL	WEST	1986	650 0
21	SAN MIGUEL 11		SANMIGL_SANMIGG1	ATASCOSA	COAL	SOUTH	1982	391 0
29	SAN MIGGLE OF	08INR0003	SD5SES_UNIT5	MILAM	COAL	SOUTH	2010	600 0
30	SANDY CREEK U1		SCES_UNIT1	MCLENNAN	COAL	NORTH	2013	970.0
3	1 TWIN OAKS U1		TNP_ONE_TNP_O_1	ROBERTSON	COAL	NORTH	1990	158.0
32	2 TWIN OAKS U2		TNP_ONE_TNP_O_2	ROBERISON	COAL	HOUSTON	1977	659.0
3	3 W A PARISH U5		WAP_WAP_G5	FT BEND	COAL	HOUSTON	1978	658 0
34	4 W A PARISH U6		WAP_WAP_G	FT BEND	COAL	HOUSTON	1980	577 0
3			WAP WAP G8	FT BEND	COAL	HOUSTON	1982	610 0
3	7 ARTHUR VON ROSENBERG 1 CTG 1	00INR0017	BRAUNIG_AVR1_CT1	BEXAR	GAS	SOUTH	2000	149 0
3	8 ARTHUR VON ROSENBERG 1 CTG 2	00INR0017	BRAUNIG_AVR1_CT2	BEXAR	GAS	SOUTH	2000	149 0
3	9 ARTHUR VON ROSENBERG 1 STG	00INR0017	BRAUNIG_AVR1_ST	BEXAR	GAS	SOUTH	2000	160 0
4	0 BARNEY M DAVIS REPOWER CTG 3	09INR0038	B_DAVIS_B_DAVIG3	NUECES	GAS	COASTAL	2010	165.0
4	1 BARNEY M DAVIS REPOWER CTG 4	09INR0038	B_DAVIS_B_DAVIG4	NUECES	GAS	COASTAL	1976	325 0
4	2 BARNEY M DAVIS REPOWER STG 2	011000001	B_DAVIS_B_DAVIG2	BASTROP	GAS	SOUTH	2002	167.0
4	3 BASTROP ENERGY CENTER CTG 1	011NR0021	BASTEN GTG2100	BASTROP	GAS	SOUTH	2002	167 0
4		01INR0021	BASTEN ST0100	BASTROP	GAS	SOUTH	2002	234 0
4	6 BOSOUE ENERGY CENTER CTG 1	00INR0018	BOSQUESW_BSQSU_1	BOSQUE	GAS	NORTH	2000	170 9
4	7 BOSQUE ENERGY CENTER STG 4	00INR0028	BOSQUESW_BSQSU_4	BOSQUE	GAS	NORTH	2001	85.2
4	8 BOSQUE ENERGY CENTER CTG 2	00INR0018	BOSQUESW_BSQSU_2	BOSQUE	GAS	NORTH	2000	170 9
4	9 BOSQUE ENERGY CENTER CTG 3	00INR0018	BOSQUESW_BSQSU_3	BOSQUE	GAS	NORTH	2001	226.7
5	0 BOSQUE ENERGY CENTER STG 5	08INR0046	BOSQUESW_BSQSU_5	BOSQUE	GAS	HOUSTON	2003	168 0
5	1 BRAZOS VALLEY CTG 1	01INR0031	BVE_UNIT?	FORT BEND	GAS	HOUSTON	2003	168.0
5	2 BRAZOS VALLEY CTG 2	01INR0031	BVE_UNIT3	FORT BEND	GAS	HOUSTON	2003	270 0
с а	A CALENERGY FALCON SEABOARD CTG 1		FLCNS_UNIT1	HOWARD	GAS	WEST	1987	77 5
5	5 CALENERGY-FALCON SEABOARD CTG 2		FLCNS_UNIT2	HOWARD	GAS	WEST	1987	77.5
5	6 CALENERGY-FALCON SEABOARD STG 3		FLCNS_UNIT3	HOWARD	GAS	WEST	1988	740
5	7 CEDAR BAYOU 4 CTG 1	08INR0035	CBY4_CT41	CHAMBERS	GAS	HOUSTON	2009	173.0
5	8 CEDAR BAYOU 4 CTG 2	08INR0035	CBY4_CT42	CHAMBERS	GAS	HOUSTON	2009	1860
5	9 CEDAR BAYOU 4 STG	08INR0035	CBT4_STU4	WHARTON	GAS	SOUTH	2007	790
6	COLORADO BEND ENERGY CENTER CTG 1	DEINR0035b	CBEC_GT2	WHARTON	GAS	SOUTH	2007	72 0
د د	COLORADO BEND ENERGY CENTER CTG 2	06INR0035b	CBEC STG1	WHARTON	GAS	SOUTH	2007	102 0
¢	33 COLORADO BEND ENERGY CENTER CTG 3	06INR0035a	CBEC_GT3	WHARTON	GAS	SOUTH	2008	3 77 0
ē	4 COLORADO BEND ENERGY CENTER CTG 4	06INR0035a	CBEC_GT4	WHARTON	GAS	SOUTH	2008	3 730
e	55 COLORADO BEND ENERGY CENTER STG 2	061NR0035a	CBEC_STG2	WHARTON	GAS	SOUTH	2008	3 108.0
6	66 CVC CHANNELVIEW CTG 1	02INR0004	CVC_CVC_G1	HARRIS	GAS	HOUSTON	2000	3 1890
(57 CVC CHANNELVIEW CTG 2	02INR0004			GAS	HOUSTON	2000	3 189 0
•	58 CVC CHANNELVIEW CTG 3	02INR0004		HARRIS	GAS	HOUSTON	2008	3 146.0
	DY UVU CHANNELVIEW STG D 70. DEED DADK ENERGY CENTER CTG 1	02INR0020	DDPEC GT1	HARRIS	GAS	HOUSTON	2003	2 203 0
	71 DEER PARK ENERGY CENTER CTG 2	02INR0020	DDPEC_GT2	HARRIS	GAS	HOUSTON	200	2 215 0
	72 DEER PARK ENERGY CENTER CTG 3	02INR0020	DDPEC_GT3	HARRIS	GAS	HOUSTON	200	2 203.0
	73 DEER PARK ENERGY CENTER CTG 4	021NR0020	DDPEC_GT4	HARRIS	GAS	HOUSTON	200	2 2150
	74 DEER PARK ENERGY CENTER STG	02INR0020	DDPEC_ST1	HARRIS	GAS	HOUSTON	200	2 290.0 4 190.0
	75 DEER PARK ENERGY CENTER CTG 6	14INR0015	DDPEC_GT6		GAS	NORTH	201-	2 2310
	76 ENNIS POWER STATION CTG 2	01INR0008	ETCCS_UNIT1	ELLIS	GAS	NORTH	200	2 127.0
		13INR0021	FERGCC FERGGT1	LLANO	GAS	SOUTH	201	4 186 1
	70 FERGUSON REPLACEMENT CTG1	13INR0021	FERGCC_FERGGT2	LLANO	GAS	SOUTH	201	4 186 1
	80 FERGUSON REPLACEMENT STG	13INR0021	FERGCC_FERGST1	LLANO	GAS	SOUTH	201	4 194 9
	81 FORNEY ENERGY CENTER CTG 11	01INR0007	FRNYPP_GT11	KAUFMAN	GAS	NORTH	200	3 192 (

	INTERCONNECTION						
	PROJECT CODE	UNIT CODE	COUNTY	FUEL	ZONE	START YEAR	CAPACITY (MW)
82 FORNEY ENERGY CENTER CTG 12	01INR0007	FRNYPP_GT12	KAUFMAN	GAS	NORTH	2003	184 0
83 FORNEY ENERGY CENTER CTG 13	01INR0007	FRNYPP_GT13	KAUFMAN	GAS	NORTH	2003	184 0
A FORNET ENERGY CENTER CTG 21	01INR0007	FRNYPP GT21	KAUFMAN	GAS	NORTH	2003	192.0
04 FORNET ENERGY CENTER CTG 21	01INR0007	FRNYPP GT22	KAUFMAN	GAS	NORTH	2003	184 0
85 FORNET ENERGY CENTER CTG 22	01INR0007	FRNYPP GT23	KAUFMAN	GAS	NORTH	2003	184 0
80 FORNET ENERGY CENTER STG 10	01INR0007	FRNYPP ST10	KAUFMAN	GAS	NORTH	2003	420 0
87 FORNET ENERGY CENTER STG 10	01INR0007	FRNYPP_ST20	KAUFMAN	GAS	NORTH	2003	420.0
88 FORNEY ENERGY CENTER STG 20	011NP0009	FREC GT1	FREESTONE	GAS	NORTH	2002	160 7
89 FREESTONE ENERGY CENTER CTG T	011NP0009	FREC GT2	FREESTONE	GAS	NORTH	2002	160 7
90 FREESTONE ENERGY CENTER CTG 2	01100000	FREC ST3	FREESTONE	GAS	NORTH	2002	179.8
91 FREESTONE ENERGY CENTER STG 3	01100000	FREC GTA	FREESTONE	GAS	NORTH	2002	161 1
92 FREESTONE ENERGY CENTER CTG 4	01100009	FREC_GTS	EREESTONE	GAS	NORTH	2002	161 1
93 FREESTONE ENERGY CENTER CTG 5	011NR0009	FREC_GIS	FREESTONE	GAS	NORTH	2002	179 7
94 FREESTONE ENERGY CENTER STG 6	01INR0009	CHADO CASI	CHADALURE	GAS	SOUTH	2000	167.0
95 GUADALUPE ENERGY CENTER CTG 1	01INR0004	GUADG_GAST	CUADALURE	GAS	SOUTH	2000	167 0
96 GUADALUPE ENERGY CENTER CTG 2	01INR0004	GUADG_GAS2	GUADALUPE	GA5 CAS	SOUTH	2000	167 0
97 GUADALUPE ENERGY CENTER CTG 3	01INR0004	GUADG_GAS3	GUADALUPE	GAS	SOUTH	2000	167.0
98 GUADALUPE ENERGY CENTER CTG 4	01INR0004	GUADG_GAS4	GUADALUPE	GAS	SOUTH	2000	203.0
99 GUADALUPE ENERGY CENTER STG 5	01INR0004	GUADG_S1M5	GUADALUPE	GAS	SOUTH	2000	203.0
100 GUADALUPE ENERGY CENTER STG 6	011NR0004	GUADG_STM6	GUADALUPE	GAS	SOUTH	2000	203 0
101 HAYS ENERGY FACILITY CSG 1	01INR0003	HAYSEN_HAYSENG1	HAYS	GAS	SOUTH	2002	237.0
102 HAYS ENERGY FACILITY CSG 2	01INR0003	HAYSEN_HAYSENG2	HAYS	GAS	SOUTH	2002	237.0
103 HAYS ENERGY FACILITY CSG 3	01INR0003	HAYSEN_HAYSENG3	HAYS	GAS	SOUTH	2002	247 0
104 HAYS ENERGY FACILITY CSG 4	01INR0003	HAYSEN_HAYSENG4	HAYS	GAS	SOUTH	2002	247 0
105 HIDALGO ENERGY CENTER CTG 1	00INR0006	DUKE_DUKE_GT1	HIDALGO	GAS	SOUTH	2000	150.0
106 HIDALGO ENERGY CENTER CTG 2	00INR0006	DUKE_DUKE_GT2	HIDALGO	GAS	SOUTH	2000	150 0
107 HIDALGO ENERGY CENTER STG	00INR0006	DUKE_DUKE_ST1	HIDALGO	GAS	SOUTH	2000	1/60
108 JACK COUNTY GEN FACILITY CTG 1	05INR0010	JACKCNTY_CT1	JACK	GAS	NORTH	2005	165 0
109 JACK COUNTY GEN FACILITY CTG 2	05INR0010	JACKCNTY_CT2	JACK	GAS	NORTH	2005	165.0
110 JACK COUNTY GEN FACILITY STG 1	05INR0010	JACKCNTY_STG	JACK	GAS	NORTH	2005	310 0
111 JACK COUNTY GEN FACILITY CTG 3	10INR0010	JCKCNTY2_CT3	JACK	GAS	NORTH	2011	165 0
112 JACK COUNTY GEN FACILITY CTG 4	10INR0010	JCKCNTY2_CT4	JACK	GAS	NORTH	2011	165.0
113 JACK COUNTY GEN FACILITY STG 2	10INR0010	JCKCNTY2_ST2	JACK	GAS	NORTH	2011	310 0
114 JOHNSON COUNTY GEN FACILITY CTG		TEN CT1	JOHNSON	GAS	NORTH	1997	177 0
115 JOHNSON COUNTY GEN FACILITY STG		TEN STG	JOHNSON	GAS	NORTH	1997	106.0
116 LAMAD ENERGY CENTER CTG 11	00INR0008	LPCCS CT11	LAMAR	GAS	NORTH	2000	186 0
147 LAMAR ENERGY CENTER CTG 12	00INR0008	LPCCS CT12	LAMAR	GAS	NORTH	2000	176.0
117 LAMAR ENERGY CENTER CTG 12	001NIR0008	LPCCS_CT21	LAMAR	GAS	NORTH	2000	176 0
118 LAMAR ENERGY CENTER CTG 21	001NIP0008	LPCCS_CT22	LAMAR	GAS	NORTH	2000	186.0
119 LAMAR ENERGY CENTER CTG 22	001NR0008	LPCCS UNIT1	LAMAR	GAS	NORTH	2000	204 0
120 LAMAR ENERGY CENTER STG 1	001NR0008	LPCCS_UNIT2	LAMAR	GAS	NORTH	2000	204 0
121 LAMAR ENERGY CENTER STG 2	ODINICOUG	LOSTPLIOSTPGT1	BASTROP	GAS	SOUTH	2001	183.0
122 LOST PINES POWER CIG 1	021NR0005	LOSTPL LOSTPGT?	BASTROP	GAS	SOUTH	2001	183 0
123 LOST PINES POWER CIG 2	02INR0005		BASTROP	GAS	SOUTH	2001	192 0
124 LOST PINES POWER STG	UZINRUUU5			GAS	SOUTH	2001	218 6
125 MAGIC VALLEY STATION CTG 1	001NR0009	NEDIN_NEDIN_G1	HIDALGO	GAS	SOUTH	2001	218.6
126 MAGIC VALLEY STATION CTG 2	001010009	NEDIN_NEDIN_G2		GAS	SOUTH	2001	257 9
127 MAGIC VALLEY STATION STG	001NR0009	NEDIN_NEDIN_G3	FILIE	GAS	NORTH	2001	240 0
128 MIDLOTHIAN ENERGY FACILITY CS 1	00INR0012	MDANP_CT1	ELLIS	GAS	NORTH	2001	240.0
129 MIDLOTHIAN ENERGY FACILITY CS 2	00INR0012	MDANP_CT2	ELLIS	GAS	NORTH	2001	240.0
130 MIDLOTHIAN ENERGY FACILITY CS 3	00INR0012	MDANP_CT3	ELLIS	GAS	NORTH	2001	240 0
131 MIDLOTHIAN ENERGY FACILITY CS 4	00INR0012	MDANP_C14	ELLIS	GAS	NORTH	2001	257.0
132 MIDLOTHIAN ENERGY FACILITY CS 5	02INR0008	MDANP_CT5	ELLIS	GAS	NORTH	2002	257.0
133 MIDLOTHIAN ENERGY FACILITY CS 6	02INR0008	MDANP_CT6	ELLIS	GAS	NORTH	2002	165.0
134 NUECES BAY REPOWER CTG 8	09INR0039	NUECES_B_NUECESG8	NUECES	GAS	COASTAL	2010	165.0
135 NUECES BAY REPOWER CTG 9	09INR0039	NUECES_B_NUECESG9	NUECES	GAS	COASTAL	2010	105.0
136 NUECES BAY REPOWER STG 7		NUECES_B_NUECESG7	NUECES	GAS	COASTAL	1972	323 0
137 ODESSA-ECTOR POWER CTG 11	01INR0026	OECCS_CT11	ECTOR	GAS	WEST	2001	162.6
138 ODESSA-ECTOR POWER CTG 12	01INR0026	OECCS_CT12	ECTOR	GAS	WEST	2001	151.2
139 ODESSA-ECTOR POWER CTG 21	01INR0026	OECCS_CT21	ECTOR	GAS	WEST	2001	155.8
140 ODESSA-ECTOR POWER CTG 22	01INR0026	OECCS_CT22	ECTOR	GAS	WEST	2001	153 3
141 ODESSA-ECTOR POWER STG 1	01INR0026	OECCS_UNIT1	ECTOR	GAS	WEST	2001	216.0
142 ODESSA-ECTOR POWER STG 2	01INR0026	OECCS_UNIT2	ECTOR	GAS	WEST	2001	216 0
143 PANDA SHERMAN POWER CTG1	10INR0021	PANDA_S_SHER1CT1	GRAYSON	GAS	NORTH	2014	218 5
144 PANDA SHERMAN POWER CTG2	10INR0021	PANDA_S_SHER1CT2	GRAYSON	GAS	NORTH	2014	218.5
145 DANDA SHERMAN POWER STG	10INR0021	PANDA S_SHER1ST1	GRAYSON	GAS	NORTH	2014	333.6
	10INR0020a	PANDA T1 TMPL1CT1	BELL	GAS	NORTH	2014	218.5
	10INR0020a	PANDA T1 TMPL1CT2	BELL	GAS	NORTH	2014	218.5
147 PANDA TEMPLE I POWER CTG2	10INR0020a	PANDA T1 TMPL1ST1	BELL	GAS	NORTH	2014	333.6
148 PANDA TEMPLE I POWER STO	10101200	PANDA T2 TMPL2CT1	BELL	GAS	NORTH	2015	218 5
	10INR00205	PANDA T2 TMPL2CT2	BELL	GAS	NORTH	2015	218.5
150 PANDA LEMPLE II POWER CIGZ	10100200	PANDA T2 TMDI 2971	BELI	GAS	NORTH	2015	333.6
151 PANDA TEMPLE II POWER STG	TUINKUU2UD	TNSKA GT1	LAMAR	GAS	NORTH	1989	87 0
152 PARIS ENERGY CENTER CTG 1		TNORA_GT1		GAS	NORTH	1989	87.0
153 PARIS ENERGY CENTER CTG 2		TNORA_012		GAS	NORTH	1990	890
154 PARIS ENERGY CENTER STG		1N3NA_310		GAS	HOUSTON	2000) 176.0
155 PASADENA COGEN FACILITY CTG 2	00INR0014	PSG_PSG_G12		GAS	HOUSTON	200) 176.0
156 PASADENA COGEN FACILITY CTG 3	00INR0014	PSG_PSG_G13		GAS	HOUSTON	2000	1690
157 PASADENA COGEN FACILITY STG 2	00INR0014	PSG_PSG_ST2	HAKKIS	GAS	MEST	200	7 84.0
158 QUAIL RUN ENERGY CTG 1	06INR0036b	QALSW_GI1	ECTOR	GAG	WEST	200	7 86.0
159 QUAIL RUN ENERGY CTG 2	06INR0036b	QALSW_GT2	ECTOR	GAS	WEGT	200.	7 080
160 QUAIL RUN ENERGY STG 1	06INR0036b	QALSW_STG1	ECTOR	GAS	WEOI	200	

Unit Capacities - Winter							
	GENERATION						
	PROJECT CODE	UNIT CODE	COUNTY	FUEL	ZONE	START YEAR	CAPACITY (MW)
	06INR0036a	OALSW GT3	ECTOR	GAS	WEST	2008	81.0
	06INR0036a	QALSW GT4	ECTOR	GAS	WEST	2008	81 0
162 QUAL RON ENERGY STG 2	06INR0036a	QALSW STG2	ECTOR	GAS	WEST	2008	98 0
164 BIO NOCAL ES POWER CTG 1	02INR0001	RIONOG CT1	GUADALUPE	GAS	SOUTH	2002	175.0
164 RIO NOGALES POWER CTG 1	02INR0001	RIONOG CT2	GUADALUPE	GAS	SOUTH	2002	175 0
165 RIO NOGALES FOWER CTG 2	02INR0001	RIONOG CT3	GUADALUPE	GAS	SOUTH	2002	175 0
166 RIU NOGALES POWER CIG S	021NR0001	RIONOG ST1	GUADAL UPE	GAS	SOUTH	2002	323 0
167 RIU NUGALES FOWER STG 4	031NR0014	RAYBURN RAYBURG7	VICTORIA	GAS	SOUTH	2003	50 0
100 SAM RATBURN POWER CTG 7	031NP0014	RAVBURN RAVBURG8	VICTORIA	GAS	SOUTH	2003	51.0
169 SAM RATBURN POWER CTG 0	031NR0014	RAYBURN RAYBURG9	VICTORIA	GAS	SOUTH	2003	50.0
170 SAM RAYBURN POWER CIG 9	021000014	PAVBURN PAVBURG10	VICTORIA	GAS	SOUTH	2003	40 0
1/1 SAM RAYBURN POWER STG 10	031400014	SANDHSYD SH 54	TRAVIS	GAS	SOUTH	2004	170 0
172 SANDHILL ENERGY CENTER CTG 5A	03111100033	SANDHSVD SH 50	TRAVIS	GAS	SOUTH	2004	160 0
173 SANDHILL ENERGY CENTER STG 50	0311110033	SILASPAY SILAS 6	CAMERON	GAS	COASTAL	1962	21.0
174 SILAS RAY POWER SIG 6		SILASRAY SILAS 9	CAMERON	GAS	COASTAL	1996	49 0
175 SILAS RAT POWER CIG 9		THW THWGT31	HARRIS	GAS	HOUSTON	1972	57 0
176 TH WHARTON POWER CTG 31			HARRIS	GAS	HOUSTON	1972	57 0
177 TH WHARTON POWER CTG 32		THW THWGT33	HARRIS	GAS	HOUSTON	1972	57 0
178 TH WHARTON POWER CTG 33		THW THWGT34	HARRIS	GAS	HOUSTON	1972	57.0
179 TH WHARTON POWER CTG 34		THIN THINST 3	HARRIS	GAS	HOUSTON	1974	104 0
180 TH WHARTON POWER STG 3		THW_THWGT_3	HARRIS	GAS	HOUSTON	1972	57 0
181 TH WHARTON POWER CTG 41		THIN THINGTAS		GAS	HOUSTON	1972	57 0
182 TH WHARTON POWER CIG 42				GAS	HOUSTON	1974	57 0
183 T H WHARTON POWER CIG 43				GAS	HOUSTON	1974	57 0
184 TH WHARTON POWER CIG 44		THIN TUNET 4		GAS	HOUSTON	1974	104.0
185 T H WHARTON POWER STG 4		TYOTY CTA		GAS	HOUSTON	2000	102.4
186 TEXAS CITY POWER CTG A			GALVESTON	GAS	HOUSTON	2000	102.4
187 TEXAS CITY POWER CTG B			GALVESTON	GAS	HOUSTON	2000	102.4
188 TEXAS CITY POWER CTG C			GALVESTON	GAS	HOUSTON	2000	131.5
189 TEXAS CITY POWER STG	001100000		VICTORIA	GAS	SOUTH	2000	171.0
190 VICTORIA POWER CTG 6	08INR0050		VICTORIA	GAG	SOUTH	1963	132.0
191 VICTORIA POWER STG 5	08INR0050			GAS	WEST	1987	20.0
192 WICHITA FALLS CTG 1		WFCOGEN_UNIT1	VVICHITA	GAS	WEST	1987	20.0
193 WICHITA FALLS CTG 2		WFCOGEN_UNIT2	WICHITA	GAS	WEST	1987	20.0
194 WICHITA FALLS CTG 3		WFCOGEN_UNIT3	WICHITA	GAS	WEST	1987	16.0
195 WICHITA FALLS STG 4		WFCOGEN_UNIT4	WICHITA	GAS	NORTH	2004	275.0
196 WISE-TRACTEBEL POWER CTG 1	021NR0009	WCPP_CT1	WISE	GAS		2004	275.0
197 WISE-TRACTEBEL POWER CTG 2	02INR0009	WCPP_C12	WISE	GAS	NORTH	2004	290.0
198 WISE-TRACTEBEL POWER STG 1	02INR0009	WCPP_SIT	WISE	GAS	NORTH	2004	249.0
199 WOLF HOLLOW POWER CTG 1	01INR0015	WHCCS_CT1	HOOD	GAS	NORTH	2002	249.0
200 WOLF HOLLOW POWER CTG 2	01INR0015	WHCCS_CT2	HOOD	GAS	NORTH	2002	293.0
201 WOLF HOLLOW POWER STG	01INR0015	WHEES_STG	HOOD	GAS	NORTH	1973	200.0
202 ATKINS CTG 7		ATKINS_ATKINSG/	BRAZUS	GAS	NORTH	2004	48.0
203 DANSBY CTG 2		DANSBY_DANSBYGZ	BRAZOS	GAS		2004	50.0
204 DANSBY CTG 3	09INR0072	DANSBY_DANSBYG3	BRAZUS	GAS		1090	54.0
205 DECKER CREEK CTG 1		DECKER_DPGT_1	TRAVIS	GAS	SOUTH	1999	54.0
206 DECKER CREEK CTG 2		DECKER_DPG1_2	TRAVIS	GAS	SOUTH	1989	54.0
207 DECKER CREEK CTG 3		DECKER_DPGT_3	TRAVIS	GAS	SOUTH	1985	54.0
208 DECKER CREEK CTG 4		DECKER_DPG1_4	IRAVIS	GAS	NORTH	1905	80.0
209 DECORDOVA CTG 1		DCSES_CT10	HOOD	GAS	NORTH	1990	79.0
210 DECORDOVA CTG 2		DCSES_C120	HOOD	GAS	NORTH	1990	78.0
211 DECORDOVA CTG 3		DCSES_C130	HOOD	GAS	NORTH	1000	70 0
212 DECORDOVA CTG 4		DCSES_CI40	HOOD	GAS	NORTH	1950	170 4
213 ECTOR COUNTY ENERGY CTG 1	14INR0039	ECEC_G1	ECTOR	GAG	WEST	2015	170.4
214 ECTOR COUNTY ENERGY CTG 2	14INR0039	ECEC_G2	ECTOR	GAS	HOUSTON	2013	45.0
215 EXTEX LAPORTE GEN STN CTG 1	01INR0044	AZ_AZ_G1	HARRIS	GAD	HOUSTON	2005	45.0
216 EXTEX LAPORTE GEN STN CTG 2	01INR0044	AZ_AZ_GZ	HARRIS	GAD	HOUSTON	2005	450
217 EXTEX LAPORTE GEN STN CTG 3	01INR0044	AZ_AZ_G3	HARRIS	GAS	HOUSTON	2005	45.0
218 EXTEX LAPORTE GEN STN CTG 4	01INR0044	AZ_AZ_G4	HARRIS	GAS	HOUSTON	2003	54.0
219 GREENS BAYOU CTG 73		GBY_GBYGT73	HARRIS	GAS	HOUSTON	1976	54.0
220 GREENS BAYOU CTG 74		GBY_GBYGT74	HARRIS	GAS	HOUSTON	1976	540
221 GREENS BAYOU CTG 81		GBY_GBYGT81	HARRIS	GAS	HOUSTON	1976	. 54.0
222 GREENS BAYOU CTG 82		GBY_GBYGT82	HARRIS	GAS	HOUSTON	1976	50.0
223 GREENS BAYOU CTG 83		GBY_GBYGT83	HARRIS	GAS	HOUSTON	1976	5 540
224 GREENS BAYOU CTG 84		GBY_GBYGT84	HARRIS	GAS	HOUSTON	19/6	, 540
225 GREENVILLE IC ENGINE PLANT	10INR0070	STEAM_ENGINE_1	HUNT	GAS	NORTH	2010	04
226 GREENVILLE IC ENGINE PLANT	10INR0070	STEAM_ENGINE_2	HUNT	GAS	NORTH	2010	. 64
227 GREENVILLE IC ENGINE PLANT	10INR0070	STEAM_ENGINE_3	HUNT	GAS	NORTH	2010	8.4
228 LAREDO CTG 4	08INR0064	LARDVFTN_G4	WEBB	GAS	SOUTH	2008	97.4
229 LAREDO CTG 5	081NR0064	LARDVFTN_G5	WEBB	GAS	SOUTH	2008	94.4
230 LEON CREEK PEAKER CTG 1	04INR0009	LEON_CRK_LCPCT1	BEXAR	GAS	SOUTH	2004	480
231 LEON CREEK PEAKER CTG 2	04INR0009	LEON_CRK_LCPCT2	BEXAR	GAS	SOUTH	2004	480
232 LEON CREEK PEAKER CTG 3	04INR0009	LEON_CRK_LCPCT3	BEXAR	GAS	SOUTH	2004	480
233 LEON CREEK PEAKER CTG 4	04INR0009	LEON_CRK_LCPCT4	BEXAR	GAS	SOUTH	2004	48.0
234 MORGAN CREEK CTG 1		MGSES_CT1	MITCHELL	GAS	WEST	198	s 810
235 MORGAN CREEK CTG 2		MGSES_CT2	MITCHELL	GAS	WEST	198	s 810
236 MORGAN CREEK CTG 3		MGSES_CT3	MITCHELL	GAS	WEST	198	s 81.0
237 MORGAN CREEK CTG 4		MGSES_CT4	MITCHELL	GAS	WEST	198	81.0
238 MORGAN CREEK CTG 5		MGSES_CT5	MITCHELL	GAS	WEST	198	8 810
239 MORGAN CREEK CTG 6		MGSES_CT6	MITCHELL	GAS	WEST	198	8 810

		GENERATION						
		PROJECT CODE	UNIT CODE	COUNTY	FUEL	ZONE	START YEAR	CAPACITY (MW)
240		09INR0079a	PEARSAL2 AGR A	FRIO	GAS	SOUTH	2012	50.6
240	PEARSALL IC ENGINE PLANT B	09INR0079a	PEARSAL2_AGR_B	FRIO	GAS	SOUTH	2012	50.6
242	PEARSALL IC ENGINE PLANT C	09INR0079b	PEARSAL2_AGR_C	FRIO	GAS	SOUTH	2012	50.6
243	PEARSALL IC ENGINE PLANT D	09INR0079b	PEARSAL2_AGR_D	FRIO	GAS	SOUTH	2012	50.6
244	PERMIAN BASIN CTG 1		PB2SES_CT1	WARD	GAS	WEST	1988	710
245	PERMIAN BASIN CTG 2		PB2SES_CT2	WARD	GAS	WEST	1988	71 0
246	PERMIAN BASIN CTG 3		PB2SES_CT3	WARD	GAS	WEST	1988	74 0
247	PERMIAN BASIN CTG 4		PB2SES_CT4	WARD	GAS	WEST	1990	75.0
248	PERMIAN BASIN CTG 5		PB2SES_CT5	WARD	GAS	WEST	1990	/50
249	R W MILLER CTG 4		MIL_MILLERG4	PALO PINTO	GAS	NORTH	2000	1150
250	R W MILLER CTG 5		MIL_MILLERG5	PALO PINTO	GAS	NORTH	2000	115.0
251	RAY OLINGER CTG 4	00INR0024	OLINGR_OLING_4	COLLIN	GAS	NORTH	2001	13.5
252	SAM RAYBURN CTG 1		RAYBURN_RAYBURG1	VICTORIA	GAS	SOUTH	1963	13.5
253	SAM RAYBURN CTG 2		RAYBURN_RAYBURG2		GAS	HOUSTON	1905	81.0
254	SAN JACINTO SES CTG 1		SJS_SJS_G1		GAS	HOUSTON	1995	81.0
255	SAN JACINTO SES CTG 2	0410100044		TRAVIS	GAS	SOUTH	2001	48 0
256	SANDHILL ENERGY CENTER CTG 1	01INR0041	SANDHSYD SHI	TRAVIS	GAS	SOUTH	2001	48.0
257	SANDHILL ENERGY CENTER CTG 2	01INR0041	SANDHSYD SH2	TRAVIS	GAS	SOUTH	2001	48 0
258	SANDHILL ENERGY CENTER CTG 3	01INR0041	SANDHSYD SHA	TRAVIS	GAS	SOUTH	2001	48 0
259	SANDHILL ENERGY CENTER CTG 4	001000041	SANDHSYD SHE	TRAVIS	GAS	SOUTH	2010	48 0
260	SANDHILL ENERGY CENTER CTG 8	091010045	SANDHSYD SH7	TRAVIS	GAS	SOUTH	2010	48 0
261	SANDHILL ENERGY CENTER CTG 7	04IND0014	SILASRAY SILAS 10	CAMERON	GAS	COASTAL	2004	46 0
262	SILAS RAY CIG 10	04111110014	THW THWGT51	HARRIS	GAS	HOUSTON	1975	57 0
263	TH WHARTON CTG 51		THW THWGT52	HARRIS	GAS	HOUSTON	1975	57 0
264	TH WHARTON CTG 52		THW THWGT53	HARRIS	GAS	HOUSTON	1975	57.0
265			THW THWGT54	HARRIS	GAS	HOUSTON	1975	57 0
266			THW THWGT55	HARRIS	GAS	HOUSTON	1975	57 0
267	THWHATON CTC 55		THW THWGT56	HARRIS	GAS	HOUSTON	1975	57 0
268			THW THWGT 1	HARRIS	GAS	HOUSTON	1967	13.0
269			TGE TOEGT 1	WHARTON	GAS	SOUTH	1985	89 0
270		09INR0028	BRAUNIG VHB6CT5	BEXAR	GAS	SOUTH	2009	48 0
271		09INR0028	BRAUNIG VHB6CT6	BEXAR	GAS	SOUTH	2009	48.0
272		09INR0028	BRAUNIG VHB6CT7	BEXAR	GAS	SOUTH	2009	48 0
273		09INR0028	BRAUNIG VHB6CT8	BEXAR	GAS	SOUTH	2009	47 0
275			WAP WAPGT 1	FT BEND	GAS	HOUSTON	1967	13 0
2/5		12INR0086	PNPI GT2	FORT BEND	GAS	HOUSTON	2013	88.0
270		09INR0027	WIPOPA WPP G1	FAYETTE	GAS	SOUTH	2009	46 0
271	WINCHESTER POWER PARK CTG 2	09INR0027	WIPOPA WPP G2	FAYETTE	GAS	SOUTH	2009	46 0
270	WINCHESTER POWER PARK CTG 3	09INR0027	WIPOPA WPP_G3	FAYETTE	GAS	SOUTH	2009	46.0
273	WINCHESTER POWER PARK CTG 4	09INR0027	WIPOPA_WPP_G4	FAYETTE	GAS	SOUTH	2009	46.0
28	B M DAVIS STG U1		B_DAVIS_B_DAVIG1	NUECES	GAS	COASTAL	1974	330.0
28	CEDAR BAYOU STG U1		CBY_CBY_G1	CHAMBERS	GAS	HOUSTON	1970	745 0
283	CEDAR BAYOU STG U2		CBY_CBY_G2	CHAMBERS	GAS	HOUSTON	1972	749.0
284	4 DANSBY STG U1		DANSBY_DANSBYG1	BRAZOS	GAS	NORTH	1978	110.0
28	5 DECKER CREEK STG U1		DECKER_DPG1	TRAVIS	GAS	SOUTH	1971	320 0
28	6 DECKER CREEK STG U2		DECKER_DPG2	TRAVIS	GAS	SOUTH	1978	428 0
28	7 GRAHAM STG U1		GRSES_UNIT1	YOUNG	GAS	WEST	1960	234.0
28	B GRAHAM STG U2		GRSES_UNIT2	YOUNG	GAS	WEST	1969	390 0
28	9 GREENS BAYOU STG U5		GBY_GBY_5	HARRIS	GAS	HOUSTON	19/3	3/10
29	0 HANDLEY STG U3		HLSES_UNIT3	TARRANT	GAS	NORTH	1963	395.0
29	1 HANDLEY STG U4		HLSES_UNIT4	TARRANT	GAS	NORTH	19/6	4300
29	2 HANDLEY STG U5		HLSES_UNIT5	TARRANT	GAS	NORTH	1977	4350
29	3 LAKE HUBBARD STG U1		LHSES_UNIT1	DALLAS	GAS	NORTH	1970	522.0
29	4 LAKE HUBBARD STG U2		LHSES_UNIT2A	DALLAS	GAS	NORTH	19/5	122.0
29	5 MOUNTAIN CREEK STG U6		MCSES_UNI16	DALLAS	GAS	NORTH	1950	1180
29	6 MOUNTAIN CREEK STG U7		MCSES_UNIT	DALLAS	GAS		1950	568.0
29	7 MOUNTAIN CREEK STG U8		MCSES_UNIT8	DALLAS	GAS	SOUTH	1977	420.0
29	8 O W SOMMERS STG U1		CALAVERS_OWS1	BEXAR	GAS	SOUTH	1972	4100
29	9 O W SOMMERS STG U2		CALAVERS_OWS2	BEXAR	GAS	SOUTH	1961	20.0
30	0 PEARSALL STG U1		PEARSALL_PEARS_1	FRIO	GAS	SOUTH	1961	240
30	1 PEARSALL STG U2		PEARSALL_PEARS_2	FRIO	GAS	SOUTH	1961	22 0
30	2 PEARSALL STG U3		PEARSALL_PEARS_3		GAS	NORTH	1966	5 20.0
30	3 POWERLANE PLANT STG U1		STEAMIA_STEAM_T	HUNT	GAS	NORTH	1967	7 260
30	4 POWERLANE PLANT STG U2		STEAM_STEAM_2	HUNT	GAS	NORTH	1978	3 410
30	D POWERLANE PLANT STG U3		MIL MILLERGI	PALO PINTO	GAS	NORTH	2000	75.0
30			MIL MILLERG2	PALO PINTO	GAS	NORTH	2000	120.0
30	A RAY MILLER SIGUZ		MIL MILLERG3	PALO PINTO	GAS	NORTH	2000	208 0
30			OLINGR OLING 1	COLLIN	GAS	NORTH	1967	7 78.0
30			OLINGR OLING 2	COLLIN	GAS	NORTH	1973	1 107.0
31			OLINGR OLING 3	COLLIN	GAS	NORTH	1975	5 146 0
31			GIDEON GIDEONG1	BASTROP	GAS	SOUTH	1965	5 130.0
31			GIDEON GIDEONG2	BASTROP	GAS	SOUTH	1968	B 135.0
31			GIDEON GIDEONG3	BASTROP	GAS	SOUTH	1972	2 340 0
3	IS SPENCER STG UA		SPNCER SPNCE 4	DENTON	GAS	NORTH	1964	6 61 0
31	IS SPENCER STG US		SPNCER_SPNCE_5	DENTON	GAS	NORTH	1973	3 61.0
3	7 STRYKER CREEK STG UI		SCSES_UNIT1A	CHEROKEE	GAS	NORTH	1958	8 167 (
31	18 STRYKER CREEK STG U2		SCSES_UNIT2	CHEROKEE	GAS	NORTH	196	5 502.0

Unit Capacities - Winter GENERATION INTERCONNECTION PROJECT CODE ZONE START YEAR COUNTY FUEL UNIT CODE UNIT NAME TRSES_UNIT6 BRAUNIG_VHB1 BRAUNIG_VHB2 NORTH 1965 HENDERSON GAS 319 TRINIDAD STG U6 SOUTH BEXAR GAS 320 V H BRAUNIG STG U1 DEVAD GAS

319 1	FRINIDAD STG U6		IRSES_UNITO	TENDERSON	GAO		1000	220.0
320 \	/ H BRAUNIG STG U1		BRAUNIG_VHB1 E	BEXAR	GAS	SOUTH	1966	2200
020			BRAUNIG VHB2	BEXAR	GAS	SOUTH	1968	230 0
321	H BRAUNIG STG 02			DEYAD	GAS	SOUTH	1970	412 0
322 \	/ H BRAUNIG STG U3		BRAUNIG_VIIDS		0,10	HOUSTON	1059	169.0
323 1	N A PARISH STG U1		WAP_WAP_G1 F	T BEND	GAS	HOUSTON	1936	103.0
224 1	A A PARISH STG U2		WAP. WAP_G2	FT BEND	GAS	HOUSTON	1958	169.0
324			WAP WAP G3	FT BEND	GAS	HOUSTON	1961	258.0
325	WA PARISH STG US			T DEND	CAS	HOUSTON	1968	552 0
326	W A PARISH STG U4		WAP_WAP_G4	FI BENU	GAG	NODTU	2012	105.0
327	NACOGDOCHES POWER	9INR0007	NACPW_UNIT1 I	NACOGDOCHE	BIOMASS	NORTH	2012	105 0
		18INR0033	LEBIO UNIT1	ANGELINA	BIOMASS	NORTH	2012	45.0
320				REYAR	BIOMASS	SOUTH	2002	9.8
329	BIOENERGY AUSTIN WALZEM RD LFG		DG_WALZE_40NITS		DIOMINOO	COUTU	2005	9.6
330	BIOENERGY TEXAS COVEL GARDENS LFG		DG_MEDIN_1UNIT I	BEXAR	BIOMASS	SOUTH	2003	5.0
221	FORT WORTH METHANE LEG		DG RDLML_1UNIT	TARRANT	BIOMASS	NORTH	2011	1.6
221				DALLAS	BIOMASS	NORTH	2015	40
332	GRAND PRAIRIE LFG			001111	DIOMAGE	NORTH	2011	32
333	MCKINNEY LFG		DG_MKNSW_2UNITS	COLLIN	BIOMASS	NORTH	2011	4.0
334	NELSON GARDENS LEG		DG_78252_4UNITS	BEXAR	BIOMASS	SOUTH	2013	4.2
004			DG FERIS 4 UNITS	DALLAS	BIOMASS	NORTH	2007	6.4
335	SKYLINELFG			DALLAS	RIOMASS	NORTH	2011	3.2
336	TRINITY OAKS LFG		DG_KLBRG_IONII	DALLAS	DIONICOO	HONOTON	2002	67
337	VIRIDIS ENERGY-ALVIN LEG		DG_AV_DG1	GALVESTON	BIOMASS	HOUSTON	2002	67
			DG HB DG1	HARRIS	BIOMASS	HOUSTON	2002	10 0
338	VIRIDIS ENERGI-HOWIDLE LFG				BIOMASS	HOUSTON	2002	39
339	VIRIDIS ENERGY-LIBERTY LFG		DG_LB_DG1		DIDIMAGO	HOUSTON	2002	39
340	VIRIDIS ENERGY-TRINITY BAY LFG		DG_TRN_DG1	CHAMBERS	BIOMASS	HOUSTON	2002	55
241	WM RENEWARI F-ALISTIN LEG		DG SPRIN_4UNITS	TRAVIS	BIOMASS	SOUTH	2007	b.4
341			DC BIO2 AUNITS	DENTON	BIOMASS	NORTH	2009	6.4
342	WM RENEWABLE-DFW GAS RECOVERY LFG			DENTON	DIONACC	NORTH	1022	62
343	WM RENEWABLE-BIOENERGY PARTNERS LFG		DG_BIOE_2UNITS	DENTON	BIOMASS	NORTH	1300	0.2
344	WM RENEWABLE-MESQUITE CREEK LEG		DG_FREIH_2UNITS	COMAL	BIOMASS	SOUTH	2011	3.2
044			DG WSTHE SUNITS	PARKER	BIOMASS	NORTH	2010	48
345	WM RENEWABLE-WESTSIDE LFG				STOPACE	WEST	2012	-
346	NOTREES BATTERY FACILITY	12INR0076	NWF_NBS	WINKLER	STORAGE	WEST	2012	
347	Operational Capacity Total (Nuclear, Coal, Gas, Bioma	55)						60,013.0
	Operational oupering free (internet)							
348								
349	Operational Resources (Hydro)					WEOT	1002	37 0
350	AMISTAD HYDRO 1		AMISTAD_AMISTAG1	VAL VERDE	HYDRO	WEST	1965	57 8
054			AMISTAD AMISTAG2	VAL VERDE	HYDRO	WEST	1983	37 9
301	AMISTAD III DRO Z			TRAVIS	HYDRO	SOUTH	1940	80
352	AUSTIN HYDRO 1					COUTH	1940	9.0
353	AUSTIN HYDRO 2		AUSTPL_AUSTING2	RAVIS	HIDRO	300111	1000	10.0
354	BUCHANAN HYDRO 1		BUCHAN_BUCHANG1	LLANO	HYDRO	SOUTH	1938	10.0
334			BUCHAN BUCHANG2	LLANO	HYDRO	SOUTH	1938	16 0
355	BUCHANAN HYDRO 2		DUCUAN DUCHANC2	LLANO		SOUTH	1950	17 0
356	BUCHANAN HYDRO 3		BUCHAN_BUCHANG3	LLANO	HIDKO	Seem	1044	40.0
357	DENISON DAM 1		DNDAM_DENISOG1	GRAYSON	HYDRO	NORTH	1944	400
000	DENICON DAM 2		DNDAM DENISOG2	GRAYSON	HYDRO	NORTH	1948	40.0
350	DENISON DAW 2		EALCON EALCONG1	STAPP		SOUTH	1954	12 0
359	FALCON HYDRO 1		FALCON_FALCONGT	JIAN	Indico	000711	1054	12.0
360	FALCON HYDRO 2		FALCON_FALCONG2	STARR	HYDRO	SOUTH	1954	12 0
261			FALCON FALCONG3	STARR	HYDRO	SOUTH	1954	12.0
301	FALCON HIDRO 3		MIDTZ MIDTZ C1	BUDNET	HYDRO	SOUTH	1951	29 0
362	GRANITE SHOALS HYDRO 1		WIRIZ_WIRIZ_GI	BURNET	INDRO	COUTH	1051	29.0
363	GRANITE SHOALS HYDRO 2		WIRTZ_WIRTZ_G2	BURNET	HYDRO	SOUTH	1931	200
264			INKSDA_INKS_G1	LLANO	HYDRO	SOUTH	1938	14.0
304			MARREA MARREAGI	BURNET	HYDRO	SOUTH	1951	21.0
365	MARBLE FALLS HYDRO T			DUDNET		SOUTH	1951	20 0
366	MARBLE FALLS HYDRO 2		MARBFA_MARBFAG2	BURNET	HIDRO		1041	26.0
367	MARSHALL FORD HYDRO 1		MARSFO_MARSFOG1	TRAVIS	HYDRO	SOUTH	1941	30.0
200			MARSFO MARSFOG2	TRAVIS	HYDRO	SOUTH	1941	36 0
300	MARSHALL FORD HTDRO 2		MARCEO MAREEOCZ	TRAVIS	HYDRO	SOUTH	1941	29 0
369	MARSHALL FORD HYDRO 3		MARSPO_MARSPOS		INDRO	NORTH	1052	24.0
370	WHITNEY DAM HYDRO		WND_WHITNEY1	BOSQUE	HYDRO	NORTH	1955	24.0
374	WHITNEY DAM HYDRO 2		WND_WHITNEY2	BOSQUE	HYDRO	NORTH	1953	24 0
571			DG OAKHI 1UNIT	TARRANT	HYDRO	NORTH	2014	1.4
372	ARLINGTON OUTLET HYDROELECTRIC FACILITY			MANEDICK		SOUTH	2005	9.6
373	EAGLE PASS HYDRO		DG_EAGLE_HY_EAGLE_	MAVERICK	HIDRO	000111	1000	6.0
374	GUADALUPE BLANCO RIVER AUTH-CANYON		DG_CANYHY_CANYHYG	COMAL	HYDRO	5001H	1303	00
074	SUMPAUUPE PLANCO BIVER AUTH LAKEWOOD TAE	5	DG LKWDT 2UNITS	GONZALES	HYDRO	SOUTH	1931	4.8
375	GUADALUPE BLANGO RIVER AUTH-LAREWOOD TAP				HYDRO	SOUTH	1928	77
376	GUADALUPE BLANCO RIVER AUTH-MCQUEENEY		DG_MCQUE_JUNITS	GUADALOFE	In DRO	00171	1039	3.6
377	GUADALUPE BLANCO RIVER AUTH-SCHUMANSVILL	E	DG_SCHUM_2UNITS	GUADALUPE	HYDRO	SOUTH	1920	5.0
070	LENARSYILLE HYDRO CITY OF GARLAND		DG LWSVL 1UNIT	DENTON	HYDRO	NORTH	1991	2.2
3/0								555.1
379	Operational Capacity Total (Hydro)							52.0
380	Hydro Capacity Contribution (Top 20 Hours)		HYDRO_CAP_CONT					52.5
381								
001	Oursestional Bosourses (Salar)							
382	Operational Resources (Solar)		LOLOIA UNIT 4	DDESIDIO	SOLAR	WEST	2012	10 0
383	ACACIA SOLAR	13DGR0001	ACACIA_UNIT_T	RESIDIO		WEET	2014	22.0
384	FS BARILLA SOLAR-PECOS	12INR0059	HOVEY_UNIT1	PECOS	SOLAR	WEST	2014	22 0
201		13INR0058	OCI ALM1_UNIT1	BEXAR	SOLAR	SOUTH	2013	39.2
385		4411000004	ECURSE UNITA	KINNEY	SOLAR	SOUTH	2014	37.6
386	OCI ALAMO 4 SOLAR-BRACKETVILLE	14INKUU24	ECCIFSE_ONIT		000.00	SOUTH	2011	26.7
387	WEBBERVILLE SOLAR	10INR0082	WEBBER_S_WSP1	IRAVIS	SULAR	30016	2011	207
201			DG BROOK 1UNIT	BEXAR	SOLAR	SOUTH	2010	7.6
388	BLUE WING I SULAR			REXAR	SOLAR	SOUTH	2010	73
389	BLUE WING 2 SOLAR		DG_ELEM_IDMII	DEVAD	50145	SOUTH	2014	4 4
390) OCI ALAMO 2 SOLAR-ST HEDWIG		DG_STHWG_UNIT1	BEXAR	SULAK	30018	2014	
20	COLALAMO 3-WAI ZEM SOLAR		DG_WALZM_UNIT1	BEXAR	SOLAR	SOUTH	2014	5.5
29			DG COSERVSS COST	DENTON	SOLAR	NORTH	2015	20
393	2 RENEWABLE ENERGY ALTERNATIVES-CCS1		D0_000EAV60_0001	DEVAD	SOLAP	SOUTH	2012	56
393	3 SUNEDISON CPS3 SOMERSET 1 SOLAR		DG_SOME1_1UNIT	REXAR	SULAR	30018	2012	
20	SUNEDISON SOMERSET 2 SOLAR		DG_SOME2_1UNIT	BEXAR	SOLAR	SOUTH	2012	50
39			DG VALLE TUNIT	BEXAR	SOLAR	SOUTH	2012	99
39	SUNEDISON RABEL ROAD SOLAR			DEVAD	SOLAR	SOUTH	2012	99
39	5 SUNEDISON VALLEY ROAD SOLAR		DG_VALL2_1UNIT	BEAAK	SULAR	550111	2012	400 7
39	7 Operational Capacity Total (Solar)							192./

CAPACITY (MW)

235.0

	Unit Capacities - Winter			2 J				
		GENERATION						
	UNIT NAME	PROJECT CODE	UNIT CODE	COUNTY	FUEL	ZONE	START YEAR	CAPACITY (MW)
398	Solar Peak Average Capacity Percentage		SOLAR_PEAK_PCT	%				100 0
399	Onomitional Connective Linearcailable due to Extended Outer	ne or Derate	OPERATION UNAVAIL		GAS			(195 0)
400	Operational Capacity Onavailable due to Extended Outag	Je of Defaie	OPERATION_TOTAL					68,063.3
402			_					
403	Switchable Resources							470.0
404	TENASKA KIAMICHI STATION 1CT101	03INR0012	KMCHI_1CT101	FANNIN	GAS	NORTH	2003	1/8.0
405	TENASKA KIAMICHI STATION 1CT201	03INR0012	KMCHI_1CT201	FANNIN	GAS	NORTH	2003	307.0
406	TENASKA KIAMICHI STATION 1ST	03INR0012 03INR0012	KMCHL 2CT101	FANNIN	GAS	NORTH	2003	178.0
407	TENASKA KIAMICHI STATION 2CT101	03INR0012	KMCHI 2CT201	FANNIN	GAS	NORTH	2003	180.0
409	TENASKA KIAMICHI STATION 2ST	03INR0012	KMCHI_2ST	FANNIN	GAS	NORTH	2003	307 0
410	TENASKA FRONTIER STATION CTG 1	00PSR4	FTR_FTR_G1	GRIMES	GAS	NORTH	2000	180.0
411	TENASKA FRONTIER STATION CTG 2	00PSR4	FTR_FTR_G2	GRIMES	GAS	NORTH	2000	180.0
412	TENASKA FRONTIER STATION CTG 3	00PSR4	FTR_FTR_G3	GRIMES	GAS	NORTH	2000	400.0
413	TENASKA FRONTIER STATION STG 4	00PSR4 011NR0019	TGCCS CT1	RUSK	GAS	NORTH	2001	162 0
414		01INR0019	TGCCS CT2	RUSK	GAS	NORTH	2001	179 0
415	TENASKA GATEWAY STATION CTG 3	01INR0019	TGCCS_CT3	RUSK	GAS	NORTH	2001	178 0
417	TENASKA GATEWAY STATION STG 4	01INR0019	TGCCS_UNIT4	RUSK	GAS	NORTH	2001	389 0
418	FRONTERA GENERATION CTG 1		FRONTERA_FRONTEG1	HIDALGO	GAS	SOUTH	1999	1700
419	FRONTERA GENERATION CTG 2		FRONTERA_FRONTEG2	HIDALGO	GAS	SOUTH	1999	184.0
420	FRONTERA GENERATION STG		FRUNTERA_FRUNTEG3	HIDALGO	GAS	300111	2000	3,702.0
421	Switchable Capacity Fotal							
422	Switchable Capacity Unavailable to ERCOT		SWITCH_UNAVAIL		GAS			(470 0)
424			_					
425	Available Mothball Capacity based on Owner's Return P	robability	MOTH_AVAIL		COAL			-
426								4 422 0
427	Private-Use Network Capacity Contribution (Top 20 Hou	rs)	PUN_CAP_CONT		GAS			4,455 0
428	Mad Deservation							
429		12INR0072	ANACACHO_ANA	KINNEY	WIND	SOUTH	2012	99 8
431	BARTON CHAPEL WIND	06INR0021	BRTSW_BCW1	JACK	WIND	NORTH	2007	120.0
432	BLUE SUMMIT WIND 5	12INR0075	BLSUMMIT_BLSMT1_5	WILBARGER	WIND	WEST	2013	9.0
433	BLUE SUMMIT WIND 6	121NR0075	BLSUMMIT_BLSMT1_6	WILBARGER	WIND	WEST	2013	126.4
434	BOBCAT BLUFF WIND	08INR0049	BCATWIND_WIND_1	ARCHER		WEST	2012	120.6
435	BUFFALO GAP WIND 1	04INR0015	BUFF_GAP_UNIT1	TATLOR	WIND	WEST	2000	115.5
436	BUFFALO GAP WIND 2_1	06INR0037	BUFF GAP UNIT2 2	TAYLOR	WIND	WEST	2007	117.0
438	BUFFALO GAP WIND 3	07INR0030	BUFF_GAP_UNIT3	TAYLOR	WIND	WEST	2008	170.2
439	BULL CREEK WIND U1	07INR0037	BULLCRK_WND1	BORDEN	WIND	WEST	2009	88 0
440	BULL CREEK WIND U2	07INR0037	BULLCRK_WND2	BORDEN	WIND	WEST	2009	90 0
441	CALLAHAN WIND	04INR0013	CALLAHAN_WND1	CALLAHAN	WIND	WEST	2004	1140
442	CAMP SPRINGS WIND 1	06 NR0038	CSEC_CSECG1	SCURRY	WIND	WEST	2007	120 0
443	CAMP SPRINGS WIND 2	07INR0040	CAPRIDGE CR1	STERLING	WIND	WEST	2007	214 5
444	CAPRICORN RIDGE WIND 1	07INR0041	CAPRIDGE_CR3	STERLING	WIND	WEST	2008	186.0
446	CAPRICORN RIDGE WIND 3	07INR0041	CAPRIDGE_CR2	STERLING	WIND	WEST	2007	149.5
447	CAPRICORN RIDGE WIND 4	08INR0063	CAPRIDG4_CR4	COKE	WIND	WEST	2008	112 5
448	CEDRO HILL WIND 1	09INR0082	CEDROHIL_CHW1	WEBB	WIND	SOUTH	2010	750
449	CEDRO HILL WIND 2	09INR0082	CEDROHIL_CHW2			WEST	2010	126.5
450		0/INR00450	INDNENR INDNENR	PECOS	WIND	WEST	2002	84 0
451	DESERT SKY WIND 1		INDNENR INDNENR 2	PECOS	WIND	WEST	2002	76 5
453	ELBOW CREEK WIND	08INR0053	ELB_ELBCREEK	HOWARD	WIND	WEST	2008	; 118 7
454	FOREST CREEK WIND	05INR0019	MCDLD_FCW1	GLASSCOCK	WIND	WEST	2007	124.2
455	GOAT WIND	07INR0028	GOAT_GOATWIND	STERLING	WIND	WEST	2008	80 0
456	GOAT WIND 2	07INR0028b	GOAT_GOATWIN2	STERLING	WIND	WEST	2010	148.6
457	GOLDTHWAITE WIND 1	11INR0013	GWEC_GWEC_G1		WIND		2014	140.0 107.4
458	GRANDVIEW WIND 1 (CONWAY) GV1A	13INR0005a	GRANDVW1_GV1A GRANDVW1_GV1B	CARSON	WIND	PANHANDLE	2014	103 8
460	GREEN MOUNTAIN WIND (BRAZOS) U1	03INR0020	BRAZ_WND_WND1	SCURRY	WIND	WEST	2003	99.0
461	GREEN MOUNTAIN WIND (BRAZOS) U2	031NR0020	BRAZ_WND_WND2	SCURRY	WIND	WEST	2003	3 61.0
462	2 HACKBERRY WIND	04INR0011e	HWF_HWFG1	SHACKELFOR	E WIND	WEST	200	163 5
463	HEREFORD WIND G	13INR0059a	HRFDWIND_WIND_G	DEAF SMITH			201	, 995 ; 100 r
464		13INK00598		TAYLOR	WIND	WEST	201	5 206.6
46	NORSE HOLLOW WIND 1	05INR0018a	HHOLLOW2 WIND1	TAYLOR	WIND	WEST	200	5 158 0
400	7 HORSE HOLLOW WIND 2	06INR0040	HHOLLOW3_WND_1	TAYLOR	WIND	WEST	200	õ 208 0
46	B HORSE HOLLOW WIND 4	06INR0040	HHOLLOW4_WND1	TAYLOR	WIND	WEST	200	5 108.0
46) INADALE WIND	07INR0045b	INDL_INADALE1	NOLAN	WIND	WEST	200	3 196.6
47	INDIAN MESA WIND	00INR0022	INDNNWP_INDNNWP	PECOS	WIND	WEST	200	1 82 5
47	JUMBO ROAD WIND 1	13INR0059b	HREDWIND_JRDWIND1	DEAF SMITH	WIND WIND		201	J 146.2 5 153.4
47:		13INK0059b	KEECHLU1	JACK	WIND	NORTH	201	4 110 (
47	A KING MOUNTAIN WIND (NE)	00INR0025	KING NE KINGNE	UPTON	WIND	WEST	200	1 793
47	5 KING MOUNTAIN WIND (NW)	00INR0025	KING_NW_KINGNW	UPTON	WIND	WEST	200	1 79:
47	6 KING MOUNTAIN WIND (SE)	00INR0025	KING_SE_KINGSE	UPTON	WIND	WEST	200	1 40.3

		GENERATION						
	_	INTERCONNECTION			CIJEI	ZONE	START YEAR	CAPACITY (MW)
		DOINPOO25	KING SW KINGSW	UPTON	WIND	WEST	2001	79.3
4// 1		10INR0026	LGD LANGFORD	TOM GREEN	WIND	WEST	2009	155.0
479 1	LOGANS GAP WIND I UI	13INR0050	LGW UNIT1	COMANCHE	WIND	NORTH	2015	103.8
480 1	LOGANS GAP WIND I U2	13INR0050	LGW_UNIT2	COMANCHE	WIND	NORTH	2015	106 3
481	LONE STAR WIND 1 (MESQUITE)	04INR0011d	LNCRK_G83	SHACKELFORE	WIND	WEST	2006	200.0
482	LONE STAR WIND 2 (POST OAK) U1	04INR0011a	LNCRK2_G871	SHACKELFORE	WIND	WEST	2007	100.0
483	LONE STAR WIND 2 (POST OAK) U2	04INR0011a	LNCRK2_G872	SHACKELFORL	WIND		2007	100 0
484	LONGHORN WIND NORTH U1	14INR0023	LHORN_N_UNIT1	FLOYD			2015	100 0
485	LONGHORN WIND NORTH U2	14INR0023	LONEWOLE G1	MITCHELI	WIND	WEST	2019	49.5
486		0910R0047	LONEWOLF G2	MITCHELL	WIND.	WEST	2009	51 0
48/		09INR0047	LONEWOLF G3	MITCHELL	WIND	WEST	2011	25 5
400		09INR0047	LONEWOLF G4	MITCHELL	WIND	WEST	2011	24 0
409		09INR0051	MESQCRK_WND1	DAWSON	WIND	WEST	2015	105 6
491	MESQUITE CREEK WIND 2	09INR0051	MESQCRK_WND2	DAWSON	WIND	WEST	2015	105.6
492	MIAMI WIND G1	14INR0012a	MIAM1_G1	GRAY	WIND	PANHANDLE	2014	144 3
493	MIAMI WIND G2	14INR0012a	MIAM1_G2	GRAY	WIND	PANHANDLE	2014	144 3
494	MCADOO WIND	08INR0028	MWEC_G1	DICKENS	WIND	PANHANDLE	2008	150 0
495	NOTREES WIND 1	07INR0005	NWF_NWF1	WINKLER	WIND	WEST	2009	92.0
496	NOTREES WIND 2	071NR0005	NWF_NWF2	WINKLER	WIND	WEST	2009	58.8
497	OCOTILLO WIND	04INR0017	OWF_OWF	CARSON			2008	109.2
498	PANHANDLE WIND 1 U1	14INR0030a_2		CARSON	WIND	PANHANDLE	2014	109.2
499	PANHANDLE WIND 1 U2	14INR0030a_2	PHI_UNIT1	CARSON	WIND	PANHANDLE	2014	94.2
500		14INR0030b	PH2_UNIT2	CARSON	WIND	PANHANDLE	2014	96.6
501		07INR0022	PC NORTH PANTHER1	HOWARD	WIND	WEST	2008	142.5
502	PANTHER CREEK WIND 1	08INR0037	PC SOUTH PANTHER2	HOWARD	WIND	WEST	2008	115.5
504	PANTHER CREEK WIND 3	11INR0015	PC_SOUTH_PANTHER3	HOWARD	WIND	WEST	2009	199 5
505	PECOS WIND 1 (WOODWARD)	01INR0035	WOODWRD1_WOODWR	PECOS	WIND	WEST	2001	82 5
506	PECOS WIND 2 (WOODWARD)	01INR0035	WOODWRD2_WOODWR	PECOS	WIND	WEST	2001	77.2
507	PYRON WIND	071NR0045a	PYR_PYRON1	SCURRY	WIND	WEST	2008	249 0
508	RATTLESNAKE DEN WIND PHASE 1 G1	13INR0020a	RSNAKE_G1	GLASSCOCK	WIND	WEST	2015	104.3
509	RATTLESNAKE DEN WIND PHASE 1 G2	13INR0020a	RSNAKE_G2	GLASSCOCK	WIND	WEST	2015	84.0
510	RED CANYON WIND	05INR0017	RDCANYON_RDCNY1	BORDEN		WEST	2008	209.0
511	ROSCOE WIND	07INR0045e	TRWSWI_ROSCOE	CARSON		PANHANDLE	2005	150 0
512	ROUTE 66 WIND	14INR00328		GLASSCOCK	WIND	WEST	2008	90.0
513	SAND BLUFF WIND	09INR0019	SENATEWD UNIT1	JACK	WIND	NORTH	2012	150 0
514		06INR0012a	KEO KEO SM1	PECOS	WIND	WEST	2008	150.0
516	SHERBING 2 WIND	06INR0012b	KEO SHRBINO2	PECOS	WIND	WEST	2011	147 5
517	SILVER STAR WIND	03INR0034	FLTCK SSI	EASTLAND	WIND	NORTH	2008	60 0
518	SNYDER WIND	04INR0020	ENAS_ENA1	SCURRY	WIND	WEST	2007	63 0
519	SOUTH TRENT WIND	07INR0029	STWF_T1	NOLAN	WIND	WEST	2008	98.2
520	SPINNING SPUR WIND TWO	13INR0048	SSPURTWO_WIND_1	OLDHAM	WIND	PANHANDLE	2014	161 0
521	SPINNING SPUR 3 [WIND 1]	14INR0053	SSPURTWO_SS3WIND1	OLDHAM	WIND	PANHANDLE	2015	96.0
522	SPINNING SPUR 3 [WIND 2]	14INR0053	SSPURTWO_SS3WIND2	OLDHAM	WIND	PANHANDLE	2015	98 0
523	STANTON WIND ENERGY	07INR0010	SWEC_G1	MARTIN	WIND	WEST	2008	211.2
524	STEPHENS RANCH WIND 1	12INR0034a	SRWE1_UNI11	BORDEN		WEST	2014	164 7
525	STEPHENS RANCH WIND 2	12INR0034b	SRVVE1_SRVVE2	NOLAN		WEST	2013	36.6
526	SWEETWATER WIND 1	011NR0036		NOLAN	WIND	WEST	2006	15 9
527	SWEETWATER WIND 2A	01INR0036	SWEETWN2_WND2	NOLAN	WIND	WEST	2004	97 5
520	SWEETWATER WIND 26	01INR0036	SWEETWN3 WND3A	NOLAN	WIND	WEST	2011	28 5
525	SWEETWATER WIND 3B	01INR0036	SWEETWN3_WND3B	NOLAN	WIND	WEST	2011	100.5
531	SWEETWATER WIND 4-5	07INR0023	SWEETWN4_WND5	NOLAN	WIND	WEST	2007	79.2
532	SWEETWATER WIND 4-4B	07INR0023	SWEETWN4_WND4B	NOLAN	WIND	WEST	2007	103 7
533	SWEETWATER WIND 4-4A	07INR0023	SWEETWN4_WND4A	NOLAN	WIND	WEST	2007	11/8
534	TEXAS BIG SPRING WIND a		SGMTN_SIGNALMT	HOWARD	WIND	WEST	1999	2//
535	TEXAS BIG SPRING WIND b		SGMTN_SIGNALM2	HOWARD		WEST	2001	150.0
536	TRENT WIND	01INR0038	TRENI_IRENI	NOLAN		WEST	2001	117.5
537		081NR0062	TRINITY THI BUS2	YOUNG	WIND	WEST	2012	107.5
538		07INR0011	TTWEC G1	NOLAN	WIND	WEST	2008	169 5
539		of introd if i	SW MESA SW MESA	UPTON	WIND	WEST	1999	80.3
540	WHIRLWIND ENERGY	07INR0003	WEC_WECG1	FLOYD	WIND	PANHANDLE	2007	57 0
542		11INR0091	EXGNWTL_WIND_1	WEBB	WIND	SOUTH	2012	91 0
543	WINDTHORST 2 WIND	13INR0057	WNDTHST2_UNIT1	ARCHER	WIND	WEST	2014	67.6
544	WKN MOZART WIND	09INR0061	MOZART_WIND_1	KENT	WIND	WEST	2012	30.0
545	WOLF RIDGE WIND	07INR0034	WHTTAIL_WR1	COOKE	WIND	NORTH	2008	112.5
546	TSTC WEST TEXAS WIND		DG_ROSC2_1UNIT				2008	, ZU , 10
547	WOLF FLATS WIND (WIND MGT)		DG_TURL_UNIT1	HALL	WIND	PANHANULE	200.	12.705 4
548	3 Operational Wind Capacity Sub-total (Non-Coastal C	ounties)		%				18 0
549	wind Peak Average Capacity Percentage (Non-Coasta Non-Coasta	y .	VIND_CEAR_PUI_NU	<i></i>				
550		05INR0015a	TGW T1	KENEDY	WIND-C	COASTAL	2010	141.6
551		05INR0015a	TGW_T2	KENEDY	WIND-C	COASTAL	2010	141.6
552	LOS VIENTOS WIND I	11INR0033	LV1_LV1A	WILLACY	WIND-C	COASTAL	2013	200 1
554	LOS VIENTOS WIND II	11INR0033	LV1_LV1B	WILLACY	WIND-C	COASTAL	2013	201.6
555	5 MAGIC VALLEY WIND (REDFISH) 1A	10INR0060	REDFISH_MV1A	WILLACY	WIND-C	COASTAL	2012	99.8

		GENERATION						
				COUNTY	ELIEI	ZONE	START YEAR	CAPACITY (MW)
		ANNIDODED	DEDEISH MV/18	WILLACY	WIND-C	COASTAL	2012	103.5
556		08INR0012a	PAP1 PAP1	SAN PATRICIO	WIND-C	COASTAL	2009	179 9
55/	PAPALOTE CREEK WIND	08INR00126	COTTON PAP2	SAN PATRICIO	WIND-C	COASTAL	2010	200 1
550		06INR0022a	PENA UNIT1	KENEDY	WIND-C	COASTAL	2009	160.8
560	PENASCAL WIND 2	06INR0022b	PENA UNIT2	KENEDY	WIND-C	COASTAL	2009	141.6
561		06INR0022b	PENA3 UNIT3	KENEDY	WIND-C	COASTAL	2011	100.8
562			DG NUECE 6UNITS	NUECES	WIND-C	COASTAL	2012	90
563	Operational Wind Capacity Sub-total (Coastal Countie	5)						1,680.4
564	Wind Peak Average Capacity Percentage (Coastal)		WIND_PEAK_PCT_C	%				37 0
565	,,,, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_					
566	Operational Wind Capacity Total (All Counties)		WIND_OPERATIONAL					14,385.8
567								
568	Reliability Must-Run (RMR) Capacity		RMR_CAP_CONT		GAS			-
569								
570	Non-Synchronous Tie Resources							
571	EAGLE PASS TIE		DC_S	MAVERICK		SOUTH		30.0
572	EAST TIE		DC_E	FANNIN		NORTH		100.0
573	LAREDO VFT TIE		DC_L	WEBB		SOUTH		220.0
574	NORTH TIE		DC_N	WILBARGER		SOUTH		150.0
575	SHARYLAND RAILROAD TIE		DC_R			SOUTH		150 0
576	SHARYLAND RAILROAD TIE 2		DC_R2	HIDALGO		300111		1.250.0
577	Non-Synchronous Ties Total		DOTIE CAR CONT		OTHER			371.4
578	Non-Synchronous Ties Capacity Contribution (Top 20 Ho	urs)	DOTIE_CAP_CONT		OTHER			
579		UC Domit and Water	Piahte					
580	TEXAS OF EAST ENERGY PROJECT	13INR0023	ngina	ECTOR	COAL	WEST	2018	-
501	TEXAS CLEAN ENERGY PROJECT	16INR0010		MITCHELL	GAS	WEST	2017	-
502	CSEC ANTELOPE 1-3 IC & ELK 1 CTG (SWITCHABLE)	13INR0028		HALE	GAS	PANHANDLE	2016	-
593	LA PALOMA ENERGY CENTER PROJECT	16INR0004		CAMERON	GAS	COASTAL	2018	-
595	PHP DEAKERS IBAC, CTG1-61	14INR0038		GALVESTON	GAS	HOUSTON	2016	-
586	SKY GLOBAL POWER ONE	16INR0057		COLORADO	GAS	SOUTH	2016	-
587	INDECK WHARTON ENERGY CENTER	15INR0023		WHARTON	GAS	SOUTH	2017	-
588	PONDERA KING PROJECT	10INR0022		HARRIS	GAS	HOUSTON	2017	-
589	PINECREST ENERGY CENTER PROJECT	16INR0006		ANGELINA	GAS	NORTH	2017	-
590	STEC RED GATE IC PLANT	14INR0040		HIDALGO	GAS	SOUTH	2016	-
591	GSEC ELK STATION CTG 2 (SWITCHABLE)	15INR0032		HALE	GAS	PANHANDLE	2016	-
592	GSEC ELK STATION CTG 3	15INR0033		HALE	GAS	PANHANDLE	2016	-
593	BETHEL CAES	15INR0013		ANDERSON	STORAGE	NORTH	2018	-
594	Planned Capacity Total (Coal, Gas & Storage)							•
595								
596	Planned Solar Resources with Executed SGIA					MEAT	2016	74
597	FS BARILLA SOLAR 1B [HOVEY_UNIT2]	12INR0059b		PECOS	SOLAR	WEST	2015	14
598	FS BARILLA SOLAR 2	12INR0059c		PECOS	SOLAR	WEST COUTH	2016	_
599	OCI ALAMO 5 (DOWNIE RANCH) [HELIOS_UNIT1]	15INR0036		DECOS	SOLAR	WEST	2013	_
600	RE ROSEROCK SOLAR	16INR0048		PECOS	SOLAR	WEST	2016	-
601	OCI ALAMO 6 (WEST TEXAS)	15INR0070_1		PECOS	SOLAR	WEST	2016	-
602	OCI ALAMO 6 (WEST TEXAS PHASE II)	15INR0070_10		PECOS	SOLAR	WEST	2017	-
603	SE BUCKTHORN WESTEX SOLAR (OAK)	15INR0045		PECOS	SOLAR	WEST	2016	· -
604	FS EAST PECOS SOLAR	16INR0073		HASKELL	SOLAR	WEST	2016	;
605	LONAZADETH SOLAR	16INR0032		CASTRO	SOLAR	PANHANDLE	2016	
606	LC NAZARETH SOLAR	15INR0059		PECOS	SOLAR	WEST	2017	,
607		16INR0023		DAWSON	SOLAR	WEST	2016	; -
600	CAPRICORN RIDGE SOLAR	16INR0019		COKE	SOLAR	WEST	2016	; -
610	UPCO POWER 1 (SP-TX-12)	16INR0065		UPTON	SOLAR	WEST	2016	; -
611	Planned Capacity Total (Solar)							7.4
612	· · · · · · · · · · · · · · · · · · ·							
613	Planned Wind Resources with Executed SGIA							
614	GUNSIGHT MOUNTAIN WIND	08INR0018		HOWARD	WIND	WEST	2010	5 -
615	BAFFIN WIND (BAFFIN UNIT1-2)	06INR0022c		KENEDY	WIND-C	COASTAL	201	202.0
616	MIDWAY FARMS WIND	11INR0054		SAN PATRICK	WIND-C	COASTAL	2010	
617	LONGHORN WIND SOUTH	14INR0023b		BRISCOE	WIND	PANHANDLE	2010	
618	MARIAH WIND A	13INR0010a		PARMER	WIND	PANHANDLE	2010	5 -
619	MARIAH WIND B	13INR0010b		PARMER	WIND	PANHANDLE	2010	5 -
620	MIAMI WIND 1B	14INR0012b		GRAY	WIND	PANHANDLE	201	
621	SHANNON WIND [SHANNONW_UNIT_1]	11INR0079a		CLAY	WIND	WEST	201	- 200.0
622	SENDERO WIND ENERGY [EXGNSND_WIND_1]	12INR0068		JIM HOGG	WIND	SOUTH	201	
623	RATTLESNAKE DEN WIND 2	13INR0020b		GLASSCOCK	WIND	WEST	201	-
624	PATRIOT WIND (PETRONILLA)	11INR0062		NUECES	WIND-C	COASTAL	201	
625	5 COMANCHE RUN WIND	12INR0029		SWISHER		PANHANULE	201	
626	GAMERON COUNTY WIND [CAMWIND_UNIT1]	11INR0057		CAMERON	WIND-C		201	0.001 5 200 0
627	LOS VIENTOS III WIND [LV3_UNIT_1]	13INR0052		STAKK	WIND		201	, 2000 7 -
628	B PAMPA WIND	12INR0018		GRAY		WEST	201	, - 5 300 n
629	GREEN PASTURES WIND [GPASTURE_WIND_I & II]	12INR0070					201	5 200 0
630) SOUTH PLAINS WIND I [SPLAIN1_WIND1-2]	14INR0025a		FLOTD			201	5 -
631	I SOUTH PLAINS WIND II	14INK00250		FLOID		PANHANDIE	201	6 -
632	2 SOUTH PLAINS WIND III	14INR00250		BRISCOF	WIND		201	5 150.0
633		141020072		DICKENS	WIND	PANHANDLE	201	6 -
634	WARE WIND	1-1111100-17						

	Unit Capacities - Winter							
		GENERATION						
		INTERCONNECTION						
	UNIT NAME	PROJECT CODE	UNIT CODE	COUNTY	FUEL	ZONE	START YEAR	CAPACITY (MW)
635	DOUG COLBECK'S CORNER (CONWAY)	13INR0005b		CARSON	WIND	PANHANDLE	2016	-
636	GRANDVIEW WIND 3 (CONWAY)	13INR0005c		CARSON	WIND	PANHANDLE	2016	•
637	SCANDIA WIND D	13INR0010d		PARMER	WIND	PANHANDLE	2017	-
638	SCANDIA WIND E	13INR0010e		PARMER	WIND	PANHANDLE	2017	-
639	SCANDIA WIND F	13INR0010f		PARMER	WIND	PANHANDLE	2017	-
640	PULLMAN ROAD WIND	15INR0079		RANDALL	WIND	PANHANDLE	2016	-
641	PANHANDLE WIND 3	14INR0030c		CARSON	WIND	PANHANDLE	2016	-
642	SALT FORK WIND	14INR0062		GRAY	WIND	PANHANDLE	2016	-
643	LOS VIENTOS IV WIND	15INR0037		STARR	WIND	SOUTH	2016	-
644	LOS VIENTOS V WIND [LV5_UNIT_1]	15INR0021		STARR	WIND	SOUTH	2015	-
645	PALO DURO WIND	15INR0050		DEAF SMITH	WIND	PANHANDLE	2016	-
646	JAVELINA WIND [BORDAS_JAVEL18 & 20]	13INR0055			WIND	DANIJANDIE	2013	
647	CAPROCK WIND	10INR0009		CASTRO	WIND	PANMANULE	2017	-
648	SAN ROMAN WIND	14INR0013		CAMERON	WIND-C		2016	-
649	TORRECILLAS WIND A	14INR0045a		WEBB		SOUTH	2010	
650	TORRECILLAS WIND B	14INR0045b		VVEBB			2016	
651	CHANGING WINDS	13INR0045		CASTRO		MEET	2010	
652	ELECTRA WIND	16INR0062		WILBARGER		WEST	2010	
653	HORSE CREEK WIND	14INR0060		HASKELL		WEST	2010	-
654	WILLOW SPRINGS WIND	14INR00606		COOKE		NORTH	2016	-
655	MUENSTER WIND	15INR0085					2016	-
656	HAPPY WHITEFACE WIND	15INR0074		NUECES	WIND_C	COASTAL	2016	-
657	CHAPMAN RANCH WIND I	16INR0055		HIDALGO		SOUTH	2016	-
658	HIDALGO & STARR WIND	16INR0024		FLOYD			2016	-
659	BLANCO CANYON WIND (COTTON PLAINS)	15INR0037		FLOYD			2016	
660	BLANCO CANYON WIND (OLD SETTLER)	16INR00370			WIND	WEST	2016	
661	ROCK SPRINGS VAL VERDE WIND	1 TINRUU0Za			WIND-C	COASTAL	2016	
662	MAGIC VALLEY WIND II (REDFISH 2A)	14INR00418		WILLACY	WIND-C	COASTAL	2016	
663	MAGIC VALLEY WIND II (REDFISH 2B)	14INR004TD		CARSON	WIND	PANHANDLE	2016	-
664	SAL1 FORK WIND 2	1011110002		SWISHER	WIND	PANHANDLE	2016	
665	SWISHER WIND	13INR0030		FRATH	WIND	NORTH	2016	
666	BUCKTHORN WIND 1	14INR0037		ERATH	WIND	NORTH	2016	-
667	BUCKTHORN WIND 2	I THIN COULD		2.0111				1,417 0
668	Planned Capacity Total (Wind)							
609	Rippond Wind Conscity Sub-total (Non-Coastal Countier	s)	WIND PLANNED NC					1,050 0
674	Wind Besk Average Capacity Percentage (Non-Coastal	-)	WIND PEAK PCT NC	%				18 0
672	Wild Peak Average Capacity / Clockage (Herr Coucha)							
672	Pleaned Wind Canacity Sub-total (Coastal Counties)		WIND PLANNED C					367.0
674	Wind Peak Average Capacity Percentage (Coastal)		WIND PEAK_PCT_C	%				37 0
675	Ville I cuk / Voluge cupuelly i electricage (country)							
676	Sessonal Mothballed Resources							
677	MARTIN LAKE LI (SEASONAL MOTHBALL)		MLSES UNIT1 M	RUSK	COAL	NORTH	2016	815.0
678	MARTIN LAKE U2		MLSES_UNIT2	RUSK	COAL	NORTH	1978	820 0
679	Total Seasonal Mothballed Capacity		-					1,635.0
680								
681	Mothballed Resources							
682	J T DEELY UI (MOTHBALLED)		CALAVERS_JTD1_M	BEXAR	COAL	SOUTH	2018	-
683	J T DEELY U2 (MOTHBALLED)		CALAVERS_JTD2_M	BEXAR	COAL	SOUTH	2018	-
684	SILAS RAY CTG 5 (RETIRES 3/5/2016)		SILASRAY_SILAS_5	CAMERON	GAS	COASTAL	1953	10 0
685	S R BERTRON CTG 2		SRB_SRBGT_2	HARRIS	GAS	HOUSTON	1967	13 0
686	S R BERTRON U1		SRB_SRB_G1	HARRIS	GAS	HOUSTON	1958	118.0
687	S R BERTRON U2		SRB_SRB_G2	HARRIS	GAS	HOUSTON	1956	174 0
688	S R BERTRON U3		SRB_SRB_G3	HARRIS	GAS	HOUSTON	1959	211 0
689	S R BERTRON U4		SRB_SRB_G4	HARRIS	GAS	HOUSTON	1960	211 0
690	Total Mothballed Capacity							737.0

Release Date: November 2, 2015

Seasonal Assessment of Resource Adequacy for the ERCOT Region

Background

The Seasonal Assessment of Resource Adequacy (SARA) report is a deterministic approach to considering the impact of potential variables that may affect the sufficiency of installed resources to meet the peak electrical demand on the ERCOT System during a particular season.

The standard approach to assessing resource adequacy for one or more years into the future is to account for projected load and resources on a normalized basis and to require sufficient reserves (resources in excess of peak demand, on this normalized basis) to cover the uncertainty in peak demand and resource availability to meet a one-in-ten-years loss-of-load event criteria on a probabilistic basis.

For seasonal assessments that look ahead less than a year, specific information may be available (such as seasonal climate forecasts or anticipated common-mode events such as drought) which can be used to consider the range of resource adequacy in a more deterministic manner.

In contrast to the Capacity, Demand and Reserves (CDR) report, which addresses the sufficiency of planning reserves on an annual basis as described above, the SARA report focuses on the availability of sufficient operating reserves to avoid emergency actions such as deployment of voluntary load reduction resources. Consequently, load reduction resources included in the CDR report, such as Emergency Response Service (ERS) and Load Resources that provide operating reserves (LRs), are excluded from the SARA.

The SARA report is intended to illustrate the range of resource adequacy outcomes that might occur, and thus help fulfill the reporting requirement per Public Utility Commission of Texas rule 25.362(i)(2)(H). Several sensitivity analyses are developed by varying the value of certain parameters that affect resource adequacy. The variation in these parameters is based on historic values of these parameters or adjustments by any known or expected changes.

Attachment I

201 Report on Existing and Potential Electric System Constraints and

Needs

Report on Existing and Potential

Electric System Constraints and Needs

December 2015

Executive Summary

The annual Electric System Constraints and Needs report is provided by the Electric Reliability Council of Texas, Inc. (ERCOT) to identify and analyze existing and potential constraints in the transmission system that pose reliability concerns or may increase costs to the electric power market and, ultimately, to Texas consumers. This report satisfies the annual reporting requirements of Public Utility Regulatory Act (PURA) Section 39.155(b) and a portion of the requirements of Public Utility Commission Substantive Rules 25.362(i)(2)(I) and 25.505(c).

In 2015, the most significant constraint on the ERCOT System was related to the import of power into the Houston area from the north. From October 2014 through September 2015 this area has experienced over \$39 million in congestion rent. Congestion in this area has been high for several years. In addition to the observed congestion, reliability studies have identified possible overloads in the next several years on transmission lines along this path. As shown in Figure ES.1, the Coast weather zone, which is primarily comprised of the Houston area, is the only zone in the ERCOT System to see a net decrease in generation since 2004. This means that the area has required increasing amounts of power to be imported from elsewhere in the ERCOT System. ERCOT has reviewed and endorsed a reliability-driven project to increase the import capability into the Houston area. The project, primarily consisting of new 345 kV transmission lines, is expected to be in-service by the summer of 2018.

Figure ES.1: Net Change in Generation Capacity by Weather Zone (2004-2015)

The San Angelo area experienced high amounts of congestion in 2015 due to the outage of a transformer during an upgrade. This upgrade, which includes a new transformer, will improve the reliability of the system in the area moving forward.

Congestion due to oil- and gas-related activities in the Permian Basin in West Texas has been significantly reduced over the last several years due to the transmission improvements that have been implemented in the area. Permian Basin-related congestion accounted for only one of the top 15 constraints on the ERCOT System in 2015 compared to six in 2013 and three in 2014. Figure ES.2 shows the cost of transmission improvements (excluding Competitive Renewable Energy Zone projects) by weather zone in ERCOT since 2007. The Far West weather zone, which encompasses most of the Permian Basin's oil- and gas-related load, has seen a substantial increase in transmission investment over that time.

Figure ES.2: ERCOT (Non-CREZ) Transmission Improvements by Weather Zone and Year

In the Lower Rio Grande Valley (LRGV), a new 345 kV import line and the upgrade of the two existing 345 kV import lines are part of a project under construction to increase the overall import capability into the area by 2016. Additionally, a new 345 kV line that runs east-west across the LRGV is planned to meet reliability needs in and around the Brownsville area. ERCOT is currently evaluating the need for additional system improvements after 2016. This assessment is being driven by the recent announcement that one generation unit in the LRGV will be switched from

serving ERCOT load to serving customers in the Mexico system. Potential needs for additional transmission may be deferred by several potential generation projects that are under study in the area.

Treatment of natural gas to form liquefied natural gas (LNG) is an energy-intensive process and the construction of such a facility can significantly increase the load already being served in an area. Several potential LNG facilities have been proposed across the United States, including many along the ERCOT Gulf Coast. The Freeport LNG liquefaction project and Cheniere's Corpus Christi Liquefaction facility were the first LNG export facilities within the ERCOT region to receive all necessary approvals to begin construction.

The Freeport LNG facility will be located on Quintana Island in Brazoria County and, at full production, will require 690 MW to serve its load. In 2015, ERCOT endorsed the Jones Creek project to meet the transmission needs of this project. The Cheniere facility, while having only slightly less LNG production capacity, will have a much lower electric power need because it will utilize different technology to drive its process needs and will require less extensive transmission upgrades. LNG exports from both facilities are expected to begin in 2018 and reach full output in 2019. Both projects are pursuing possible plant expansions and six additional LNG projects are exploring connection to the ERCOT grid in the Brownsville area.

A changing resource mix in ERCOT could lead to constraints in several areas. Wind generation development in the Panhandle will soon exceed the capability of the transmission system to export power out of the region. ERCOT is currently pursuing several upgrade solutions to this constraint, but congestion may persist if generation development continues. There are a substantial number of solar generation projects under study in Far West Texas. This area has a relatively weak transmission system and significant congestion could occur if a large amount of the solar generation under study moves forward with construction. ERCOT is planning to finalize a study of the region in 2016. Finally, the potential retirement of coal generation in ERCOT could lead to a considerable amount of local and regional reliability impacts on the transmission system.

Table of Contents

Executive Summaryi
Chapter 1. Introduction 1
Chapter 2. ERCOT Transmission Planning 2
Chapter 3. Recent Constraints
3.1 Houston Import7
3.2 San Angelo Congestion11
3.3 West Texas Oil and Gas Load13
Chapter 4. Planned Improvements16
4.1 Historical Investments and Improvements16
4.2 Lower Rio Grande Valley19
4.3 Liquefied Natural Gas Facilities21
4.4 San Antonio System Additions25
4.5 Additional Reliability-Driven Planned Projects27
Chapter 5. Projected Constraints
5.1 Panhandle28
5.2 Solar Integration
5.3 Generation Retirement, Regional Haze, Clean Power Plan
5.4 2016 Reliability Constraints35
5.5 2018 and 2021 Projected Constraints
Chapter 6. Contacts and Links40
6.1 Contacts and Information40
6.2 Internet Links40
Chapter 7. Disclaimer41

List of Figures

Figure ES.1: Net Change in Generation Capacity by Weather Zone (2004-2015) i
Figure ES.2: ERCOT (Non-CREZ) Transmission Improvements by Weather Zone and Yearii
Figure 2.1: ERCOT Weather Zones
Figure 2.2: ERCOT Transmission Improvements by Year 4
Figure 2.3: ERCOT (Non-CREZ) Transmission Improvements by Weather Zone and Year 4
Figure 3.1: Map of 2015 Top 15 Congested Constraints on the ERCOT System
Figure 3.2: Houston Area 345 kV Congestion8
Figure 3.3: Houston Import Project Area10
Figure 3.4: Congested Transformers in the San Angelo Area12
Figure 3.5: Recently Completed West Texas Transmission Upgrades14
Figure 3.6: Far West Weather Zone Annual Peak Demand (2009-2015)15
Figure 3.7: Far West Weather Zone Annual Energy (2009-2014)15
Figure 4.1: Net Change in Weather Zone Peak Demand (2004-2015)16
Figure 4.2: Percent Change in Weather Zone Peak Demand (2004-2015)17
Figure 4.3: Net Change in Generation Capacity by Weather Zone (2004-2015)17
Figure 4.4: Planned Transmission Improvement Projects
Figure 4.5: Map of Lower Rio Grande Valley20
Figure 4.6: Approved and Proposed LNG Facilities in ERCOT
Figure 4.7: System Problems in the San Antonio Area27
Figure 5.1: Panhandle Area Map28
Figure 5.2: Panhandle Generation Under Study29
Figure 5.3: ERCOT Solar Installations by Year
Figure 5.4: Solar Generation Interconnection Requests (MW) by Weather Zone
Figure 5.5: Carbon Dioxide Mass-Based Emissions Limits
Figure 5.6: Capacity Additions and Retirements by 2030
Figure 5.7: Projected 2016 Reliability Constraints
Figure 5.8: 2018-2021 Projected Most-Congested Constraints

List of Tables

Table 3.1: 2015 Top 15 Congested Constraints on the ERCOT System	6
Table 3.2: Expected Peak Demand in San Angelo Area (source: 2015 RTP Cases)	11
Table 3.3: Recently Completed West Texas Transmission Upgrades	13
Table 4.1: Planned Transmission Improvement Projects	18
Table 4.2: Proposed LNG Facilities in ERCOT	23
Table 5.1: Projected 2016 Reliability Constraints	36
Table 5.2: List of Projected Most-Congested Constraints (2018-2021)	

Chapter 1. Introduction

The Electric Reliability Council of Texas (ERCOT), as the independent organization (IO) under the Public Utility Regulatory Act (PURA), is charged with nondiscriminatory coordination of market transactions, system-wide transmission planning and network reliability, and ensuring the reliability and adequacy of the regional electric network in accordance with ERCOT and North American Electric Reliability Corporation (NERC) Reliability Standards. The IO ensures access to the transmission and distribution systems for all buyers and sellers of electricity on nondiscriminatory terms. In addition, ERCOT, as the NERC--registered Planning Coordinator/ Planning Authority, is responsible for assessing the longer-term reliability needs for the ERCOT Region.

ERCOT supervises and exercises comprehensive independent authority over the planning of transmission projects for the ERCOT System as outlined in PURA and Public Utility Commission of Texas (PUCT) Substantive Rules. The PUCT Substantive Rules further indicate that the IO shall evaluate and make a recommendation to the PUCT as to the need for any transmission facility over which it has comprehensive transmission planning authority. In performing its evaluation of different transmission projects, ERCOT takes into consideration the need for and cost-effectiveness of proposed transmission projects in meeting the ERCOT planning criteria and NERC Reliability Standards.

Transmission planning (i.e., planning of facilities 60 kV and above) is a complex undertaking that requires significant work by, and coordination between, ERCOT, the Transmission Service Providers (TSP), stakeholders, and other market participants. ERCOT works directly with the TSPs, stakeholders, and market participants through the Regional Planning Group (RPG). Each of these entities has responsibilities to ensure that appropriate transmission planning and construction occurs.

The Protocols and Planning Guide describe the practices and procedures through which ERCOT meets its requirements related to system planning under PURA, PUCT Substantive Rules, and NERC Reliability Standards.

Chapter 2. ERCOT Transmission Planning

Every year ERCOT performs a planning assessment of the transmission system. This assessment is primarily based on three sets of studies.

- 1. <u>The Regional Transmission Plan (RTP)</u> addresses region-wide reliability and economic transmission needs and includes the recommendation of specific planned improvements to meet those needs for the upcoming six years. The 2015 RTP report is posted on the ERCOT Market Information System website.
- 2. <u>The Long-Term System Assessment (LTSA)</u> uses scenario-analysis techniques to assess the potential needs of the ERCOT System up to 15 years into the future. The role of the LTSA is to identify upgrades that provide benefits across a range of scenarios or might be more economic than the upgrades that would be determined considering only near-term needs in the RTP development. The LTSA does not recommend the construction of specific system upgrades due to the degree of uncertainty associated with the amount and location of loads and resources in this timeframe. The biennial LTSA study is conducted in even-numbered years. The 2014 Long-Term System Assessment report is posted on the ERCOT website at: <u>http://www.ercot.com/news/presentations/</u>.
- 3. <u>Stability studies</u> are performed to assess angular stability, voltage stability, and frequency response of the ERCOT System. Due to the security-related sensitive nature of the information contained in these study reports, they are not published on the ERCOT website.

These three Transmission Planning studies are conducted using models that represent expected future transmission topology, demand, and generation. The models are tested against reliability and economic planning criteria per NERC Standards and the ERCOT Protocols and Planning Guide. When system simulations indicate a deficiency in meeting the criteria, a corrective action plan is developed; this corrective action plan typically includes a planned transmission improvement project. TSPs also perform studies to assess the reliability of their portion of the ERCOT System.

For analysis purposes, the ERCOT System is divided into eight regions, termed "weather zones," developed based on overall consistency of weather patterns. Figure 2.1 depicts the location of these weather zones.

Figure 2.1: ERCOT Weather Zones

Transmission improvement projects that are estimated to cost more than \$15 million or that require a Certificate of Convenience and Necessity (CCN) are reviewed by the RPG prior to implementation.¹ The RPG is a non-voting forum made up of ERCOT, TSPs, Market Participants, other stakeholders, and PUCT Staff. In 2015, \$477.6 million of transmission improvement projects were reviewed and endorsed through the RPG process.

Transmission system improvements are built by TSPs and are paid for by consumers. During the twelve-month period from October 2014 through September 2015, TSPs completed \$800.8 million worth of transmission improvement projects. Figure 2.2 shows the cost of transmission

¹ Per ERCOT Protocol Section 3.11.4 certain projects are exempt from RPG review, such as projects to connect new generation or load customers.

improvements completed in ERCOT, by calendar year, from 2007 through 2014. The cost is divided by Competitive Renewable Energy Zone (CREZ)-related projects and non-CREZ-related projects.

Figure 2.2: ERCOT Transmission Improvements by Year

Figure 2.3 further breaks down the non-CREZ-related improvements by weather zone. The data shows that the Far West weather zone has seen a significant increase in transmission investment since 2012, which can be attributed to oil- and gas-related upgrades.

Figure 2.3: ERCOT (Non-CREZ) Transmission Improvements by Weather Zone and Year

A comprehensive list of recently completed and future transmission projects can be found in the Transmission Project Information Tracking (TPIT) report located at: <u>http://www.ercot.com/gridinfo/sysplan/</u>.

Chapter 3. Recent Constraints

Congestion occurs when transmission limitations do not allow for the most efficient dispatch of generation to meet customer demand. Table 3.1 and Figure 3.1 show the top 15 congested constraints on the ERCOT System, from October 2014 through September 2015, based on real-time data.

Map Index	Constraint	Congestion Rent
1	North to Houston Import	\$39,316,039
2	Heights 138/69 kV transformer	\$35,902,821
3	Rio Hondo-East Rio Hondo 138 kV line	\$20,894,616
4	Harlingen Switch-Oleander 138 kV line	\$19,245,752
5	Moss-Westover 138 kV line	\$17,791,984
6	Hockley-Betka 138 kV line	\$12,809,188
7	San Angelo College Hills 138/69 kV transformer	\$12,124,531
8	La Palma-Villa Cavazos 138 kV line	\$10,681,931
9	San Angelo Power 138/69 kV transformer	\$10,622,923
10	Collin Switch 345/138 kV transformer	\$9,098,021
11	Lon Hill-Smith 69 kV line	\$8,504,021
12	Pflugerville-Gilleland Creek 138 kV line	\$7,592,286
13	Cedar Hill-Mountain Creek 138 kV line	\$7,469,997
14	Marion-Skyline 345 kV line	\$7,358,307
15	Fast Levee-Reagan Street 138 kV line	\$6,600,415

Table 3.1: 2015 Top 15 Congested Constraints on the ERCOT System

Figure 3.1: Map of 2015 Top 15 Congested Constraints on the ERCOT System

3.1 Houston Import

The import of power into the Houston area from the north caused the highest amount of congestion on the ERCOT System in 2015, totaling over \$39 million in congestion rent. Multiple 345 kV lines coming into the area from the north experienced congestion, including the Twin Oak – Jack Creek 345 kV line, Singleton – Gibbons Creek 345 kV line, Gibbons Creek – Twin Oak 345 kV line, Singleton – Zenith 345 kV line, and the Singleton – Tomball 345 kV line. Additionally, the import of power to Houston from the North was constrained due to voltage stability limitations.

This voltage constraint is commonly referred to as the North to Houston stability limit. Congestion on these lines has been consistently high for several years. In addition to having the highest congestion rent in 2015, the North-Houston path experienced the fourth-highest congestion rent on the system in 2014 and the second-highest in 2013.

Figure 3.2: Houston Area 345 kV Congestion

The Houston metropolitan area is the second-largest load center in Texas, serving more than 25% of the entire load in the ERCOT System. Houston ranks fourth among U.S. cities in terms of population and nominal gross domestic product (GDP). With a nominal GDP of over \$500 billion, Houston would rank 25th in the world if it were an independent country. In June 2015, there were more jobs in the Houston metropolitan area than in 35 individual U.S. states. Among U.S. ports,

the Port of Houston has ranked first in import tonnage and second in total tonnage for 23 consecutive years.²

Houston, the "Energy Capital of the World," is expected to experience some negative economic impact due to the recent drop in oil prices. However, CenterPoint Energy, the primary transmission and distribution service provider in the Houston area, recently indicated that the number of residential customers on its system has historically not been correlated to oil prices. Their data shows that since 1980, residential customer growth has remained steady despite multiple spikes and dips in the price of oil.³

According to the Bureau of Economic Geology, approximately \$24 billion of petrochemical and related large industrial projects are slated to come online along the ERCOT Gulf Coast between 2015 and 2018.⁴ These projects, typically ranging from tens of megawatts to hundreds of megawatts, will add a significant amount of demand to the system. The addition of such large industrial facilities can represent future load growth that is not as easy to forecast when compared to residential and commercial customer classes.

The Coast weather zone, which primarily consists of the Houston area, is the only zone in the ERCOT System to have a net loss of generation capacity since 2004 (see Figure 4.3). This generation capacity loss plus the experienced and forecasted load growth has resulted in a significant increase in the amount of power being imported into the Houston area. The 2006, 2008, 2010, and 2012 Long-Term System Assessments all identified a need to increase the import capability of the transmission system serving the Houston area.

In the summer of 2013, ERCOT received three separate proposals for RPG review to construct a new 345 kV double circuit line into the Houston area. Each of the three proposals identified reliability criteria violations starting in 2018. ERCOT conducted an independent review of the proposals and confirmed that there was a reliability need for additional imports into the Houston

² <u>https://www.houston.org/assets/pdf/economy/Houston%20Facts_web.pdf</u>

³ http://files.shareholder.com/downloads/HOU/942334299x0x828290/813581C4-2267-4EAD-B5A0-

E6D03DD67010/Q1 Slides Final.pdf

⁴<u>http://www.ercot.com/content/wcm/key_documents_lists/67259/GGulen_Oil_GasDevelopmentsinTexas_ERCOT_LTSA071315.pdf</u>

area. In addition to the base scenario, ERCOT conducted sensitivity analyses on three alternate scenarios based on stakeholder feedback. All of the sensitivity analyses showed a reliability need for a project.

ERCOT analyzed 21 options for solving the reliability criteria violations. To select the best longterm and most cost-effective option, ERCOT performed a variety of analyses. Based on these study results, in early 2014, ERCOT recommended the Houston Import Project, which involved the construction of a new 345 kV double circuit line from Limestone to Gibbons Creek, a new 345 kV double circuit line from Gibbons Creek to Zenith, and the upgrade of the TH Wharton to Addicks 345 kV line. The ERCOT Board of Directors endorsed the need for the project in April 2014, and deemed the new 345 kV double circuit lines as critical to reliability. The project is expected to be completed by summer of 2018.

Figure 3.3: Houston Import Project Area

The 2015 RTP was conducted using more up-to-date assumptions than were used in the independent review of the Houston Import Project. Although the independent review indicated that the project was needed by 2018, a reliability criteria violation was found in the 2015 RTP for year 2016. However, it is unlikely that the project can be completed by 2016, and consequently, weather and outages could result in significant congestion costs on the import lines prior to completion. ERCOT operators will need to develop mitigation measures to ensure reliability for the system as a whole. These may include plans to shed load should certain contingencies occur on the system. It should also be noted that the Freeport LNG project (discussed further in Section 4.3), which will add a sizable amount of load to the south side of the Houston area, was not included in the Houston Import Project analysis. At the time of the study, the Freeport project developer had not yet provided financial commitment to the TSP for the entire project. The addition of the Freeport LNG project would likely increase the need for the Houston Import Project.

3.2 San Angelo Congestion

The load in the San Angelo area, located in Tom Green County, is served by a 69 kV and 138 kV transmission system that includes four existing 138/69 kV transformers located at the San Angelo College Hills, San Angelo Power, San Angelo North, and San Angelo Concho substations. The peak demand in the San Angelo area is expected to reach approximately 290 MW by 2016. Almost half of the peak demand is served by the 69 kV transmission system through the four existing 138/69 kV transformers. The load in the area is expected to grow as shown in Table 3.2.

2015 RTP Case	Expected peak demand served by 69 kV transmission (MW)	Expected peak demand served by 138 kV transmission (MW)	Total (MW)
2016	130	160	290
2018	133	167	300
2020	137	173	310

Table 3.2: Expected	Peak Demand in	San Angelo Area	(source: 2015 RTP Cases)
---------------------	----------------	-----------------	--------------------------

As shown previously in Table 3.1, one of the most congested areas on the system in 2015 was the area served by the 138/69 kV transformers at San Angelo College Hills and San Angelo Power (see Figure 3.4). The combined congestion rent on these transformers was greater than \$22

million. The high congestion rent is the result of reduced capacity of area transformers due to the planned outage of the San Angelo Concho transformer. The Concho transformer has been out of service since February 2015, in order to construct the new 138/69 kV substation at Rusthill, which was put in-service in July. American Electric Power (AEP) built the Rusthill substation near the existing Concho substation in order to replace the Concho transformer with a new, larger transformer. Many outages were implemented to complete the substation construction, including re-terminating the 138 kV lines from Concho into Rusthill and replacing the existing Concho substation. The Rusthill 138/69 kV substation will improve the reliability of the system in the San Angelo area with the additional 138/69 kV transformer capacity (130 MVA). According to the ERCOT TPIT report, AEP is planning to replace the existing San Angelo North 138/69 kV transformer in 2018. The new transformer at Rusthill is expected to minimize the reliability and congestion impact when the San Angelo North transformer is replaced.

Figure 3.4: Congested Transformers in the San Angelo Area

3.3 West Texas Oil and Gas Load

Over the last several years the ERCOT System has experienced a significant amount of congestion in West Texas due to the growth in electric demand from the oil and natural gas industry and the associated economic expansion in residential and commercial developments in the Permian Basin area. However, from October 2014 through September 2015, only one of the top 15 constraints on the ERCOT System was located in Far West region of Texas (Moss Switch – Westover 138 kV line). In comparison, of the top 15 constraints in 2013, six were related to load in West Texas, and in 2014, three were related to West Texas needs. This improvement can be attributed to the implementation of several system improvement projects in that area.

Table 3.3 and Figure 3.5 show some of the significant West Texas transmission upgrade projects completed in the first half of 2015.

Map ID		Project	Соп	pletion Da	ite
1	Ŷ.	Upgrade Midland Airport – Glenhaven 138 kV Line		May 15	\$ ````
2		Construct New Dermott Sw. Sta Ennis Creek Tap 138 kV Line		May 15	
3		Upgrade Big Spring Switch – Big Spring West 138 kV Line	s sais	May 15	ě.
4		Install McDonald Road Sw. Sta. – Garden City East 138 kV Line		May 15	
5	.is	Replace Morgan Creek 138/69 kV Autotransformer	2 8 F	May 15	
6		Upgrade Odessa North – Amoco South Foster – Westover 138 kV Line		May 15	
7	ĝ	Upgrade McDonald Road 138 kV Switching Station		May 15	Æ
8		Rebuild Holt 138 kV Switching Station as Double-Bus		May 15	
9		Upgrade China Grove Switching Station Terminal Equipment	- 1	May 15	
10		Construct New Andrews County South 345/138 kV Switching Station		May 15	
11	÷	Construct New Midland County Northwest 345/138 kV Switching Stati	on	May 15	4. J
12		Upgrade North Andrews – Means 69 kV Line		May 15	
13	.40	Replace North Andrews 138/69 kV Autotransformers	300	May 15	

Table 3.3: Recently Completed West Texas Transmission Upgrades

Figure 3.5: Recently Completed West Texas Transmission Upgrades

The load in West Texas continues to grow more quickly than in other parts of ERCOT. Despite the drop in oil prices, drilling activity in the Permian Basin continues. Peak demand in the Far West weather zone, which contains most of the Permian Basin, has increased at an average annual rate of 8.2% since 2009. Some of the growth in peak demand in 2014 can be attributed to the moving of load on the Sharyland Utilities system from the Eastern Interconnection to ERCOT. This transfer was completed in early 2014. Annual energy use in the Far West weather zone has experienced similar growth, increasing by an average annual rate of 9.9% from 2009 through 2014. Figures 3.6 and 3.7 show the Far West weather zone historical growth in peak demand and energy, respectively, since 2009.

Figure 3.6: Far West Weather Zone Annual Peak Demand (2009-2015)

Figure 3.7: Far West Weather Zone Annual Energy (2009-2014)

Chapter 4. Planned Improvements

4.1 Historical Investments and Improvements

The need for transmission improvements is typically driven by increases in demand or changes in generation resources (both additions and retirements). Figure 4.1 shows the net change in weather zone peak demand between 2004 and 2015. The data shows that the two largest weather zones, Coast and North Central, had the largest net increase in peak demand. This result is to be expected since the two largest metropolitan areas in Texas—Houston and Dallas-Fort Worth—are located in these weather zones.

Figure 4.1: Net Change in Weather Zone Peak Demand (2004-2015)

Figure 4.2 shows the total growth percentage change in weather zone peak demand between 2004 and 2015. The chart shows that the Far West and West weather zones had the largest percentage increases in demand. This is most likely due to the increased demand from oil and natural gas activities in the Permian Basin. The Far West weather zone demand increase is also partially due to the aforementioned move of Sharyland Utilities load into the ERCOT System.

Figure 4.2: Percent Change in Weather Zone Peak Demand (2004-2015)

Figure 4.3 illustrates the net change in generation capacity by weather zone between 2004 and 2015. The chart indicates that all weather zones saw a net increase in generation capacity except for the Coast weather zone. The Coast weather zone, which is largely made up of the Houston area, saw a decrease of nearly 3,000 MW of generation capacity over this timeframe. The largest increases in generation capacity were seen in the West and Far West weather zones, which can be attributed to the wind generation additions in these zones. It should be noted that for purposes of this chart, wind generation was counted based on the nameplate capacity of the wind resources.

Figure 4.3: Net Change in Generation Capacity by Weather Zone (2004-2015)

Currently, there are \$5.8 billion of future transmission improvement projects that are planned to be in service between 2016 and the end of 2021. Table 4.1 and Figure 4.4 show some of the significant improvements planned to be in-service within the next six years.

Ma	p Index	Transmission Improvement	service Year
	1	New Lobo – North Edinburg 345 kV line (Valley Import)	2016
	2	New North Edinburg – Loma Alta 345 kV line (Cross Valley)	2016
	3	Add Midessa South 345/138 kV transformer	2016
	4	Add second Jewett 345/138 kV transformer	2016
	5	Add second Jordan 345/138 kV transformer	2016
	6	Add second Twin Buttes 345/138 kV transformer	2016
	7	Add second Meadow 345/138 kV transformer	2016
	8	New Fowlerton 345 kV station with 345/138 kV transformer	2017
ļ	9	New Jones Creek 345 kV station with two 345/138 kV transformers	2017
	10	Upgrade McDonald Road – Garden City 138/69 kV line	2018
	11 <	Houston Import Project	2018
	12	Add second 345 kV circuit in the Panhandle loop	2018
	13	Add synchronous condenser in the Panhandle loop	2018
	14	Add Zorn – Marion 345 kV transmission line	2019
<u> </u>	15	Add second Hicks 345/138 kV transformer	2020
	16	Add Salado Switch 345/138 kV transformer	2021

Table 4.1: Planned Transmission Improvement Projects

Figure 4.4: Planned Transmission Improvement Projects

4.2 Lower Rio Grande Valley

Currently, demand in the Lower Rio Grande Valley (LRGV) is supported by two existing 345 kV lines, three 138 kV lines, and approximately 1,700 MW of natural gas generation at four plants. The area also has hydroelectric and wind generation and an asynchronous tie with the Mexico system. Because the area is dependent on such a small number of resources, transmission and generation maintenance outages must be carefully planned in order to reliably serve the area. The area is vulnerable to contingency events that cause multiple pieces of equipment to be out

of service at the same time due to equipment failure. Two transmission projects endorsed by the ERCOT Board of Directors in late 2011 and early 2012 will support the LRGV and are expected to be in-service by the summer of 2016. The first involves the construction of a new 345 kV line from the Lobo substation, near Laredo, to the North Edinburg substation. This new line will provide a third 345 kV import circuit into the LRGV. Additionally, the project includes upgrading both the existing 345 kV import lines. The second significant project includes a new 345 kV line from the North Edinburg station, located on the west side of the LRGV, to the Loma Alta station, located on the east side of the LRGV. Figure 4.5 shows a map of the LRGV area transmission system.

Figure 4.5: Map of Lower Rio Grande Valley

In July 2014, the owners of the Frontera generation plant, a 524 MW natural gas facility located on the west side of the LRGV, announced that they were planning to switch part of the facility (170 MW) out of the ERCOT market in 2015, and the entire facility (524 MW) starting in late 2016. Going forward, the plant will be generating electricity for the Mexico power system. ERCOT has concluded that the two planned 345 kV projects will largely relieve the reliability issues in 2016, but additional system improvements likely will be required sometime after 2016.

As of October 2015, the LRGV has one new natural gas plant (225 MW capacity) and several wind generation projects (more than 2000 MW capacity) with signed generation interconnection

agreements (SGIA) and financial commitment. In addition, two new natural gas plants have SGIAs, but the developers have not yet provided financial commitment. Two transmission upgrade projects for the LRGV area have been submitted separately by TSPs to RPG to improve the reliability and import capability of the LRGV. ERCOT is currently conducting the independent review of these RPG projects and expects to complete the studies in 2016.

4.3 Liquefied Natural Gas Facilities

In February 2015, the ERCOT Board of Directors unanimously endorsed the Jones Creek project for a transmission upgrade to serve a load unlike any previously connected to the ERCOT System—a natural gas liquefaction and export facility. The production of liquefied natural gas (LNG) is an energy-intensive process and the construction of such a facility can significantly increase the load already being served in an area. Several potential LNG facilities have been proposed across the United States, including many along the ERCOT Gulf Coast. The Freeport LNG liquefaction project, which the Jones Creek upgrade will serve, and Cheniere's Corpus Christi liquefaction facility were the first LNG export facilities within the ERCOT region to receive all necessary approvals to begin construction.

The Freeport LNG facility will be located on Quintana Island in Brazoria County and, at full production, will require 690 MW to serve its load. The Cheniere facility, while having only slightly less LNG production capacity, will have a much lower electric power need because it uses different technology to drive its process needs and will require less extensive transmission upgrades. LNG exports from both facilities are expected to begin in 2018 and reach full output in 2019.

LNG facilities represent a type of load expansion that can dramatically impact local electric service. For instance, the Freeport area load is currently less than 80 MW. Adding the LNG liquefaction facility's 690 MW load will result a nearly ten-fold increase. This single project produced a significant need for additional electrical infrastructure in the Freeport area, and this need will be addressed by two projects that have been reviewed by the Regional Planning Group. The construction of LNG liquefaction facilities in other locations may have similar impacts. The Cheniere facility, which will use natural gas turbines instead of electric motors to drive the liquefaction compressors, will require much less power from the electric grid and more modest transmission upgrades or additions. However, future upgrades may be needed at each facility because both companies have begun the process for approval to expand the liquefaction and export capacity at their existing sites.

In addition to the two facilities under construction, six other projects have begun the LNG export project approval process. Developers have already applied to the Department of Energy (DOE) for licenses to export LNG from five of these proposed facilities. All six proposed facilities are located in the Brownsville area. Developers have begun the FERC pre-filing review process for three of these projects. Table 4.2 shows all LNG facilities in the ERCOT Gulf Coast region that have completed or begun the regulatory process for approval to liquefy and export natural gas. In addition to the almost 5 billion cubic feet per day (Bcf/d) of LNG authorized under current Freeport LNG and Cheniere approvals, the other proposed LNG facilities and expansions in the ERCOT region seek authority to export nearly an additional 13 Bcf/d. In total, companies across the Lower 48 States have filed export applications with the DOE for over 46 Bcf/d.⁵ Figure 4.6 shows the general location of the approved and proposed LNG projects in the ERCOT system.

⁵ Long Term Applications Received by DOE/FE to Export Domestically Produced LNG from the Lower-48 States, Department of Energy/Fossil Fuels Office, October 14, 2015.

Company	Export Quantity (Bcf/d)	Free Trade Agreement Application ⁶	Non-FTA Application ⁷	Location
Freeport LNG	2.8	Approved	Approved (1.8 Bcf/d)	Freeport
Gulf Coast LNG Export	2.8	Approved	Under review	Brownsville
Cheniere Marketing and Corpus Christi Liquefaction	2.1	Approved	Approved	Ingleside
Eos LNG	1.6	Approved	Under review	Brownsville
Barca LNG	1.6	Approved	Under review	Brownsville
Annova LNG Common Infrastructure	0.94	Approved	n/a	Brownsville
Texas LNG Brownsville	0.55	Approved	Under review	Brownsville
Corpus Christi Liquefaction Expansion	1.41	Approved	Under review	Ingleside
Freeport LNG Expansion	0.9	¥	977 D	 Freeport
Rio Grande LNG	3.6			Brownsville
Total	18.0		é en j	

Table 4.2: Proposed LNG Facilities in ERCOT

⁶ Application to import or export natural gas to countries that have a Free Trade Agreement with the United States requiring national treatment for trade in natural gas. These applications are deemed to be in the public interest under Section 3(c) of the Natural Gas Act.

⁷ Application to import or export natural gas to countries that do not have a Free Trade Agreement with the United States requiring national treatment for trade in natural gas. These applications are not deemed to be in the public interest under Section 3(c) of the Natural Gas Act and are subject to a public comment and review process to determine if the application is in the public interest.

Figure 4.6: Approved and Proposed LNG Facilities in ERCOT

As with the facilities already under construction, the load impact of the proposed Brownsville facilities will depend on the technology chosen to drive the liquefaction compressors. Statements made in filings at FERC reveal the potential for significant load increases in the Brownville area. Texas LNG plans to use electric motors to drive its compression and therefore needs 240 MW of

transmission capability.⁸ The Annova facility also plans to use electric-driven compression and will have a 405 MW maximum load requirement.⁹ The Rio Grande LNG Project currently plans to drive their liquefaction compressors using a pair of 300 MW natural gas turbines with electric helper motors, which would result in a minimal load impact.¹⁰ However, Rio Grande LNG reported to FERC that they will also investigate grid-supplied power.¹¹ Each of these projects expects to begin operation in 2020, if approved. If these projects are approved and Rio Grande LNG elects to use grid-supplied power to serve its load, the projects could add over 600 MW of load in 2020 and another 600 MW in years to follow as subsequent phases of project development are completed. This rapid load increase could require significant transmission upgrades to meet customer needs and maintain reliability.

No specific information is publicly available about the power requirements of the Barca LNG, Eos LNG, and Gulf Coast LNG projects. None of these three Brownsville LNG projects have initiated the pre-filing process with FERC. However, these proposals—approximately 6 Bcf/d—will have large electric power requirements if they are constructed. Finally, another possible ERCOT-area LNG project could be developed in Galveston on Pelican Island. Next Decade, which is also proposing the Rio Grande LNG project, is exploring the feasibility of a 0.8 Bcf/d facility at that site. If approved and constructed, it is unlikely that any of these projects would be in service as soon as 2020. However, collectively, these projects could require significant power and associated transmission additions or upgrades.

4.4 San Antonio System Additions

The city of San Antonio, located in Bexar County, is the seventh most populous city in the United States and was among the top five fastest growing cities from 2000 to 2012.¹² Claritas projects the population of Bexar County to grow an additional 7.4% between 2015 and 2020.¹³ Comal and

⁸ Texas LNG Draft Resource Report 1, Federal Energy Regulatory Commission, Oct 21, 2015.

⁹ Annova Draft Resource Report 1, Federal Energy Regulatory Commission, Sep 29, 2015.

¹⁰ Rio Grande Request to Initiate NEPA Pre-Filing Process, March 20, 2015.

¹¹ Rio Grande Draft Resource Report 1, May 13, 2015.

¹² <u>http://www.citymayors.com/gratis/uscities_growth.html</u>

¹³ http://www.sanantonioedf.com/living/demographics/

Hays counties, located north of Bexar County on the IH-35 corridor between Austin and San Antonio, are also expected to see significant growth.

The load in San Antonio is currently served by local generation, located near the southern edge of the county, and the 345 kV transmission loop connected to an inner 138 kV network. The bulk of the city's power needs are met by import paths from the Clear Springs, Zorn, and Elm Creek substations located in neighboring Guadalupe County (east of Bexar County) and the Kendall substation located in Kendall County (north of Bexar County).

In 2014, CPS Energy announced that the J.T. Deely coal-fired power plant, located in the southern part of Bexar County, will be retired at the end of 2018. With an output of approximately 850 MW, this plant currently represents nearly 20% of the generation capacity in Bexar County. The 2014 RTP identified that the combination of local demand growth and the retirement of J.T. Deely will result in reliability criteria violations on the transmission system from northeast Bexar County, extending into Comal and Hays Counties, unless significant improvements are constructed by 2019. Furthermore, in 2015, congestion rent on the 345 kV line between the Marion and Skyline substations was over \$7.3 million (Table 3.1).

In June 2014, CPS Energy and LCRA Transmission Services Corporation submitted a project proposal to the RPG to address these violations. ERCOT conducted an independent review of the proposal and identified reliability criteria violations on several 345 kV and 138 kV lines and multiple transformers. In the independent review, ERCOT evaluated thirteen project alternatives to resolve the violations and endorsed approximately \$86 million dollars of transmission upgrades to improve the transmission system supporting San Antonio before summer of 2019. The project strengthens the import path into Bexar County and mitigates the impact of contingencies, which are currently resulting in the high congestion costs mentioned above. The most noteworthy upgrades, as seen in Figure 4.7, are the construction of a new 18-mile 345 kV transmission line from Zorn to Marion substations, the addition of two 345/138 kV transformers at Clear Springs and Marion substations, and reconfiguration of the Hill Country—Elm Creek/Marion and Skyline—Marion/Elm Creek 345 kV double circuit lines.

Figure 4.7: System Problems in the San Antonio Area

4.5 Additional Reliability-Driven Planned Projects

Continued growth of load throughout the state is a key driver for transmission improvements in the ERCOT Region. The recently completed 2015 Regional Transmission Plan (RTP) identified more than 60 projects needed to satisfy reliability planning criteria in the 2016 to 2021 timeframe. Twenty-one of these projects were previously identified in prior RTP studies for the ERCOT System. More information on these projects can be found in the 2015 RTP report posted on the ERCOT Market Information System website.

Chapter 5. Projected Constraints

5.1 Panhandle

The Panhandle region of the ERCOT grid, as seen in Figure 5.1, is a prime location for wind generation development. This development is accompanied by potential export limitations due to the operation of wind resources under weak grid conditions (as described in the April 2014 Panhandle Renewable Energy Zone Study Report¹⁴). As of September 9, 2015, 4,304 MW of wind capacity in the Panhandle satisfy the requirements of ERCOT Planning Guide Section 6.9 (PG 6.9), Addition of Proposed Generation Resources to the Planning Models. The total capacity of Panhandle wind resources with a SGIA exceeds 7,000 MW; another approximately 5,000 MW is under study for future interconnection in the region (see Figure 5.2).

Figure 5.1: Panhandle Area Map

¹⁴ Available at <u>http://www.ercot.com/content/news/presentations/2014/Panhandle%20Renewable%20Energy%20Zone%20Stud</u> <u>y%20Report.pdf</u>